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A role for miR-19 in the migration of adult-born neurons and schizophrenia
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ABSTRACT
The latest miRNA database (Release 21) annotated 2588 and 1915 miRNAs in the human and mouse
genomes, respectively.1 However, the biological roles of miRNAs in vivo remain largely unknown. In
particular, the physiological and pathological roles of individual microRNAs in the brain have not
been investigated extensively although expression profiles of microRNAs have been reported in
many given conditions. In a recent study,2 we identified miR-19, which is enriched in adult
hippocampal neural progenitor cells (NPCs), as a key regulator for adult hippocampal neurogenesis.
miR-19 is an intrinsic factor regulating the migration of newborn neurons by modulating expression
level of RAPGEF2. After observing the abnormal expression patterns of miR-19 and RAPGEF2 in
NPCs derived from induced pluripotent stem cells of schizophrenic patients, which display aberrant
cell migration, we proposed miR-19 as a molecule associated with schizophrenia. The results
illustrate that a single microRNA has the potential to impact the functions of the brain. Identifying
miRNA-mediated posttranscriptional gene regulation in the brain will expand our understanding of
brain development and functions and the etiologies of several brain disorders.
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miR-17»92 in the brain

miR-17»92 is a polycistronic miRNA gene, which is a
known oncogene.3 However, recently, it has gained
attention as a genetic molecule, linked to dominant
hereditary disorders in humans. miR-17»92 is tran-
scribed as a long RNA transcript encoding 6 miRNAs
that are classified into 4 different miRNA families:
miR-17, miR-18, miR-19 and miR-924 (Fig. 1).
miRNAs in the same family include nearly identical
sequences that are predicted to suppress almost the
same target genes.5 While it is unclear which miRNA
family results in which phenotypes, variable copy
numbers of miR-17»92 cause developmental defects,
including impaired brain development and functions.6-8

Microdeletion of the gene results in microcephaly and
psychiatric disorders whereas microduplication of the
gene causes macrocephaly and autistic traits.

miR-17»92 and its paralogs, miR-106a»363 and
miR-106b»25 (miR-17 clusters), are evolutionarily
conserved in vertebrates and are expressed broadly
from embryonic stem cells (ESCs) to adult cells in
diverse tissues, including the brain.9-13 miR-17»92-

deficient mice died shortly after birth, with impaired
lung and heart development.12 While mice lacking
other paralogs were indistinguishable from wild type,
when the paralogs were ablated simultaneously with
miR-17»92, double and triple knockouts resulted in
embryonic lethality displaying severe developmental
defects and additional abnormalities in particular
tissues such as the central nervous system.12 Condi-
tional knockout of miR-17 clusters in developing brain
altered the numbers of oligodendrocytes14 and
reduced the size of the brain,15,16 further supporting
the functional significance of miR-17 clusters in brain
development. In the adult brain, miR-17 clusters,
expressed in neural progenitor cells (NPCs), regulate
neurogenesis in many ways, including proliferation of
NPCs, migration and maturation of newborn
neurons.2,17-20 Depletion of miR-17»92 in adult
hippocampal NPCs reduces neurogenesis and is
accompanied by depression and anxiety, illustrating
the importance of the gene in brain functions.20

While miRNAs in the miR-17 clusters are under
the same transcription unit, the expression level of
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each miRNA family can be altered independently of
other miRNAs in the clusters by posttranscriptional
regulation.21 The different expression levels and
functional contributions of each miRNA family have
been shown in the developmental brain;14,15,22-24

however, it has been studied less extensively in the
adult brain. Abnormal expression of each miRNA
family has been reported in adult brains of human
patients with Alzheimer disease25 or schizophrenia

(SZ)26,27 as well as in a mouse model for amyotrophic
lateral sclerosis,28 implying different biological
impacts of each miRNA family in the adult brain.

miR-19 in adult hippocampal neurogenesis

Among the polycistronic miRNAs, miR-19 is reduced
most dramatically in adult NPCs upon ablation of
REST (RE1-silencing transcription factor), a suppres-
sor for neuronal gene expression18 that accelerates
neuronal differentiation of adult NPCs. It is interest-
ing to note that miR-19 is known as a key oncogenic
factor in the polycistrons for tumorigenesis,29,30

suggesting that a high level of miR-19 may have
detrimental effects on diverse cellular processes.

Expression of miR-19 in the adult hippocampus has
been confirmed by in situ hybridization (ISH).2,20 To
detect miR-19 at the cellular level in vivo, we developed
a miR-19 tracer based on a lentivirus that expressed GFP
constitutively and RFP in the absence of miR-19.
Consistent with the results of the REST knockout study,
miR-19 was enriched in adult NPCs and downregulated
during neuronal development.2 Expression of miR-19
was negligible in »98% of NEUNC cells. While NEUN
was expressed in a small number of 1-week-old neurons,
NEUN expression increased dramatically in »2-week-
old neurons,31,32 indicating that miR-19 expression
disappeared around 2 weeks after neurons are born.

Next, we investigated biological roles of miR-19 in
NPCs in adult hippocampal neurogenesis. To obtain
unbiased evidence for biological functions of miR-19
in adult NPCs, genome-wide transcriptome analyses
were performed after modulating the expression level
of miR-19 in NPCs. It was expected that »100 genes
would change expression in miR-19-overexpressing
NPCs compared to control NPCs, making gene
ontology (GO) analysis possible. However, very
surprisingly, only 10 genes changed their expression
in miR-19-overexpressing NPCs.2 While the small
number of differently expressed genes did not allow
GO analysis to be performed, we observed 3 genes
that are annotated to be involved in cell migration,
leading us to hypothesize that miR-19 controls the
migration of newborn neurons. miR-19s role in cell
migration is surprising given the findings that several
miRNAs such as miR-9 and miR-124 have been
shown to be involved in other aspects of adult
neurogenesis like proliferation of NPCs,33-36 cell fate
determination35-37 and differentiation.33,34,38-40

Figure 1. microRNAs in miR-17»92 and its paralogs. (A) Gene
structures of miR-17»92 and its paralogs. (B) Four miRNA family
generated from the polycistronic genes. This figure is adapted
from Mendell (2008).58
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Overexpressing miR-19 in adult hippocampal
NPCs facilitated cell migration and placed newborn
neurons in a deeper granule cell layer (GCL)2 (Fig. 2).
The migration phenotype induced by miR-19
overexpression was detectable even in 8-day-old
neurons. Eight days is relevant timing for neuronal
migration that occurs in the early stage of neurogene-
sis. We found that miR-19 works on cell migration by
regulating Rapgef2 (Rap guanine exchange factor 2) in
adult NPCs. Rapgef2 is a member of Rapgef protein
family that governs cell migration by modifying
activity of Rap proteins.41 During early neuronal
differentiation, the RAPGEF2 protein level increased,
showing an inverse correlation to miR-19 expression
level, whereas the Rapgef2 mRNA level did not
change. miR-19 suppressed expression of RAPGEF2

protein by binding to Rapgef2 mRNA.2 The migration
efficiency of newborn neurons increased when
Rapgef2 was depleted in adult NPCs, which is similar
to the phenotype resulting from overexpression of
miR-19 in adult NPCs. Consistent with this finding,
the migration of adult-born neurons was attenuated
by depletion of miR-19 or overexpression of
RAPGEF2 in NPCs.

Under physiological conditions, adult-born neurons
migrate very short distances to the GCL and stay in
the inner GCL. Therefore, the extended migration of
newborn neurons resulting from overexpressing
miR-19 in NPCs we observed was unexpected. A
comparable migration phenotype has been described in
a few other studies manipulating genes involved in
neuropsychiatric disorders, such as Pten (phosphatase
and tensin homologous) in autism spectrum disor-
ders42,43 and Disc1 (disrupted in schizophrenia 1),44,45

Plcb1,46,47 and Nr3c1 (also known as glucocorticoid
receptor)48,49 in SZ, suggesting that miR-19 is likely
related to neuropsychiatric disorders.

Implications of miR-19 in SZ

Abnormal expression of miR-19 in the brains of SZ
patients has been reported in a postmortem study.26

Moreover, copy number variations encompassing
RAPGEF2, a major target of miR-19 in adult
hippocampal NPCs that we identified, has been found
in a familial SZ study.50 Aberrant cell migration has
also been displayed in human NPCs that were derived
from SZ patients through reprogramming.51 Abnor-
mal cell migration was also observed in our study by
modulating miR-19 in adult hippocampal NPCs. All
these findings indicate a potential link between
miR-19 and SZ.

By utilizing human hippocampal NPCs, derived
from induced pluripotent stem cells of SZ patients
(SZ-NPCs) and relative controls (control-NPCs),52 we
found that miR-19 was upregulated in SZ-NPCs
compared to control-NPCs.2 This finding is consistent
with a previous study reporting an increase in miR-19
in the postmortem brain of SZ patients.26 In addition,
as miR-19-mediated RAPGEF2 regulation is conserved
in human ESC-derived hippocampal NPCs, SZ-NPCs
express less RAPGEF2 protein than control-NPCs,2

demonstrating the significance of miR-19 in operating
the migration of newborn neurons that may be linked
to the etiology of SZ.

Figure 2. miR-19 functions in adult hippocampal neurogenesis.
(A) Expression of miR-19 in adult hippocampal NPCs that
modulate RAPGEF2 expression. (B) Extended migration of
newborn neurons resulting from upregulated miR-19 and its
potential association with schizophrenia.

NEUROGENESIS e1251873-3



Depression resulting from miR-17»92 knockout
in adult NPCs20 is a frequently occurring symptom
in SZ patients.53 Epilepsy, which often results in mis-
localized adult-born neurons in the GCL, is a known
risk factor for SZ.54-56 However, it would be necessary
to investigate how the aberrant migration of newborn
neurons resulting from miR-19 contributes to SZ
pathogenesis specifically.

Conclusion

While genome-wide association studies have revealed
genetic loci that are associated with SZ, genetic factors
that increase the risk for this complex disease remain
largely unknown. The abnormal expression of miR-19
and RAPGEF2 in SZ-NPCs shown in our study2 was
independent of genomic DNA mutation. Genomic
DNA of SZ patients did not have mutations on either
MIR19 or RAPGEF2,57 indicating that investigating
posttranscriptional gene regulation is valuable to
elucidate the molecular mechanisms underlying brain
disorders. Overall, our work shows that non-biased
reverse genetic study of a microRNA can be a
desirable strategy to find essential protein coding
genes influencing brain development and their
physiological functions, as well as their associated
diseases in the brain.
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