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Abstract
Accurate segmentation and classification of different anatomical structures of teeth from

medical images plays an essential role in many clinical applications. Usually, the anatomical

structures of teeth are manually labelled by experienced clinical doctors, which is time con-

suming. However, automatic segmentation and classification is a challenging task because

the anatomical structures and surroundings of the tooth in medical images are rather com-

plex. Therefore, in this paper, we propose an effective framework which is designed to seg-

ment the tooth with a Selective Binary and Gaussian Filtering Regularized Level Set

(GFRLS) method improved by fully utilizing three dimensional (3D) information, and classify

the tooth by employing unsupervised learning Pulse Coupled Neural Networks (PCNN)

model. In order to evaluate the proposed method, the experiments are conducted on the dif-

ferent datasets of mandibular molars and the experimental results show that our method

can achieve better accuracy and robustness compared to other four state of the art cluster-

ing methods.

1 Introduction
The tooth is one of the most important structures in the human mouth. There are a lot of dis-
eases with the tooth, and vertical root fracture (VRF) is a severe disease in human tooth. VRF is
defined as a longitudinal fracture confined to the root that usually begins on the internal canal
wall and extends outward to the root surface [1]. VRF is a common complication in root canal-
treated teeth [2, 3]. This leads to major damage to the periodontium. There exists substantial
clinical evidence that VRF also generates a vertical destructive lesion [4, 5]. As pointed in [5],
the damage involves both the soft tissues and the adjacent alveolar bones. VRF is a serious
threat to the tooth’s prognosis during or after root canal treatment [6].

The diagnosis of VRF often occurs years later by using conventional periapical radiographs.
However, recent studies have been shown that the detection of these fractures gets earlier
benefiting from Cone-beam computed tomography (CT). Therefore, accurate diagnosis of
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VRFs can be treated by extraction of teeth from CT images [6]. In our study, we use a Micro
Computed Tomography (MicroCT) to collect the tooth image data.

Nowadays, finite element analysis (FEA) is considered as an effective method in endodontic
education, training, and treatment. FEA includes a computer model of a material or design
that is stressed and analyzed for specific results. In [7], Lertchirakarn et al. used finite element
models of maxillary and mandibular incisors to analyze stress patterns. Through FEA, the
effect of different ferrule heights on stress distribution within a tooth, which is restored with
fibre posts and ceramic crown, is evaluated [8]. In [9], Jones et al. developed a validated 3D
finite element method of the movement of a maxillary incisor tooth.

In the circumstances, FEA also can be used on natural and VRF teeth in nonendodontically
treated teeth. And then the stress analysis has important accessory diagnostic value for den-
tistry [10]. During the FEA, setting material properties for each zone is an essential step. In this
case, a single tooth can be divided into three parts consisting of enamel, dentin and pulp. How-
ever, directly using FEA on the original MicroCT datasets without any processing is infeasible
because of complexity of the datasets. Usually, the experienced dentists manually segment and
label the different parts of the tooth with different gray value. After that, the labeled images are
used as input of FEA. But in practice, manual delineation is a time consuming task. Utilizing
computer aided technology will greatly help doctors to obtain the labeled images and reduce
their workload. And with a good processing and classification of the original MicroCT datasets,
the FEA of the tooth should be more accurate, which is significant to accessory evaluation.

However, accurate segmentation and classification of the tooth are challenging tasks stem-
ming from the following aspects [11, 12]. (1) MicroCT is a non-destructive imaging technique
using X-rays to create cross-sections images, which is seen as a valuable tool in endodontic
research [13]. But the MicroCT datasets contains very complicated noisy and artifacts unre-
lated to the desired object. The gray value of noise is similar to the pixel value of the tooth; (2)
due to single tooth, a bracket is needed under the tooth during scanning, which causes the
MicroCT data including the bracket, and its close connectivity to the tooth greatly influences
segmentation (see Fig 1(a)); and (3) the anatomical structures of tooth are quite complicated,
consisting of enamel, dentine and pulp cavity, which leads to a problem that not all structures
appear at the same time in the same slice and sometimes there are only one or two structures in
the image (as illustrated in Fig 1(b)–1(d)).

The aim of this study is to propose a robust framework for segmentation and classification
of different anatomical teeth structures fromMicroCT images in both accuracy and efficiency.
Instead of direct utilization of GFRLS method, improved GFRLS makes full use of 3D informa-
tion to generate accurate segmentation results, closely followed by a set of image processing
methods. After that, by modifying the pulse output and exploiting spatial adjacency proximity,
the PCNNmodel is improved to be suitable for the complex classification of teeth structures.

Fig 1. (a), (b), (c) and (d) standing for different cross-sectional slices, respectively. (a) the bracket
connected to the tooth. (b) three structures of the tooth. (c) two structures of the tooth. (d) one structure of the
tooth.

doi:10.1371/journal.pone.0157694.g001
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Our experiments are conducted on sufficient tooth MicroCT datasets and the experimental
results are compared to other four state of the art clustering methods with quantitative
analysis.

The contributions of this paper reside in the following aspects: (1) we propose a robust and
effective framework to automatical categorize structures of the tooth; (2) the proposed method
is designed for classification of tooth structures, which can also be extended to other classifica-
tion tasks; (3) the proposed method enables more accurate and efficient clinical application,
such as stress analysis.

The rest of the paper is organized as follows. In Section 2, we review the previous works.
The whole framework and the details of our proposed method are described in Section 3. Sec-
tion 4 shows our experimental set-up and results, which are discussed subsequently. And Sec-
tion 5 concludes the paper.

2 Background

2.1 GFRLS Method
Level set is a classical method that utilize partial differential equations (PDEs) and has been
applied in medical images, which provides an implementation of an active contour method
based on regions or edges to drive the zero level curve towards the object boundary. The
GFRLS is one of level set methods and derived from the idea of Chan and Vese (C-V) model
and Geodesic Active Contour (GAC) model. GFRLS method is considered as a region-based
active contour model, which shares the advantages of the C-V and GAC models. The method
is able to control the direction of evolution. When the initial contour is set inside the desired
object, it can expand to the object’s boundary. And the initial contour can shrink if the contour
is outside the desired object.

Next, we introduce GFRLS in detail. Let O be a bounded open subset of R2, C(p):
[0, 1]! R2 be a parameterized curve in O and I: [0, a] × [0, b]! R+ be the given image. Image
segmentation can be regarded as minimizing the following energy functional [14]:

EðCÞ ¼
Z 1

0

C
0 ðpÞ�� ��2dpþ l

Z 1

0

g2 jrI C pð Þð Þjð Þdp; ð1Þ

However, this model relies on parameters of curve. And in [15], Caselles et al. proposed the
GAC model being formulated by minimizing the following energy functional:

EðCÞ ¼
Z 1

0

gðjrIðCðqÞÞjÞjC0 ðqÞjdp; ð2Þ

where g is an edge stopping function (ESF) to stop the evolution when the contour on the
desired object boundaries. It is usually defined as:

gðrIÞ ¼ 1

1þ jrGd � Ij2
ð3Þ

where G denotes a Gaussian kernel with standard deviation δ and “�” is a convolution
operation.

Using the steepest-descent method to process Eq 2, we can get the formulation:

@C
@t

¼ gðjrIjÞk~N � ðrg � ~N Þ~N ; ð4Þ

where κ is the Euclidean curvature of the curve and ~N denotes the unit inward normal.
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However, the above GAC model has a drawback when there exists sunk part in the the
desired object. In this case, the GAC model cannot segment the object correctly. Therefore, a
convergent force is added to make the direction of evolution toward the inside of the curve.
Besides, this force also increase the propagation speed. Then Eq 4 can be improved as:

@C
@t

¼ gðjrIjÞðkþ aÞ~N � ðrg � ~N Þ~N ; ð5Þ

where α is the constant velocity parameter.
Let ϕ be the level set image. The corresponding level set formulation of GAC can be defined

via Eq 5 as follows:

@�

@t
¼ gðjr div

r�

jr�j
� �

þ a
� �

þrg � r�; ð6Þ

As is pointed in [16], the GAC model has local segmentation property which influences the
segmentation precision. Therefore, GFRLS method combines C-V model so as to take advan-
tage of global information of given images.

Chan and Vese [17] proposed a region-based model (ie. C-V model), which can be consider
as a special case of the Munfor-Shah problem [18]. For a given image I in domain O, O is
divided by a closed curve C, including O1(inside the curve) and O2(outside the curve). The C-V
model is formulated by minimizing the following energy functional:

Eðc; c1; c2Þ ¼ m
Z 1

0

jC0 ðpÞjdpþ l1

Z
O1

ðI � C1Þdxdy þ l2

Z
O2

ðI � C2Þdxdy; ð7Þ

where C1 and C2 denote the mean value of the intensities inside and outside the contour C.
To minimize Eq 7, C1 and C2 are as follows:

c1ð�Þ ¼
R
O1
I � Hð�ÞdxR

O1
Hð�Þdxdy ; ð8Þ

c2ð�Þ ¼
R
O2
I � ð1� Hð�ÞÞdxR

O2
ð1� Hð�ÞÞdxdy ; ð9Þ

where the “H(ϕ)” is the Heaviside Function written as:

HεðzÞ ¼
1

2
1þ 2

p
arctan

z
ε

� �� �
; ð10Þ

GFRLS method combines the C-V model to construct a region-based signed pressure force
(SPF) as follows:

spf ðIðxÞÞ ¼ IðxÞ � c1þc2
2

max jIðxÞ � c1þc2
2

j� � ; x 2 O; ð11Þ

The SPF function returns values in the range of [-1,1], which decides the direction of evolu-
tion. It adjusts the signs of the pressure forces inside and outside the region of interest so that
the curve expands or shrinks.
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And then in place of the ESF in the Eq 6, the level set formulation of the GFRLS is as fol-
lows:

@�

@t
¼ spf ðIðxÞÞ � div

r�

jr�j
� �

þ a
� �

jr�j þ rspf ðIðxÞÞ � r�; x 2 O ð12Þ

However, re-initialization of signed distance function (SDF) is required in the evolution of
traditional level set function. And it is not easy to decide when and how to use re-initialization.
Furthermore, re-initialization is time consuming. To address this problem, a Gaussian filter is
used to regularize the selective binary level set function after each iteration in GFRLS method.

Therefore, the term div r�

jr�j

� �
can be removed. Moreover, GFRLS model incorporates global

static information to avoid leakages, so the term5spf(I(x)) � 5ϕ is also unnecessary. Finally,
the level set formulation of the GFRLS can be written as follows:

@�

@t
¼ spf ðIðxÞÞ � ajr�j; x 2 O ð13Þ

2.2 PCNNModel
PCNN is an neural model to simulate the mechanism of cat’s visual cortex, which was pro-
posed by Eckhorn et al. [19]. In [20–22], Johnson et al. adapted the Eckhorn model to image
processing. And it has been shown that PCNN is widely used in the field of image processing
[23] such as image segmentation, pattern recognition [24], edge detection, image enhancement,
etc. In this study, we apply PCNN as a clustering method that classifies the different structures
of tooth.

As shown in Fig 2, a typical PCNN neuron consists of three parts: the dendritic tree, the
linking modulation, and the pulse generator [25]. Each neuron receives signals from both
external stimulus Sij and other neurons. The dendritic tree is used to receive the inputs from
two kinds of receptive fields, i.e., the liking and feeding [26]. Also, the two kinds of receptive
fields are called two channels. The signals reach the neuron through the two channels: Fij is the
feeding channel and Lij represents the linking channel. The feeding channel receives local stim-
ulus from the output of surrounding neurons and external stimulus, while the linking only
receives local stimulus. In the modulation field, signals from the two kinds channels are inte-
grated with a nonlinear way into the internal activity Uij which represents the internal state of
the neuron. The last field is in the charge of the pulse generating activity-firing [27]. A dynamic
threshold θij is utilized to control the firing event so that it is a step function. The essential pro-
cedure of PCNN is firing. The neuron fires when the value of Uij associated with it is equal to
or larger than that of the θij. if a neuron fires, the the value of corresponding threshold would
be set to a very high value. if the neuron does not fire, the value of threshold associated with it
would decay exponentially until it is smaller than the neuron’s internal activity, which then
makes the neuron fire.

The PCNNmodel can be described by the following five equations:

F
ij
ðnÞ ¼ e�aFDt Fijðn� 1Þ þ Sij þ VF

X
k;l

MijklYklðn� 1Þ; ð14Þ

L
ij
ðnÞ ¼ e�aLDt Lijðn� 1Þ þ VL

X
k;l

WijklYklðn� 1Þ; ð15Þ

U
ij
ðnÞ ¼ F

ij
ðnÞð1þ bL

ij
ðnÞÞ; ð16Þ
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y
ij
ðnÞ ¼ e�ayDtyijðn� 1Þ þ VyYijðn� 1Þ; ð17Þ

YijðnÞ ¼ stepðU
ij
ðnÞ � y

ij
ðnÞÞ: ð18Þ

Each neuron is denoted with indices (i, j) and (k, l) refers to its neighboring neurons. Sij, Fij,
Lij, Uij and θij are as described before.M andW are the synaptic weights. VF, VL and Vθ repre-
sent normalizing constants. β is the linking strength and Δt refers to time constant, respectively.
αF, αL and αθ are corresponding decay coefficient. And n is the number of iterations varying
from 1 to N. Here Yij(n − 1) is the previous pulse and Yij(n) the pulse output. Eqs 14 and 15
stand for the dendritic tree. The linking modulation is given by Eq 16. Eq 17 is the dynamic
threshold of the neuron. And firing event is determines by the pulse generator given in Eq 18.

3 Method
In Section 2, we review GFRLS method and PCNN. In this section, GFRLS method based on
3D information and PCNN clustering method are presented. And the detail of our framework
of segmentation and classification of tooth is also described. The flowchart of our proposed
framework is illustrated in Fig 3. Followed by 3D GFRLS method to segment the tooth, the seg-
mented results in binary images are converted to gray-scale images, in which the enamel is
obtained. Also, the eroding operation is applied to remove the noisy on the segmented results
in binary images. Then, improved PCNNmodel is used to classify tooth structures. Finally, the
structures are integrated into the resulting images. The institutional review board of National
Yang-Ming University approved the study. All data were kept anonymous and confidential
and were aggregated for analysis.

Fig 2. The structure of PCNNmodel.

doi:10.1371/journal.pone.0157694.g002
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3.1 3D Segemntation with Improved GFRLS
The MicroCT images include complicated features associated with intensity inhomogeneities,
proximity to experimental set-up of similar intensity levels, and weak boundaries of the tooth
structures. To address these, GFRLS method is firstly used to process the images. GFRLS has
many advantages. (1) GFRLS can easily initialize the level set function by a Gaussian filter; (2)
The method utilizes the information inside and outside the contour to control the evolution,
which is less sensitive to noise; and (3) A new signed pressure force (SPF) function is used to
make the contour efficiently stop at weak or blurred edges.

However, level set methods are usually proposed for two-dimensional (2D) images. Due to
the high complexity of the datasets, 2D GFRLS easily segments the undesired parts unrelated
to our tasks. 3D segmentation is applied because improved 3D GFRLS fully utilizes 3D global
information and it is accurate and efficient. The 3D GFRLS is described as follows.

In Eq 13, let O be a bounded open subset of R3 in 3-D space and C be a parameterized tridi-
mensional surface in O. The definition of the function ϕ(x, y, z, t) is the level set image, which
represents the four-dimensional space and when the set of definitions ϕ(x, y, z, t) = 0 denote
the surface. And then the points satisfy the following definition:

� ¼ 0; ðx; y; zÞ is on the C

� > 0; ðx; y; zÞ is inside the C

� < 0; ðx; y; zÞ is outside the C

8><
>:

Fig 3. The flowchart of our proposed framework.

doi:10.1371/journal.pone.0157694.g003
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Under the circumstances, we can initialize the surface closed to 3D volume boundary of
MircoCT images sequences. When ϕ(x, y, z, t)> 0, the points inside the C constitute a cuboid
encompassing the desired object. Because the intensities of the some structure of tooth are
higher than non-tooth parts, we can set ϕ inside the contour to 1 and outside to −1. Fig 4 illus-
trates the initial surface that divides the entire space into two regions (either internal or exter-
nal to the initial surface) from different 3D perspective. Thus the evolution of the surface is
transformed into the evolution of a four-dimensional level set function. In addition, |5ϕ| is
calculated in three directions, i.e., x, y and z, which can be written as follows:

jr�j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@�

@x

� �2

þ @�

@y

� �2

þ @�

@z

� �2
s

ð19Þ

In the Algorithm 1, the main procedures of the method are shown in detail. Therefore, a
closed 3D surface propagates from the initial surface (i.e. a cuboid) toward the tooth bound-
aries through the iterative evolution of a 4D implicit function. By processing the data by 3D
GFRLS method, signed segmented results in binary images are obtained shown in Fig 5.

Algorithm 1 The procedures of 3D GFRLS method.

1: Initialize the level set function �(x, y, z, t).
2: Calculate the gradient of �(x, y, z, t) by Eq 19 and compute c1(�) and c2(�)

using Eqs 8 and 9.
3: Update the level set function according to Eq 13.
4: Process the �(x, y, z, t) by Selective Binary.
5: Regularize the level set function by Gaussian Filter.
6: Check whether the evolution of the level set function converges. If not,

return to the step 2.

3.2 Tooth Classification with PCNN
After segmenting by 3D GFRLS method, the binary images are achieved which include the
tooth (the intensity is 1) and the background (the intensity is 0). Another issue with the original
MicroCT images is that in some slice there exists noise which appears with similar image inten-
sity as the dentine at the edge of the enamel or that which has proximity to the pulp on the bor-
der of dentin of similar intensity levels. Therefore, morphic erode algorithm is used on the
binary images to further removes the noise. And then, by subtraction between original CT data
and segmented data, grayscale images of tooth are obtained. A specified threshold is then used

Fig 4. 3D initial surface (tooth in volume rendering). (a), (b) and (c) stand for different 3D perspective,
respectively.

doi:10.1371/journal.pone.0157694.g004
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to extract the enamel. The steps are clearly outlined in Fig 3. However, dentine and pulp cavity
usually have different threshold with regard to different datasets.

Although there exists many unsupervised learning methods used for classifying, PCNN has
its own advantages for image classification. First, PCNNmodel is derived from the observation
on cat visual cortex, which is much closer to the human visual processing. Second, the structure
of PCNNmodel is very flexible so that it can be modified according to different kinds of
images. Third, PCNNmethod has been shown the high performance in the literature. There-
fore, PCNN is a suitable method to process the classification.

However, the original PCNNmodel is used to segment images based on similar intensity,
producing binary segmented results which weaken the hierarchy of images (i.e classification of
images). Nevertheless, in our study, there are different structures of the tooth, and our goal is
to classify different structures labeled by several gray values. Therefore, the original PCNN
model should be modified for our application, not only reserving the perfect property for seg-
mentation but also serving as classification. The pulse output Eq 18 can be modified as follows:

xðnÞ ¼ UðnÞ � yðnÞ
Gij ¼

P
r

P
tjxijðnÞ � xiþr;jþtðnÞj

Yij ¼
xijðnÞ

max xðnÞ � k


 �
8>>>><
>>>>:

ð20Þ

where U(n) is matrix internally activated in n-th iteration, θ(n) is corresponding threshold
matrix, and D(n) is the difference between U(n) and θ(n). Gij represents the variations of the
difference between neuron’s internal activation and the corresponding threshold in 3 × 3 win-

dow in which index (i, j) is the center.
xijðnÞ

max xðnÞ serves as normalization and k is the parameter

Fig 5. Segmented results by 3D GRFLSmethod. (a), (b), (c), and (d) are different original MicroCT slices.
(e), (f), (g), and (h) are segmented results of the first row.

doi:10.1371/journal.pone.0157694.g005
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about the hierarchies in MicroCT images. The advantages of the improved PCNNmodel lie in:
(1) improve the robustness and effectiveness, because the improved PCNNmodel makes full
use of the information including spatial adjacency proximity for each pixel in 3 × 3 window
and similarity in brightness; (2) generate hierarchical result images used for classification,
which is appropriate for the datasets.

With regard to image application, in Eqs 14–17 and 20, the indexes i and j stand for the
pixel locations in the input images, i.e. Sij (1� i� a, 1� j� b) is the external stimulus refer-
ring to the intensity of pixel (i, j), while k and l are its neighbor pixels. PCNN is usually per-
formed on 3 × 3 window in order to minimize errors [28]. The 3 × 3 window is denoted by
matrix of weight coefficientsW as follows:

W ¼
0:07 0:1 0:07

0:1 0 0:1

0:07 0:1 0:07

0
B@

1
CA ð21Þ

And then, the initial values of all the neurons are set to 1. At the first iteration, the value of
interior activity Uij(1) of the neuron is equal to external stimuli Sij. The value of the neuron out-
put Y is obtained according to Eq 20. The value of threshold θ increases sharply and it will
decay exponentially over time. After that, for each iteration, the firing neuron stimulates its
adjacent neuron by interacting on the neighboring neurons. If the internal activity of adjacent
neuron is larger than or equal to the value of the threshold associated with it, the firing even
occurs. Obviously, it is easy to fire when the adjacent neuron has similar intensity with the pre-
vious iteration firing neuron. Otherwise, the firing even cannot occur. Therefore, any natural
firing neuron will trigger its neighboring neurons firing which have similar intensity. The firing
neurons form a cluster of neurons corresponding to a region in which the pixels have similar
gray level values in the image. Based on spatial proximity and brightness similarity, the object
in the image can be classified. The main procedures of PCNN algorithm are illustrated in detail
in the algorithm 2. Fig 6 demonstrates the application of PCNNmodel for image processing.

Algorithm 2 The procedures of improved PCNN.

1: Initialize the PCNN network: Sij is set to the gray level of the correspond-
ing pixel and set the pulse output Yij, threshold θ to 0. Besides, firing
frequency Firate, which is used to count firing times of each pixel, is
also set to 0. And N is the total number of iterations

2: for 1 to N do
3: for each neuron Sij in the images do
4: Calculate Lij by Eq 15;
5: Compute Fij according to Eq 14;
6: Calculate Uij according to Eq 16;
7: Acquire Yij by Eq 20;
8: Calculate θij according to Eq 17;
9: end for
10:end for
11: Classify the images by different neuron output Yij;

4 Experimental Results and Evaluation

4.1 Datasets and Ground Truth
In order to evaluate the robustness of our method, experiments are conducted on three different
mandibular molar MicroCT datasets. Fig 7 shows experimental set-up of MicroCT for tooth
scanning. All scans use the 256 × 256 with an in-plain voxel resolution of 1.00 × 1.00mm2 and
with a slice thickness of 1.00mm. Each dataset represents a single tooth with 256 slices. In order

PCNNModel for Single Tooth in MicroCT Images
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to reduce the calculation, a seed point is set inside the tooth and we set a proper block radius
which can contain the tooth. Therefore, a region of interest (ROI) can be extracted from the
original MicroCT images, which contains 280 images in total. And the ground truth is generated
by experienced clinical dentists who manually label the different anatomical structures of tooth
to identify different regions in a segmented mask on each slice of MicroCT datasets. Each
ground truth of the classification consists of four labels (one of labels is background) which are
displayed by different gray value so that our results can be compared to the ground truth easily.

4.2 Quantitative Validation
Our experiments were conducted in Visual Studio 2010 and in Matlab 2013a using Microsoft
Windows 7 platform on a CPU of 3.50GHz Intel Core i3-4150 with 16GB of RAM. And our
proposed approach is evaluated by calculating the volumes of the different anatomical struc-
tures in the single tooth compared to those of the ground truth. Fig 8 shows the final results of
the segmentation and classification of the three MicroCT tooth datasets, in which three differ-
ent grey values represent different tooth structures. It is demonstrated that our method can
achieve a robust results in segmentation and classification for single tooth.

Our experimental results are compared with classical clustering methods, i.e., Fuzzy c-
means clustering (FCM) [29], hierarchical cluster analysis (HCA) [30], Density-based spatial
clustering of applications with noise (DBSCAN) [31], and Gaussian mixture models (GMMs)
[32]. All experimental results are quantitatively evaluated by the volume of different structures

Fig 6. Image processing application of PCNNmodel. The 3 × 3 grids with different color in the left CT
image stand for feeding input of neuron (i, j), while the 3 × 3 rings in the right image are linking input of neuron
(i, j).

doi:10.1371/journal.pone.0157694.g006
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of tooth. Fig 9 shows that our achieves better classification results compared to FCM, HCA,
DBSCAN, and GMMs. Large regions of the pulp are missing and labelled as the dentine or
background in the results of FCM, HCA, DBSCAN, and GMMs. It is suggested that our
method has more optimal ability to identify the pulp.

We define the relative error E as the evaluation criteria by the following equation:

E ¼ jComputedVolume� TrueVolumej
TrueVolume

; ð22Þ

where ComputedVolume and TrueVolume denote the volume of the result and the volume of
ground truth, respectively. For volume calculation, a robust and accurate method is proposed
and implemented that works well on volume calculation fromMicroCT images. In the method,
Halton low-discrepancy sequences are adopted to calculate the computed and true volume as
shown in Fig 10. Based on these, we can quantitatively validate our method in this paper.

Fig 11 illustrates the correlation between the results by different methods and ground truth
in volume for different structures of tooth. It indicates that the volume distribution of our
method is more approximate to that of ground truth than the results of FCM, HCA, DBSCAN,
and GMMs. It can be seen that the pulp classified by FCM, HCA, DBSCAN, and GMMs is
smaller than that of ground truth, because these four methods easily classify the pulp as the
dentine. Table 1 shows the volume results of structures in each data case for four methods and
the ground truth. The relative error rate for MicroCT datasets is shown in Fig 12. It is demon-
strated that our method presents lower relative error than those four methods. In this figure,

Fig 7. Experimental set-up of MicroCT for tooth scanning.

doi:10.1371/journal.pone.0157694.g007
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the results of the enamel and the dentine have a relatively low error rate compared to pulp.
Because pulp is a tiny structure in the tooth, slight difference between the results and the
ground truth will greatly influence the relative error.

We further evaluate quantitatively our experimental results with a statistical model (i.e. cor-
relation coefficient). The correlation coefficient (CorrCo) is defined by the Eq 23, which mea-
sures the correlation between our results and true volumes in the range [0, 1], where 1 denotes
a perfect fit.

CorrCo ¼

Xn

i¼1

ðxi � �xÞðyi � �yÞ
�����

�����ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðxi � �xÞ2 �
Xn

i¼1

ðyi � �yÞ2
s ð23Þ

where xi and yi denote two sets of data and n is the number of data. x�and y�are mean value of xi
and yi, respectively. In our case, let Venamel, Vdentine, and Vpulp be vectors including the all com-
puted volume by our method for the three structures (enamel, dentine, pulp) and VT be a vec-
tor containing the corresponding ground truth volumes. Fig 13 shows Venamel, Vdentine, and
Vpulp compared to VT in one of MircoCT datasets, which illustrates that volumes computed by
our proposed method are closer to those obtained from manual segmentations than those four
methods. Although FCM has a comparable classification results of dentine, but it will misclas-
sify the pulp as the dentine. We also evaluate the volume similarity between our method and

Fig 8. Segmentation and classification results for three MicroCT tooth datasets. For each two column
(separated by red dot line), the first top image is the volume rendering of the dataset and the cross-sectional
positions in white dot lines. Its segmentation and classification result of each cross-sectional slice is shown in
each column.

doi:10.1371/journal.pone.0157694.g008
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the ground truth by correlation coefficient. The result by our proposed method has a CorrCo of
0.9685, which demonstrates a high conformity between the vectors.

Over all, experimental results show that our method achieves a good classification of the
tooth. Furthermore, mean absolute deviation (MAD) [33] is used to estimate the absolute devi-
ations from the ground truth, which demonstrates our proposed method is superior to those
four methods as shown in the Table 2.

To further evaluate quantitatively our results in an efficient manner, some more validity
indexes-the similarity index (S), the sensitivity (SENS), and the specificity (SPEC)-are also
employed. The automatic classifications obtained by different methods (A) are compared to
the corresponding manual classifications by clinical doctors (D). |A| is the amount of the set of

Fig 9. The classification comparison of five methods. Column (a) original MicroCT images. (b) ground
truth of classification. (c) results by our method. (d) results by FCM. (e) results by HCA. (f) results by
DBSCAN. (g) results by GMMs. In (c), (d), (e), (f), and (g), white color means enamel; black color means
background; grey color means dentine; dark grey color means pulp.

doi:10.1371/journal.pone.0157694.g009

Fig 10. The flowchart of the proposed framework for volume calculation fromMicroCT images.m is
the number of points inside target region; N is the number of random points generated; SN is the area of N-th
slice of MicroCT scan; and Si is the area of target region for each slice.

doi:10.1371/journal.pone.0157694.g010
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pixels A. Experimental results are quantitatively assessed using the validity indexes calculated

as S ¼ 2jA\Dj
ðjAjþjDjÞ, SENS ¼ jA\Dj

jDj , and SPEC ¼ jA\Dj
jAj . As pointed in [34], an advantage of the similarity

index S is that it sensitively reflects the variations in shape, size and a strong agreement is indi-
cated with the value of S> 0.7. The sensitivity (SENS) and specificity (SPEC) offer us additional

Fig 11. Volume comparison between the results of five methods and ground truth.

doi:10.1371/journal.pone.0157694.g011

Table 1. The volume results by four methods and the ground truth. The value of each volume is inmm3. The bold number means the best one for each
data case.

Datesets Ground truth Ours FCM HCA DBSCAN GMMs

enamel(case1) 8167.00 8246.29 8246.29 8246.29 8246.29 8246.29

dentine(case1) 49700.00 47740.80 50902.60 53005.00 53500.21 51031.72

pulp(case1) 4437.00 5001.40 3030.10 2500.30 2470.60 3120.56

enamel(case2) 6098.00 6148.80 6148.80 6148.80 6148.80 6148.80

dentine(case2) 41070.00 43355.80 44500.10 45500.12 45900.00 44325.70

pulp(case2) 674.00 610.981 480.90 420.60 400.95 489.20

enamel(case3) 9221.00 9194.34 9194.34 9194.34 9194.34 9194.34

dentine(case3) 46650.00 47886.80 48800.78 49900.01 50010.53 48856.09

pulp(case3) 2091.00 2379.74 1498.09 1300.60 1290.60 1502.36

doi:10.1371/journal.pone.0157694.t001
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information about how the overlap between A and D is obtained. For example, if the compari-
son of A and D generates a high sensitivity value but a low specificity one, this means the auto-
matic classification is too large. When total overlap is attained, all of these validity indexes are
equal to 1.

Table 3 shows the results of five methods based on different validity indexes. Note that our
method outperforms other four clustering methods, especially in pulp. This is because S of our
method is higher than 0.7 and higher than that of those four methods. Specifically, for dentine,
the values of the sensitivity are in general higher than those of specificity, since the dentine is
over-segmentation, i.e., the pulp is misclassified as the dentine, which is consistent with the
problem that the segmentation results of pulp is small. In addition, due to the fact that the pulp
is very tiny tooth structure, slight difference between automatic classification result and ground
truth will lead to large deviation. Therefore, validity indexes for pulp can not achieve a rela-
tively good outcome. However, our method can still produce satisfying classification results
both in dentine and pulp. This is confirmed by the high value of S (0.792), sensitivity (0.746)
and specificity (0.780) regarding pulp.

Fig 12. Relative error rate for three datasets.

doi:10.1371/journal.pone.0157694.g012

Fig 13. Volume comparison for one of the datasets.

doi:10.1371/journal.pone.0157694.g013
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There are some reasons needed to be highlighted. Firstly, improved PCNNmodel takes
advantage of local information of images, i.e., spatial adjacency proximity for each pixel, which
can generate robust and efficient classification results. Secondly, FCM and GMMs are sensitive
to the initial cluster centers and easily fall into local optimum instead of achieving global opti-
mal steadily. Thirdly, for HCA, when the agglomeration or the division is performed, it can not
be modified, which influences the classification results. Fourthly, DBSCAN is not entirely
deterministic, and the quality of DBSCAN depends on the distance measure. Thus, our method
has more optimal ability to these datasets than those four methods.

5 Conclusion
In this study, 3D GFRLS method and improved PCNNmethod are proposed in our framework
to segment and classify the tooth. After cutting out ROI from the original MicroCT images, the
3D GFRLS method is proposed and used to remove the noise and segment the tooth precisely.
Then several processing steps are used to further remove unneeded artifacts. We get the final
results by employing an improved PCNN. By comparing to those four clustering methods,
experimental results show that our proposed method can achieve better accuracy and robust-
ness. Therefore, our method enables a more efficient and accurate way to FEA. We believe our
framework will play an effective role in the clinical accessory diagnosis of dentistry.

Table 2. Statistical evaluation.MAD of volumes for four different methods.

Ours FCM HCA DBSCAN GMMs

728.6343 1015.127 1569.506 1687.816 1011.089

doi:10.1371/journal.pone.0157694.t002

Table 3. Comparison of different methods based on different indexes.

Method Similarity index Sensitivity Specificity

Ours

enamel 0.847 0.942 0.840

dentine 0.895 0.950 0.896

pulp 0.792 0.746 0.780

FCM

enamel 0.847 0.942 0.840

dentine 0.853 0.956 0.813

pulp 0.723 0.617 0.657

HCA

enamel 0.847 0.942 0.840

dentine 0.829 0.950 0.802

pulp 0.656 0.560 0.648

DBSCAN

enamel 0.847 0.942 0.840

dentine 0.812 0.951 0.795

pulp 0.642 0.551 0.623

GMMs

enamel 0.847 0.942 0.840

dentine 0.851 0.952 0.809

pulp 0.715 0.610 0.623

doi:10.1371/journal.pone.0157694.t003
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One of the foreseen improvements of our method is about self-adaption, that is, parameters
can be adjusted automatically, since different parameters contribute to the quality of classifica-
tion. In addition, further applications include different kinds of datasets, such as teeth with
periapical lesion, and more datasets are collected for further evaluation in clinical use.
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