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The advent of feeding based RNAi in Caenorhabditis elegans led to an era of gene
discovery in aging research. Hundreds of gerogenes were discovered, and many are
evolutionarily conserved, raising the exciting possibility that the underlying genetic basis for
healthy aging in higher vertebrates could be quickly deciphered. Yet, the majority of
putative gerogenes have still only been cursorily characterized, highlighting the need for
high-throughput, quantitative assessments of changes in aging. A widely used surrogate
measure of aging is lifespan. The traditional way to measure mortality in C. elegans tracks
the deaths of individual animals over time within a relatively small population. This traditional
method provides straightforward, direct measurements of median and maximum lifespan
for the sampled population. However, this method is time consuming, often
underpowered, and involves repeated handling of a set of animals over time, which in
turn can introduce contamination or possibly damage increasingly fragile, aged animals.
We have previously developed an alternative “Replica Set”methodology, which minimizes
handling and increases throughput by at least an order of magnitude. The Replica Set
method allows changes in lifespan to be measured for over one hundred feeding-based
RNAi clones by one investigator in a single experiment- facilitating the generation of large
quantitative phenotypic datasets, a prerequisite for development of biological models at a
systems level. Here, we demonstrate through analysis of lifespan experiments simulated in
silico that the Replica Set method is at least as precise and accurate as the traditional
method in evaluating and estimating lifespan, and requires many fewer total animal
observations across the course of an experiment. Furthermore, we show that the
traditional approach to lifespan experiments is more vulnerable than the Replica Set
method to experimental and measurement error. We find no compromise in statistical
power for Replica Set experiments, even for moderate effect sizes, or when simulated
experimental errors are introduced. We compare and contrast the statistical analysis of
data generated by the two approaches, and highlight pitfalls common with the traditional
methodology. Collectively, our analysis provides a standard of measure for each method
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across comparable parameters, which will be invaluable in both experimental design and
evaluation of published data for lifespan studies.
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INTRODUCTION

Aging is a gradual and progressive decline in physiological
function, most prominently reflected in the rising probability of
death over time for a given a population. Concordantly, lifespan is
often used as a surrogate measure of aging as it is a straightforward
and unambiguous measurement: an animal is either alive or dead.
The traditional longitudinal method (TLM) of measuring lifespan
in model organisms, including C. elegans, entails following a
relatively small population of animals and tracking when death
events occur. The population is observed at specific time points,
and at each time point dead animals are counted and consequently
removed (Figure 1A). Thus, the increasing mortality observed
within a population is dependent on each previous measure of
mortality. For example, if 5 animals within a population of 35
animals die on day 13, then there will be only 30 remaining animals
to assess whether they are alive or dead at the next time point.
Mortality within a chronologically age-matched population has
been found to rise exponentially- with some natural variation
between individuals- even within an isogenic population in a
common environment, which cumulatively provides a
distribution of how death events occurred within the population
(Finch et al., 1990; Brooks et al., 1994).

Traditional Assays to Follow C. Elegans
Lifespan have a Number of Weaknesses
While using the TLM to measure lifespan in C. elegans is
straightforward, it is relatively low-throughput, limiting the
number of conditions that can simultaneously be measured.
Comprehensive genome wide RNAi-based gene knockdown
screens to date have identified in C. elegans 1147 putative
gerogenes (broadly defined as genes whose function either
extends or shortens longevity) (WormBase WS282). However,
in many cases these gerogenes have been identified based on
measuring viability at a single or a few time points (Lee et al.,
2003; Hamilton et al., 2005; Hansen et al., 2005), which fails to
provide a quantifiable measure of change in lifespan. Full
longitudinal lifespan analysis is one prerequisite for identifying
genetic interactions between gerogenes (e.g. epistatic, asynthetic
interactions, etc.).

C. elegans viability is most often scored based on observable
movement, which becomes less frequent and subtler as animals
age. Young animals actively explore their environment and feed
upon a lawn of E. coli, making scoring young animals
straightforward. However, as an animal ages movement
progressively declines, becoming increasingly uncoordinated and
lethargic (Hosono et al., 1980; Bolanowski et al., 1981; Johnson,
1987; Herndon et al., 2002; Huang et al., 2004). Specifically, by day
seven of adulthood, wild-type C. elegans may be observed that no
longer display spontaneous active behavior in the absence of

outside stimuli (Herndon et al., 2002; Huang et al., 2004). At
more advanced age, increasing sarcopenia results in progressive
degeneration of movement, ultimately resulting in paralyzed
animals. Viability in an older animal is ascertained by observing
subtle head movements at the very tip of the animal, increasing
probability of scoring mistakes associated with progressing age
(Duhon and Johnson, 1995; Herndon et al., 2002; Glenn et al.,
2004; Gerstbrein et al., 2005). Additionally, scoring of the same
population across multiple timepoints requires repeated handling,
environmental exposure, and potential introduction of airborne
contamination, which is not a trivial concern. For example, C.
elegans lifespan can be altered by even subtle environmental
changes: animals exposed to ambient light in a laboratory for as
little as 20 min per day during scoring exhibit mean lifespan up to
12% shorter than animals scored in the dark (De Magalhaes Filho
et al., 2018). Collectively, these drawbacks limit throughput,
introduce variability, and increase the probability of
experimental error with the TLM approach.

The Replica Set Method
To overcome the limitations of the TLM, we previously developed
an alternative experimental design to measure C. elegans viability
that relies on the use of replica sets (Samuelson et al., 2007b,
2007a; Johnson et al., 2014; Cornwell et al., 2018; Cornwell and
Samuelson, 2020). To this end, a large population of age-
synchronized, isogenic animals are divided into a number of
smaller samples (which we term as “replicas”) of approximately
15–20 animals each. Enough replicates are generated to cover
each time point in the planned experiment. At each time point,
one of the replicas is scored for the number of living, dead and
censored animals, then discarded. Thus, over the period of time
that covers the expected lifespan of the population as a whole, a
series of independent subpopulations are sampled at each time
point (Figure 1B). In using replica sets there is no repeated
prodding of animals, and no repeated exposure to potential
environmental contamination from opening and closing the
same plates. The viability observed at one time-point is
independent of every other observation, and hundreds of
conditions can be tested in parallel– which increases
throughput by at least an order of magnitude (for an example
of increased throughput through application of the replica set
method (hereafter RSM), see (Samuelson et al., 2007a)).

Systematically Assessing the Performance
of Replica Set and Traditional Methods
Understanding the nature of what each longevity assay measures
and how each is analyzed is crucial; to that end we undertook a
comparison of the accuracy, precision, and resilience between the
methodologies using an in silico approach to contrast lifespan
estimates obtained by both methods against a known standard.
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We show that the TLM is susceptible to an analysis-induced
intrinsic bias in estimated median and mean lifespan, which is an
artifact arising from the assumption that death occurred at the
time of observation. Most of the widely used software to plot and
analyze lifespan data-using the non-parametric Kaplan-Meier
approach by default- assume death occurred at the time of
observation, known as right-censoring (Figure 1C), rather
than at an unknown time in the interval between observations,
the latter of which is known as interval-censoring (Figure 1D)
(Kaplan and Meier, 1958; Finkelstein, 1986). When observation
intervals are consistent within an experiment, this bias does not

affect the power to detect statistical differences, but is important
when considering mean or median estimates of lifespan across
experiments, or when the observation interval is varied between
conditions to be compared within one experiment. We found that
the most appropriate way to analyze data from a TLM experiment
having discrete observation times with day-long (or longer)
periods is to use interval censoring. We demonstrate that both
TLM and RSM approaches have similar accuracy and precision in
estimating lifespan using sample sizes and scoring frequency
reflective of values from many published studies, when non-
parametric analysis with interval censoring (Figure 1D) or

FIGURE 1 | RSM and TLM assays employ different strategies for population sampling. (A) Handling in traditional lifespan assays (TLM). A dish of animals is
maintained for the duration of the experiment. Vital status observation may be facilitated by prodding animals to stimulate movement. When more than one experimental
condition is included, such as different strains or RNAi treatments, a separate plate is maintained throughout the experiment for each condition. (B)Handling in replica set
lifespan assays (RSM). Each observation uses a different plate derived from a synchronized population, with all the plates for expected observations of the
experiment having been set up at the beginning of the experiment. M9 solution is typically added to wells to separate animals from the bacterial lawn and to help assess
vital status, in conjunction with prodding as necessary. While replica set assays can be done with single-well dishes as well, the approach is particularly well-suited to use
of multi-well plates, in which wells of the plate can be different RNAi conditions. Every plate in the replicate group is set up with an identical layout. (C–F) Example survival
curves from simulated lifespan experiments, assuming daily scoring. The black dashed curve represents the generating logistic distribution withmean/median of 20 days
and shape parameter s = 2. The vertical dashed lines indicate themedian for the respective curve. (C–E) A simulated TLM experiment was run with 80 animals and fit with
Kaplan-Meier (KM) using right-censoring (blue curve) (C), interval-censoring (purple line) (D), or with parametric fitting to a logistic distribution (fit logistic curve is dark blue)
(E). The grey shaded region is the confidence interval for KM curves. (F) shows an example simulated replica set experiment using 25 animals per observation with the
proportions of live animals for each observation shown as points, and the fit logistic curve, both in dark red. The median survival for the simulated TLM experiment is
21 days with right censoring (C), 20.5 days with interval censoring (D), and 20.4 days with parametric fitting (E). The median survival for the simulated replica set
experiment (F) is 19.3 days.
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parametric analysis (i.e. distribution-based curve fitting, in this
case to the logistic distribution) is applied for TLM (see
Figures 1E,F for examples of parametric analysis of TLM and
RSM data, respectively). However, when several forms of scoring
error are simulated, we discovered the estimated median
generated through the TLM significantly deviates from the
true median. In contrast, the RSM is robust to various
experimental and measurement errors that are likely to be
common in examination of C. elegans lifespan. Thus, the
replica set method represents a resilient and high-throughput
approach to quantitatively assess changes in C. elegans lifespan.

MATERIALS AND METHODS

Lifespan Experiment Literature Survey and
Assembly of a Gerogene Compendium
67 publications incorporating lifespan experiments with N2
animals were manually reviewed, spanning the years
2007–2020. For each paper, we noted the number of animals
assayed per experimental trial (average across trials within a
paper, when multiple unique values were provided), the
interval between scoring occurrences, the lifespan and

statistical analysis methods utilized, and the level of detail in
reported censoring information. When scoring intervals were
variable, the range was recorded (e.g. 2-3 for every 2 or 3 days).
Reported censored observation information was classified into
categorical bins A through D with increasing detail: A, no
mention of censoring and no censored data reported; B,
censoring mentioned but no censored data reported; C,
censoring mentioned and censored observations were reported
at a summary level (# of animals censored per condition or per
trial); D, censoring mentioned and censored observations were
reported per observation or timepoint including the reason for
censoring (Figure 2C). In some cases, the complete details of the
statistical analysis were not mentioned, but were able to be
inferred, e.g. stating the log-rank test was utilized and showing
stepped survival curves but not mentioning the Kaplan-Meier
estimator. Papers for which it was not clear how the reported
animal numbers were split into trials, which had a very high
number of animals (1000+) were excluded from plots and
summary calculations as such a large number of animals is
unlikely to be derived from a single experimental trial of a
single condition.

To establish the degree to which high-throughput lifespan
studies have contributed to our knowledge of genetic interactions

FIGURE 2 | A Literature survey for lifespan studies using C. elegans highlights dramatic variation in sample sizes and levels of detail reported. (A) Histogram of
average number of animals per trial for each study considered in a survey of literature reporting lifespan experiments for N2 (wild-type). Histogram bar width represents 10
animals. The dashed line is the smoothed density curve for the same data. Median: 90, mean: 99.46. This excludes two outlying data points, each reported once, that
were unlikely representative of single-trial results (360 and 721 animals). (B) A summary of the level of detail reported on censored observations in the surveyed
publications. We divided results into categories as follows: [A]- censoring was not mentioned in the manuscript and no censor information was reported in the data, [B]-
Censoring was mentioned in the manuscript (e.g. “animals that crawled off plates were censored”), but no censor information was reported in the accompanying data,
[C]- Censoring wasmentioned in the manuscript and a summary of censored animal information (e.g. “12 animals were censored for trial 1”) was reported in the included
data. [D]- Censoring wasmentioned in the manuscript, and data for censored animals was provided for each time point of each trial. Note that we did not find an example
of this last level among the literature surveyed. (C) Histogram of the reported scoring intervals from across the studies. Studies where a variable scoring interval was
specified are indicated by a range of values. The most common scoring schedule was every-other-day scoring, indicated by an interval of two.
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with lifespan in C. elegans, a collection of gerogenes and
associated publications was assembled based on annotation
curated in WormBase (Harris et al., 2009) version WS282
using the WormBase API through R version 4.0.2 (R Core
Team, 2015). Genes, both coding and non-coding, were
identified that were associated with one of the following
phenotypes through RNAi or mutation experiments: “life span
phenotype” (WBPhenotype:0000039), “shortened life span”
(WBPhenotype:0001171), or “extended life span”
(WBPhenotype:0000061). The citation information for the
publications providing the evidence for the relationships were
also retrieved.

Parametric and Non-Parametric Fitting of
Experimentally-Derived Lifespan Datasets
Four TLM experiments from two experimenters, six RSM
experiments from two different experimenters, and five
Lifespan Machine experiments from two different
experimenters for N2 lifespan of animals kept at 20°C as
adults were assembled from unpublished datasets. In order to
obtain lifespan estimates, as well as determine the logistic curve
shape parameter s from experimentally-derived datasets, TLM
experiment data was fit with both parametric logistic and Kaplan-
Meier approaches, RSM experiments were fit with the parametric
logistic model, and non-parametric Lifespan Machine
experiments were fit non-parametrically, all as described here
under “Estimation of median, mean, and maximum lifespan”.

Simulation of Lifespan Experiments
To simulate lifespan experiments, random virtual animals were
generated from a probability distribution, either logistic or
Gompertz, as indicated. Survival times were drawn from the
distribution in batches, representing the population samples of
cohabiting animals on plates (TLM) or wells (RSM) for lifespan
experiments. For each batch of simulated animals, the
corresponding number of survival times were independently
drawn randomly. Each simulated trial was “scored” at time
points corresponding to an interval of 1, 2, or 3 days which
was fixed for a given trial. All simulation and evaluation work was
performed in R version 4.0.2 (R Core Team, 2015).

For a TLM experiment, we simulated survival times on a single
plate of N animals. This plate was then scored at each timepoint, with
dead animals removed when they were “observed”, continuing for
each increment in observation time until no animals were left “alive”.

For the RSM with N animals and T planned measurement
timepoints, T plates of N animals each were drawn (N*T animals
total). Analogous to real experiments, in which an estimate of
expected maximum lifespan is obtained prior to setup of RSM
trials, T was selected to include two observations past the
expected maximum lifespan (99% survival of the generating
distribution). For each time point, proportional survival was
observed for a new “plate”, and each “plate” was scored once
only. Scoring continued until reaching either two consecutive
observations with no “live” animals, or until the prepared
replicate plates (T) were exhausted. Across conditions of both
methods, each experiment was repeated for 10,000 trials. Note

that for two-sample testing and power analysis, 10,000 trials were
generated but only 100 were considered due to constraints on
computation time.

Reproducibility of these simulated experiments was
facilitated by using a consistent pseudorandom number
generator seeding strategy across all experiments. To
generate simulated animals, a number of values from 0 to
1 was randomly drawn at uniform probability corresponding
to the starting population sample size N (TLM) or the size of
the population sample for each replicate N*T (RSM); these
values were in turn used as quantiles to determine simulated
animal death times based on the generating distribution. The
quantile function for logistic is T(p) � sp ln(1p − 1) + μ where
T(p) is the time of death at quantile p, s is a parameter
controlling curve shape, and μ is the mean/median. To
represent survival of a wild-type population, we chose μ �
20 and s � 2, with s derived from logistic curve fits to our own
N2 lifespan data from both RSM and TLM assays, and mean/
median of 20 days as a convenient approximation
(Supplementary Figure S1).

To complete computation of the simulations in a reasonable
time-frame, execution was parallelized to use multiple
available cores on a desktop computer using the R package
future or on a high-performance computing cluster (UR CIRC
BlueHive) using the package slurmR (Yon and Marjoram,
2019; Bengtsson, 2021); animal populations were generated
on the former, and permutation testing performed on the
latter. To ensure reproducibility for generating animal
population samples in parallel, the L’Ecuyer-CMRG random
number generator was used for population generation, and the
default R RNG was employed elsewhere for reduced
computational overhead.

Estimation of Median, Mean, and Maximum
Lifespan
Each time a simulated plate was scored with either method, the
time (day adult) and number of live and dead animals were
recorded. For non-parametric analysis of TLM experiments, data
was formatted with one record per individual with a death event.
For right-censoring, which assumes the event occurred at the
time of observation, only the observation time t and the death-
indicating event code 1 were necessary. For interval-censoring,
which assumes the event occurred between the observation at
time t and the previous observation at t-1, the two times
specifying the interval (t—1, t) were provided for each event.
In both non-parametric analyses, the data was fit using the R
package survival (Therneau, 2021) and the mean, median, and
95% quantile lifespan estimates were recorded for each
simulated trial.

For analysis of RSM experiments, or parametric treatment
of TLM data, the experiment result tables were converted to
interval format, similar to TLM with interval censoring. For
RSM, as each animal is only observed once and only the
current status is known, an observed death at time t yields
an interval of (0, t), while animals observed alive have an
interval of (t,∞ ) (i.e. we do not know when any given live
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animal eventually died). Parameters were estimated using non-
linear minimization as implemented in the R function nlm (R
Core Team, 2015). Specifically, P(t) � 1

eu+1 where u � t−μ
s with

parameters µ (mean/median) and s (curve shape) selected to
maximize likelihood of the observed survival intervals,
calculated as P(right edge) − P(left edge) for each interval.
The returned parameters were then used to find the 95%
quantile lifespan estimate; mean and median lifespan are
given by the parameter µ.

Determining Accuracy and Precision
Across Simulated Experiment Trials
10,000 simulated trials were performed for sample sizes of
5–50 for RSM and 5—150 for TLM, both in increments of 5
animals, for scoring intervals of 1, 2, and 3 days. For each
combination of assay, scoring interval, population size, and
analysis type, standard error (SE), and mean-squared error
(MSE) were computed across the median lifespan estimates
from the 10,000 trials as metrics of precision and accuracy,
respectively. For daily scoring, sample sizes were identified
that resulted in similar accuracy and precision across assay
types, and these sample sizes were the focus of further
analysis.

Simulating Systemically Flawed
Experiments and Fitting Data From a
Different Generating Distribution
An experiment where two populations with differing lifespans are
accidentally mixed was used as the motivating example for a case of a
fundamentally flawed experiment which would not be able to
produce the expected result with any lifespan assay methodology.
To simulate this experiment, 67% of animals were generated with
parameters µ = 20 and s = 2, and the remaining 33% of animals were
generated with µ = 16 and s = 1.6, with the logistic distribution.
Experiments for RSM and TLM were then run as described earlier.

To evaluate RSMperformance when the generating distribution is
different from the fitting distribution, simulations were performed
where Gompertz was used as the generating distribution across the
same set of assay types and analysis treatments as utilized elsewhere
for single-sample experiments (e.g. experiment sample sizes, scoring
interval). Experiment samples were generated as otherwise described

for logistic, but with T(p) � ln(1− β
∝ ln(1−p))
β for obtaining death times,

corresponding to a two-parameter formulation of the Gompertz
function (Benjamin, 1825; Pollard and Valkovics, 1992; Wilson,
1994). Selected parameter values were ∝ � 0.0003271342 and
β � 0.3271342007, such that median lifespan is 20 days and slope
is comparable to logistic with μ = 20 and s = 2 (see curves in
Figure 5A).

Model for Experimenter Mis-Scoring and
Scoring Hazard in Simulated Experiments
We simulated the effects of mis-scoring- either deeming a live
animal as dead, or vice-versa- occurring at a probability, P(t),

which was either held constant, or modulated as a function of
time. The probability of mis-scoring was modeled
independently for each animal. In TLM experiments, mis-
scoring affected which animals stayed on the plate or were
removed: dead animals mis-scored as alive stayed on the plate
to be scored again the following day, whereas live animals
scored as dead were removed from the plate and never scored
again. For the RSM, each animal was scored only once, and
thus exposed to the possibility of being incorrectly scored
only once.

We also simulated the possibility of formerly live animals
being accidentally killed by the investigator and then recorded
as dead through rough handling when making an observation-
a scoring hazard. This type of error was simulated as a function
of time only.

For constant-rate mis-scoring, a fixed error probability p was
applied across the trial. When error rates were modeled as a
function of time, the error rate started at zero, then rose tomaxP

according to the equation: P(t) � maxPp(1 − 1

e−(
μ−t
s )+1

) where

u � (1.5t− μ)
s , typically with μ = 20 and s = 2, or otherwise the

same parameters as for the generating logistic distribution. Error
probabilities p andmaxP were set to 2, 4, or 10%. A set of results
is provided for the case where the rise in error rate is inversely
proportional to the decrease in survival at time t (“late-life onset”
error), as well as for the biologically motivated scenario where
error rate starts to increase in advance of mortality concomitant
with the loss of mobility and onset of paralysis (“mid-life onset”
error); the latter is obtained by using p(tp1.5) to shift the error
rate curve (Figure 6).

Calculation of P-values and Power for
Two-Sample Comparison Analyses
For analysis of statistical power, first 100 trials for RSM and
TLM experiments were simulated across medians ranging
from 16 to 24 days (+/- 20% from the reference of 20 days)
in increments of 0.1 days all at population sample sizes for
each trial from 5 to 50 animals for RSM and 5 to 150 animals
for TLM. The generating distribution slope parameter was
held at s = 2 for all cases. The result of a given trial was
compared to the reference population (median of 20 days)
with the same sample size and experiment type. p-values for
comparison of parametric analysis for 100 generated
experiment trials were computed using the R package
statmod after 10,000 iterations of label permutation per
trial as otherwise previously described (Phipson and Smyth,
2010; Cornwell et al., 2018). For non-parametric analysis, tests
for differences in survival were performed with functions
survdiff for right-censored data (Therneau, 2021), and ictest
for interval-censored data (Fay and Shaw, 2010) for 100
generated trials for each relevant set of conditions. p-values
were corrected for multiple testing across the n = 100 trial
comparisons within a set of conditions using the
Benjamini–Hochberg FDR adjustment (Benjamini and
Hochberg, 1995). Power was then calculated as power �
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FIGURE 3 | Comparable accuracy and precision can be obtained for RSM and TLM, but with many fewer total animal observations for RSM. 10,000 simulated
RSM and TLM experiment trials were run for each increment in sample sizes across a range of 5–50 for RSM and 5—150 for TLM, both in increments of 5. For RSM,
“sample size” refers to the number of animals per timepoint scored, whereas for TLM this is the number of animals at the start of the trial. The columns correspond to
scoring intervals from 1 day (every day) or 2 days (every other day). We find fewer total animal observations are necessary to obtain a given level of precision
(standard error of median lifespans and accuracy) (B), (mean-squared error of median lifespans) (C) for RSM (median of 620 observations) compared to TLM (median of
2366 observations), with corresponding population sizes of 20 and 110 animals respectively. Increasing the interval between scoring timepoints negatively impacts both
metrics for both assay types, particularly at small sample sizes. The same set of simulated TLM experiment data was used for all TLM analysis treatments. (A) The total
number of animal observations (i.e. the number of times any animal is scored during the course of a trial, including live and dead animals, and those that have been scored
on previous observations for TLM) scales differently with sample size between RSM (dark red) and TLM (blue) assays. “Sample size” is the number of animals per
observation for RSM, and the number of animals per trial for TLM. The size of the circle at a given position indicates the number of trials which had that result. (B) SE
(standard error) across the median lifespans for the 10,000 simulated lifespan trials for each sample size, for the given assay type and analysis method, indicating how
precision improves with increasing sample size between the assay types. Right-censoring vs. interval-censoring shifts the medians but does not alter the dispersion, so
only one set of results is shown for Kaplan-Meier analyses (denoted “KM”). For the left-most column (daily scoring) the horizontal black dashed line indicates a sample size
for which SE is similarly low (0.003) across RSM and TLM (with parametric fitting to a logistic distribution, denoted “logistic”), 20 animals per observation for RSM and 110
animals per trial for TLM. (C)MSE (mean-squared error) across the median lifespans for the 10,000 simulated lifespan trials for each sample size, for the given assay type
and analysis method, indicating how accuracy improves with increasing sample size between the assay types. For the left-most column (daily scoring), the horizontal
black dashed line indicates a sample size for which MSE is similarly low (0.1) across RSM and TLM (with parametric fitting to a logistic distribution, denoted “logistic”), 20
animals per observation for RSM and 110 animals per trial for TLM.
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n for ∝ � 0.01 where i is the index in a vector of
p-values X of length n.

RESULTS

Previously Published Lifespan Studies
Using Traditional Methods Vary Widely in
Sample Size and Scoring Frequency
Among researchers measuring C. elegans lifespan using the
traditional longitudinal method, a wide range of sample sizes
and scoring periods have been reported. For example, one
laboratory might survey a population of 50 animals for death
events once per day. In contrast, another laboratory might
measure survival within a population of 100 animals every
third day. Thus, we compared and contrasted the accuracy
and resiliency of the TLM and RSM across a wide range of
scoring conditions. We posited that the sample size and scoring
period have substantial effects on the accuracy and precision of
lifespan estimates, thus we first surveyed the literature to identify
the ranges actually used in published studies, and then modeled
these in silico in order to identify how they altered the accuracy
and precision of each method in estimating lifespan.

To assess the sample sizes and scoring frequencies actually
used in published research, we surveyed a representative sample
of 67 manuscripts published between 2007 and 2020
incorporating C. elegans longevity estimates across a diverse
array of high quality journals (Supplementary Table S1). We
chose experiments using wild type animals, which have been
reported to live between 16.6 and 20 days based on mean or
median lifespan of N2 (wild-type strain) hermaphrodite animals
maintained at 20°C (Kenyon et al., 1993; Gems and Riddle, 2000;
Johnson et al., 2001, 2014). We assessed the number of animals
included per experiment, the number of trials performed, the
interval between scoring instances, and statistical aspects of the
analysis (censoring, statistical software employed). Studies used
a very broad range of values for the number of animals observed
per experiment- from 10 to 1425 (mean = 115.2, median = 80)
(Figure 2A). We also summarized the level of detail reported on
censored observations- animals removed from an experiment
due to alternative phenotypes or non-aging-associated death-
on a scale from A (censoring not mentioned and no data
reported) to D (censored animals reported for each time
point) (Figure 3B) as high rates of censoring can impact the
reported sample size of an experiment. Surprisingly, we did not
find any examples of “class D” censoring among this set of
publications, while nearly one quarter did not report any data on
censored animals.

The interval between scoring was harder to assess, as some
publications report variable scoring frequencies such as “every
day to every other day”. Scoring frequency ranged from 1 to
4 days, with every other day being the most common observation
interval (Figure 2C). From this we noted that the average interval
between scoring instances is more than 10% of the median

lifespan of wild-type animals, and sample size can vary by
more than an order of magnitude. Thus, actual C. elegans
lifespan studies using traditional methods vary widely in
sample size and scoring frequency, which likely influences
reproducibility and relative comparability between results.

In SilicoModeling of Mortality and Accuracy
of TLM and RSM Approaches
To evaluate the accuracy of the two methods in predicting median
lifespan we first created a parametric model based on the logistic
distribution from which to generate simulated populations of
animals, with two parameters- one for mean/median and one for
the shape/slope of the curve (denoted s). While the logistic function
is symmetric, such that the mean and median are the same, for
analysis in other contexts we focus on themedian- the point at which
50% of the animals of a given population have died- as a summary
value of lifespan in most cases. This “known standard” generating
model represents an arbitrarily large theoretical population where
the exact time of death for each animal is known. From this we then
conducted an in silico analysis to determine how well each method
captures the characteristics of our simulated standard. We set the
slope parameter s = 2 for our generating model based on logistic
curve fits to our own lifespan data across multiple experiments for
wild-type (N2) C. elegans at 20°C with E. coli feeding on agar plates
(Supplementary Figure S1), and assumed a mean/median of
20 days; this yields a generating distribution with mean, median,
and 99% (maximum) survival of 20, 20 and 30 days, respectively.

To test how accurately and precisely the TLM and RSM
approximate the median lifespan of the model population, we
used a Monte-Carlo approach to generate 10,000 simulated
experiment trials each for TLM and RSM (Dwass, 1957; Good,
2006), and calculated median as well as mean lifespan by both a
parametric (i.e. fit to a distribution, in this case logistic) and non-
parametric analysis (i.e. Kaplan-Meier) for TLM, and parametric
analysis for RSM. Parametric analysis was performed for both assay
types to ensure that the apparent benefits of RSM were not due to a
difference in analysis methods; for both RSM and TLM this analysis
was performed by finding parameters of a logistic curve which fit the
data using non-linear minimization, as C. elegans lifespan data has
been previously shown to fit a logistic distribution well (Vanfleteren
et al., 1998). Concurrently, we assessed whether varying the sample
size (5–50 animals per observation for RSM, 5—150 animals per trial
for TLM) or scoring frequency (1–3 days) altered the accuracy or
precision of either method.

The TLM and RSM have Similar Precision
and Accuracy in Predicting Median
Lifespan, With RSM Requiring Fewer Total
Animal Observations During the Course of
an Experiment
To assess the precision of the experimental and analytical
approaches, we investigated the variability resulting from the
parametric and non-parametric analysis methods for TLM,
and parametric analysis methods for RSM. The median
lifespan estimates across experiment sizes for simulated
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daily scoring of TLM experiments had minimal differences in
precision after both parametric and non-parametric analysis
(as indicated by SEM) (Figure 3B). Increasing sample size
(number of animals) substantially reduces variance in
estimated average lifespan in both parametric treatments of
the TLM, and, to a lesser extent, with RSM (Figure 3B). A
similar trend is observed for the accuracy, as indicated by
mean-squared error (MSE) of the median lifespan estimates
(Figure 3C). It is worth noting that sample size is defined
differently between the two methods- the TLM “sample size”
reflects the total starting experiment sample size, whereas the
RSM sample size represents the number of independent
animals sampled at each time point- we sought to find
experimental criteria for which the two methods were
maximally comparable. We note that for daily scoring of
TLM experiments starting with 110 animals per condition,
the SEM and MSE of estimated lifespan is equivalent to an
RSM experiment with 20 independent animals scored per
condition (Figures 3B,C, respectively). Having demonstrated
concordance between parametric and nonparametric models,
we focus hereafter on simulation and comparison of TLM and
RSM assuming 110 animals per condition for TLM, and 20
animals per observation for RSM, for daily scoring, with
analyses based on the parametric approach. Finally, as
these sample sizes are within the range of those commonly
used in actual experiments, we conclude that the TLM and
RSMmethods have a similar level of precision and accuracy in
estimating lifespan.

It must be noted that the number of observations
necessary- i.e. the number of total animals observed during
the course of an experiment- to obtain adequate power to
detect a lifespan effect for each method is inherently different.
As an example, in the TLM approach, for a given population,
110 individual animals may be observed in total, but in RSM
20 animals are measured per time point, with different
individuals at each observation for the latter. The
longitudinal nature of the TLM approach means that fewer
measurements are made with progressing observations, until
no animals are left alive. This is in contrast to an RSM
experiment, where the number of measurements is the
number of plates (i.e. time points) multiplied by number of
animals per plate, with the number of animals remaining
generally consistent. While the number of “unique animals”
observed is much larger in the RSM experiment, the total
number of animal observations- the number of times the
researcher scores any animal per time point- is lower for
RSM than TLM at a given level of precision and variance
across simulated experiment trials (Figures 3A–C). As it takes
time to determine if an animal is alive or dead, a reduction in
the number of total animal observations indicates less time
will be necessary to score the experiment. We find the nature
of the assay for vital status in RSM, with the addition of liquid
to a well to stimulate movement, further reduces the time
needed to score an animal (Cornwell et al., 2018), and means
that the net “hands-on” time is much shorter for a comparable
RSM experiment.

Analysis of TLM Data With a
Right-Censoring Approach, But Not With
Interval Censoring or Parametric
Treatment, Leads to Biased Summary
Survival Estimates
To our surprise, an initial comparison of parametric (logistic)
treatment to a non-parametric (Kaplan-Meier) analysis of TLM-
style data based on the simulated dataset revealed a bias in the
non-parametric average lifespan estimates. This intrinsic bias
increases the predicted median (Figure 4A) and mean
(Figure 4B) lifespan by approximately one half of the scoring
period (e.g. a bias of 0.5 days for daily scoring, 1.5 days for scoring
every three days). The nature of this bias is a statistical artifact
from assuming that death occurred at the time of observation,
which is the case when right-censoring is employed- often the
default for lifespan analysis software. To correct for this anomaly
while maintaining a non-parametric analysis approach, one can
use interval censoring, which places the time of death as occurring
within an interval between the two observations.
Correspondingly we found that the application of interval
censoring eliminated this bias, as does parametric analysis of
TLM data (Figures 4A,B).

Among the 67 papers that were part of our literature survey,
we found that a Kaplan-Meier estimator was applied in 60
manuscripts (90%), but the use of interval censoring was not
explicitly reported in any cases. In a brief investigation of recent
versions of statistical software implementing survival analysis
methods, we found some level of support (built-in or via
community-derived scripts/packages) for interval censoring in
nine out of 21 programs (Supplementary Table S2). Out of the
representative literature we surveyed, only ~25% utilized software
that implemented interval censoring, regardless of whether it was
utilized for the study (note that the older versions of the software
used for the actual studies may not have supported interval
censoring at the time); for about 23% of the studies
considered we were not able to determine which statistical
software, if any, was utilized. Thus, it is possible that right-
edge bias, which is introduced by applying right-censoring
instead of interval censoring, is likely to be prevalent in many
reported C. elegans lifespan studies.

Analysis of Replica Set Experiment Data
With Logistic Curve Fitting Produces
Reasonable Lifespan Estimates Even With
Animals Drawn FromaDifferent Distribution
Although wild-type C. elegans lifespan has been previously shown
to fit well to a logistic distribution (Vanfleteren et al., 1998), and a
number of lifespan-modulating perturbations and treatments
have been found to temporally scale lifespan in C. elegans
rather than change the type of distribution (Stroustrup et al.,
2016), we cannot exclude the possibility of encountering a
condition that alters the shape of the survival curve. We
posited that if we were to simulate survival experiments based
on a different generating distribution, we would still obtain
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reasonable estimates of median survival from an RSM experiment
with fitting the data to logisitic curves. To test this, we repeated
our lifespan simulations, except with animal lifespan samples
drawn from a Gompertz distribution, rather than a logistic
distribution, while maintaining a median survival of 20 days
(Figure 5A). We find that the change in generating
distribution results in a small underestimate of lifespan for
both the RSM and parametric treatment for TLM, a reduction
in median lifespan of approximately 0.5 and 0.25 days,
respectively (Figures 5B,C right side), while not changing the
dispersion of the estimates across the simulated trials (Figure 5C
left side). As expected, altering the shape of the generating
distribution while maintaining the same median did not affect
the estimates for non-parametric treatment of TLM experiments
(Figure 5B). Thus, even when the experiment data does not
match the assumptions of our logistic-based parametric analysis,
we find that RSM still provides reasonable estimates of lifespan-
with greater accuracy than the non-parametric right-censored
analysis of TLM- without loss of precision.

Assessing Effects of Scoring and
Experimental Error
In addition to biological variation due to intrinsic stochastic
factors within a single population of animals (Herndon et al.,
2002), a lifespan experiment may suffer from extrinsic error, such
as: incorrect scoring of individual viability, strain contamination,
incubator temperature fluctuation, mating, insufficient food
availability, or extended exposure to blue spectrum light

(Gems and Riddle, 1996; De Magalhaes Filho et al., 2018;
Baugh and Hu, 2020). We systematically investigated some of
these extrinsic sources of variability by adding error terms to our
simulations of both RSM and TLM experiments.

Systemic Experimental Error Simulation
For an error that shifts the expected survival of every animal by an
equal amount, independent of measurement parameters (e.g.
observation frequency, sample size) and methods (TLM or
RSM), we would expect equal effects on the outputs from both
methods. This would occur in a real experiment if, for example,
there was a contaminating strain leading to a mixed population,
the wrong strain was used in one comparative trial, or RNAi was
inefficient. To this end, we simulated a mixed population case
such that a third of the animals were short-lived by 20% (median
lifespan of 16 days) compared to our standard population at
20 days (Figure 5D). We posited that this would shift the median
lifespan estimates similarly across assay and analysis types.
Indeed, we found that for either TLM or RSM there was a
congruent decrease in estimated lifespan (Figure 5E). Thus,
we can conclude that systemic error has a consistent effect
across experimental methodologies, and regardless of the data
analysis strategies considered for TLM.

Mis-Scoring Error Simulation
We next modeled how scoring error- inaccurately determining
whether an animal is alive or dead- affected the accuracy and
precision of the output of each method. We posit that as animals
age and lose the ability to respond to stimuli through body-wall

FIGURE 4 | Non-parametric right-censored treatment of TLM data leads to right-edge bias, which is not observed with interval censoring, nor with parametric
(logistic) fitting of TLM or RSM data. Across 10,000 simulated experiments for a sample size of 20 for RSM (# animals per observation) and 110 for TLM (# animals per
trial) we find that non-parametric analysis of TLM data with right-censoring (denoted “Right-censor”) leads to a positive bias in estimated median (A) and mean (B)
lifespan equivalent to approximately half the scoring interval. The dashed orange line indicates the mean/median of the generating logistic distribution (20 days).
This bias is not observed in the TLM experiments analyzed with either a non-parametric treatment and interval censoring (denoted “Interval-censor”), or parametric
treatment (logistic curve fit, denoted “Logistic”), nor with simulated RSM experiments and associated parametric analysis.
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FIGURE 5 | RSM shows reasonable performance even with populations generated from a distribution other than logistic. As expected, simulation of systemic
errors in an experiment similarly impacts all assay and analysis types. (A–C) While C. elegans survival data has been shown to fit better to a logistic distribution than to
Gompertz (Vanfleteren et al., 1998; Stroustrup et al., 2016), the possibility of treatments or genetic perturbations that can alter the shape of the curve cannot be
dismissed. As such, we performed an experiment to ascertain how such a change in the generating distribution would affect the performance of the two assay
types, while maintaining fitting to the logistic distribution for parametric treatments. (A) Animals were drawn from a logistic (orange) or Gompertz (yellow) distribution, both
having median lifespan of 20 days. Parameters were chosen for the Gompertz curve such that the slopes were similar (see Materials and Methods). Note that unlike with
logistic, the median andmean are not equal for Gompertz. (B)Median lifespan across 10,000 simulated lifespan trials for the indicated assay type and analysis treatment,
for simulated animals with lifespan drawn from a logistic distribution (left) or Gompertz distribution (right). 20 animals per observation were used for simulated RSM
experiments, and 110 animals per trial were used for the simulated TLM experiments. The input TLM experiment data was the same across the different analysis types.
The “true median” of the generating distribution is indicated by the dashed orange line. As expected, non-parametric analysis of TLM experiments is not affected by the
change in generating distribution, while the mismatch between the generating and fitting distributions results in a slight underestimate of lifespan for the RSM and
parametric treatments of TLM- 19.48 and 19.71 days, respectively (median of the median lifespan across the 10,000 simulated trials, Supplementary Table S3).
Precision is minimally affected by the change in distribution, as indicated by standard error (SE) of the median lifespans ((C), left side), while mean-squared error (MSE)
((C), right side) reflects the shift observed in (B) when compared to the similar plots of SE and MSE for the case of a non-mismatched distribution in Figure 3. (D,E)
Systemic experimental errors, exemplified by a simulated case of mixing two C. elegans strains with different lifespans, affect all assay and analysis treatments similarly.
(D) Schematic representation of a simulation of an experiment in which two strains with different lifespans are mixed. “Strain A” (dark gray) has median lifespan of
20 days, and represents the strain for which the assay might have been intended, but it becomes contaminated with “Strain B” (blue) which has substantially shorter
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muscle movement, there is an increased probability that an
experimenter will make a mistake in scoring viability. As
errors in scoring can propagate through the remaining time-
course for TLM but not RSM, we hypothesized that such scoring
errors would introduce both more variability and bias in TLM
compared to RSM experiments.

We sought to test this hypothesis through three simulation
conditions: a constant mis-scoring error rate throughout lifespan,
mis-scoring that begins at mid-life, and mis-scoring that begins
late in life. For each condition we simulated error-rates of 2, 4,
and 10%. The first condition serves as a proof of principle positive
control to demonstrate whether incorrect assessment of viability
affects the perceived lifespan by either RSM or TLM (Figure 6B,
dotted lines). As expected, a constant probability of incorrect
scoring resulted in both a loss of precision (i.e. increased
variability) and accuracy in estimating lifespan with the TLM.
Specifically, introduction of a constant 2% mis-scoring error
yielded a median lifespan estimate of 16.8 days; shorter than
the actual median lifespan of 20 days by 15.9% (with parametric
analysis) (Figure 6D, Supplementary Table S3). In contrast, the
same error applied to the RSM resulted in no appreciable change
in accuracy (19.85 days, a decrease of 0.75%) (Figure 6D,
Supplementary Table S3). If we increase the mis-scoring rate
to 10%, the accuracy of both assays suffers, but the difference in
bias is stark: the TLM median lifespan is 6.36 days (with
parametric analysis), while RSM is 19.46 days (Figure 6D). It
may be observed that the TLM estimates from non-parametric
analysis with right-censoring appear to be less compromised with
respect to accuracy than the other TLM treatments, but this is
incidental due the aforementioned right-hand bias which yields
an overestimate of lifespan under non-error conditions (Figures
6C,D). Thus, we conclude that the TLM is more sensitive to
scoring error than the RSM, and shows a downward-shifted bias
when even a small scoring error is introduced.

We next sought to determine how incorrect scoring would affect
accuracy in a more realistic context, taking into account the
behavioral changes that occur during aging in C. elegans.
Assessing whether an individual is alive or dead typically relies
on observing animal movement for both experimental approaches
(TLM and RSM). As C. elegans animals age, they undergo a
progressive decline in movement, which ultimately results in
paralysis of most of the body in the last 3rd of an animal’s
lifespan for WT (Hosono et al., 1980; Bolanowski et al., 1981;
Johnson, 1987; Herndon et al., 2002; Huang et al., 2004)
(Figure 6A). From the onset of paralysis, it becomes necessary to
determine the status of animals from subtle head movement, often
only in response to touch- making scoring much more difficult and
time-consuming. Conversely, it is easy to determine whether an
animal is alive or dead early in life, as movement is frequent and
spontaneous (Figure 6A). To simulate the increase in scoring

difficulty that follows this progressive decline in movement with
age, we simulated scoring error- either false positive, or false
negative- with probability rising from 0% for young animals up
to 2, 4, or 10% later in life. The timing of the rise in the error rate was
also modeled in two ways. The first simulates a “mid-life onset”,
which represents incorrect scoring of animals starting from the
decline in movement that occurs in advance of the highest rate of
mortality, but within the period of time when a sub-set of individual
wild-type animals have been empirically observed to enter a decrepit
state (Herndon et al., 2002) (Figure 6B, dashed lines). This condition
simulates a population where the vast majority of animals will still be
responsive to touch, and therefore scored correctly, but a small
subset of paralyzed animals within the larger population will be
incorrectly scored at a higher rate. Even if themaximal probability of
making such a mistake is just one in 50 animals, the shift in accuracy
for TLM is nearly ten times that of RSM, at 19.4 days compared to
20.07 days, respectively (Figure 6E, Supplementary Table S3). This
difference is exacerbated further when assaying long-lived animals,
as just a 2% mis-scoring rate increasing from mid-life reduced
median survival results from TLM by approximately two days
when populations were generated from a distribution based on
daf-2(e1370) lifespan characteristics (median 42 days, maximum
60 days (Kenyon et al., 1993; Bansal et al., 2015; Hahm et al.,
2015; Podshivalova et al., 2017; Zhao et al., 2021))
(Supplementary Figure S3). When the possibility of mis-scoring
increases to amaximumof 10%, the TLM estimate dips to 17.34 days
(Figure 6E). Interestingly, we find that the RSM lifespan estimate
actually increases- to 20.58 days- this is attributable to a difference in
when RSM experiments are ended. Whereas TLM experiments end
when there are no animals left alive from the starting population,
typically an RSM experiment is terminated when no live animals are
observed on two consecutive observations; consequently, mis-
scoring a dead animal as alive near the end of the experiment
could “reset the clock” and extend the experiment if the termination
condition is strictly enforced, as it was for these simulations.

We also simulated a “late-life onset” of mis-scoring which
represents incorrect scoring of animals that are entirely paralyzed
or dead (Figure 6B, solid colored lines). In this scenario, the
difference in accuracy between the assays appears to be less stark,
which may be due to the smaller population remaining in the
TLM experiments by the time the rate of mis-scoring peaks; when
the possibility of mis-scoring rises to 10% starting from mid-life,
the median TLM estimate is 19.43 days (Figure 6F). Here again,
we observe an apparent over-estimate in lifespan for the RSM,
attributable to the termination condition in the RSM simulations
being reset when “dead” animals are scored as “live” near the end
of the experiment. Thus, RSM provides a more accurate estimate
of lifespan when the possibility of mistaking if an animal is alive
or dead starts to increase near the time when movement begins to
decline, even when the rate of such errors is low.

FIGURE 5 | lifespan of 16 days. The corresponding logistic curves show the generating distributions for these two populations. The result is a mixed population with 67%
of animals having median lifespan of 20 days, and 33% of animals having median lifespan of 16 days, which yields a lifespan experiment result that is not the 20 days our
experimenter expected (two example RSM experiment results from the mixed simulation are shown in red and light red). (E) Both assay types, and all TLM analysis
approaches similarly reflect the result of the mixed experiment, yielding median lifespan estimates in between 16 and 20 days. 20 animals per observation were used for
simulated RSM experiments, and 110 animals per trial were used for the simulated TLM experiments.

Frontiers in Aging | www.frontiersin.org April 2022 | Volume 3 | Article 86170112

Cornwell et al. Accurate, High-Throughput Lifespan Assessment

https://www.frontiersin.org/journals/aging
www.frontiersin.org
https://www.frontiersin.org/journals/aging#articles


FIGURE 6 | The RSM is more resilient to incorrect scoring of survival, as well as premature animal death caused by accidentally rough handling. As animals age,
they demonstrate locomotory decline and increased fragility, making themmore difficult to score for viability, and increasing the possibility of scoring errors to which RSM
is more robust. (A) An illustration of the phases of movement and the decline thereof during C. elegans lifespan (Huang, C., Xiong, C., and Kornfeld, K. (2004), Newell
Stamper, Breanne L., et al. (2018)). Young animals move spontaneously and frequently, with a consistent sinusoidal motion (indicated by blue bar). For scoring
lifespan assays, it is usually quickly determined if animals in this stage are alive, as any that have temporarily stopped moving can be stimulated by gently tapping the
plate. In “middle aged” animals, movement becomes less coordinated and frequent, but they still may bemoving without any external stimulus (indicated by yellow bar). A
stronger plate tap, or occasional prod with a pick or fiber may occasionally be necessary to stimulate movement. In aged animals, spontaneous translational body
movement has largely ceased, with only occasional posture shifts of the head or tail (indicated by red bar). In this stage, it is usually not immediately evident if an animal is
alive or dead, and touch stimulation is usually necessary to determine their vital state. As this can be laborious, the possibility of making an error in determining the state of
an animal may increase, as does the chance of accidentally killing animals that were actually alive in the process of poking them to stimulate movement. Even in isogenic
C. elegans populations in identical conditions housed on a single plate, there may be substantial variability between the movement states of different animals,
represented as the color gradients of the bars. (B) Simulated error probability curves shown in relation to the generating logistic distribution (black solid curve) for single-
sample experiments (mean/median = 20 and s = 2). Error rates were simulated at a fixed probability or as a function of time. Constant error rates were set at either 2, 4, or
10% (dotted lines). Modeling error as a function of time more closely mimics the increased likelihood that an experimenter will make a mistake as animals become
paralyzed or fragile with age. The hazard function from the logistic distribution is used to increase the error probability as animals age, starting from either mid-life (dashed
lines) or late-life (solid colored lines) reaching the maximum (2, 4, or 10%) near the end of life. The constant error and 10% error scenarios are not intended as a simulation
of likely error rates during actual experiments, but serve to demonstrate the degree to which RSM improves robustness to accidental scoring and handling errors under
extreme conditions. (C–H)Median lifespan across 10,000 simulated RSM and TLM trials for the indicated error models and analysis treatments, with a sample size of 20
animals for RSM (per observation) and 110 for TLM (per trial), and assuming daily scoring. The orange dashed line indicates the mean/median of the generating logistic
distribution (20 days). (C)No simulated error. (D)Constant probability of mis-scoring. (E,F)Mis-scoring with probability modeled as function of time, rising from 0% to the
indicated maximum rate starting in mid-life (E) or late-life (F). (G,H) Simulated accidental death, in which an animal which was actually alive is accidentally killed by rough
handling and subsequently called as dead, with probability modeled as function of time, rising from 0% to the indicated maximum rate starting in mid-life (G) or late-
life (H).
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Age-Associated Fragility Hazard Simulation
During aging, C. elegans become increasingly fragile, making them
more susceptible to injury by physical handling. As such, an intrusive
method of scoring vital status could damage or possibly kill older
animals, affecting their survival. Typically, older animals are gently
proddedwith the end of a platinumwire to inducemovement, which
could damage or kill those animals if too much force is accidentally
applied. Therefore, we introduced an increasing probability of
“killing” the animal in the process of scoring, from 0% and
increasing to a 2, 4, or 10% starting from either mid-life
(Figure 6B, dashed lines) or late-life (Figure 6B, solid colored
lines). We found that introducing even a small probability of
investigator-induced accidental death of an animal late in life,
such that only one in 25 animals is affected (4%), resulted in a
decrease in estimated median lifespan by 1.3% when followed
through the TLM (parametric analysis); in contrast, the RSM
estimated lifespan decreased by only 0.4 and 0.97% for a late life
scoring hazard of 4 and 10%, respectively (Figure 6H,
Supplementary Table S3). As expected, if the onset of frailty-
and the associated increase in hazard-is shifted to mid-life, the
TLM again yields dramatically shorter lifespan estimates, from
19.38 days with 2% hazard rate to 17.29 days with 10% hazard
rate, compared to 19.33 days for RSM even at the 10% rate
(Figure 6G, Supplementary Table S3). Thus, the lifespan
estimates of a population of C. elegans determined through the
TLM is much more prone to error than the RSM if the process of
scoring vital status of an animal impairs survival.

RSM Requires Fewer Total Animal
Observations to Obtain Adequate Statistical
Power in Comparing Lifespan Across
Conditions
In aging research, comparative lifespan has been widely used
between many types of conditions to ascertain if a statistically
significant change has occurred between conditions (e.g.
mutant versus wild-type animals, et. cetera). In order to
determine how the TLM and RSM approaches influence
the power of detection between two samples, we performed
additional simulations, varying the median of the generating
distributions (−20% to +20% in 0.1 day increments with
respect to a reference population with median survival of
20 days) across a range of sample sizes (5–50 animals for
RSM, and 5 to 150 animals for TLM) with daily scoring. We
calculated power assuming an alpha of 0.01 after computing
p-values for the comparison of 100 simulated trials against the
reference population with all other conditions held constant,
using the log-rank test and label permutation for non-
parametric and parametric analyses, respectively. When we
focus on the sample sizes previously determined to yield
similar accuracy and precision between the assays for
single-sample estimates of lifespan (Figure 3)- 110 animals
per trial for TLM, and 20 animals per observation for RSM-
we find that statistical power is also broadly comparable for
the assays and analysis approaches across the range of effect
sizes tested (Figure 7A). To see how the TLM and RSM differ

in the amount of investigator effort necessary to achieve
sufficient statistical power for a moderate difference in
lifespan, we looked at the number of total animal
observations per trial when the effect size was held at+/-
10% (Figure 7C). The RSM experiments actually require
fewer than half the number of total observations as the
TLM to reach a power of 1, indicating that a corrected
p-value < 0.01 was obtained for all 100 trial comparisons.
We next repeated these comparisons, but with experiments
for which mis-scoring error had been simulated, to determine
how mistakes in scoring could end up influencing statistical
power differently depending on the chosen type of lifespan
assay. We see that even with a moderate rate of mis-scoring-
up to a rate of 4% rising from late-life (Figure 6B, solid
orange curve)- RSM power of detection remains robust, again
with many fewer total observations necessary than TLM
(Supplementary Figure S2). Overall, this corroborates our
empirical experience with RSM enabling more conditions to
be scored in the same amount of time as a given TLM
experiment, without compromising the interpretability or
utility of the results.

DISCUSSION

The Replica Set Method is Distinct From the
Traditional Longitudinal Method
We demonstrate that the TLM approach for assessing lifespan
is less accurate and precise, as well as less resilient to several
forms of error compared to the RSM. Furthermore, the RSM
yields comparable statistical power with many fewer necessary
total observations. This arises from the fundamental
difference in their physical setup, and the statistical
implications of the structure of each method. The survival
observed at any time point using the TLM is dependent on the
survival observed at each previous point. In contrast,
observations of animal survival in the RSM are completely
independent. It is this independence that helps reduce both
intrinsic and extrinsic variability in the RSM.

We find that the intrinsic variability, accuracy, and
statistical power of an TLM experiment with a sample size
of 110 is comparable that of the RSM with a sample size of 20.
Taking these values as an example, if one were to sum the total
number of times the vital status of any animal is determined
over the course of an experiment by both methods, with daily
scoring, the RSM would generate about 600 observations and
the TLM would produce about 2300 observations (Figure 3).
However, in the RSM viability of 600 distinct animals is
measured, while the TLM would only have measured
mortality of 110 unique animals. Consequently, the RSM
measures more individual animals, while the TLM makes
more total observations. These two parameters have
different weights between the two methods: a single
additional animal at the start of a TLM experiment adds
more observations than a single animal added to an
observation of an RSM experiment. In contrast, increasing
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sample size by one animal produces not only more
observations in the RSM, but each of those added measures
is more informative as each observation is independent. This
asymmetry helps explain why increasing sample size reduces
RSM variability- and increases statistical power- more quickly
than it would with TLM. Thus, real TLM and RSM data with a
sample size of 110 and 20 animals, respectively, have similar
precision in estimating lifespan.

The Traditional Method Suffers Bias due to
Right-Censoring
An artificial increase in estimated lifespan as a function of the scoring
interval has been previously observed forC. elegansTLMexperiments
using simulation (Petrascheck andMiller, 2017). In concordancewith
their finding, we showed that the TLM has an intrinsic bias that
increases estimated mean and median lifespan by approximately one
half of the scoring period (e.g. bias of 0.5 days for once-daily scoring)
(Figures 4A,B). This is due to scoring frequency: daily or alternate
day scoring makes a discrete, periodic measurement of survival.
However, survival is a continuous phenotype, thus the time between
actual and observed death creates a bias, with magnitude directly
proportional to the time between survival measurements. This is not

evident when observation intervals are dramatically shortened- as in
the case of automated experiment platforms such as the Lifespan
Machine (Stroustrup et al., 2013)- or in studies involving longer-lived
organisms where the scoring precision is very fine relative to the total
lifespan.

Importantly, we find that analysis of the same experiment data
non-parametrically but with interval censoring, or parametrically
by logistic curve fitting, abrogates the right-censoring-induced
bias. Rather than assuming an event occurred at the time of
observation as with right-censoring, interval-censoring places the
time of death in the middle of the interval between observations
(Gomez et al., 2009; Zhang and Sun, 2010). Our simulations show
very little mean or median bias when interval censoring is
applied, up to a scoring interval of 3 days, which we find is on
the upper end of the interval actually used across a range of C.
elegans survival studies (Figure 2B). Fitting the same simulated
TLM experiments to logistic curves- similar to the analysis
approach taken with RSM data- also avoids inducing the bias
we observe in the right-censored non-parametric analysis
(Figures 4A,B). As the bias represents a shift in the mean and
median survival estimates, the dispersion of the data is not
affected, and there is minimal effect on statistical power
between right-censoring and interval-censoring when

FIGURE 7 |RSMprovides similar statistical detection power to TLM, with many fewer necessary animal observations. 100 lifespan experiment trials were simulated
for RSM and TLM each for every combination of sample size (5–50 per observation for RSM, and 2–150 per trial for TLM, both in increments of 5) and generating
distribution mean/medians from 16—24 days (in increments of 0.1 days), all assuming daily scoring. For a given sample size and assay/analysis type, each trial was
compared using an appropriate testing strategy against a reference population generated from a distribution with mean/median of 20 days. p-values determined
from these tests were corrected for multiple testing (FDR) within the set of likewise trials and used to calculate power at alpha level of 0.01. (A) Statistical detection power
is comparable across RSM and all analysis treatments of TLM for a broad range of effect sizes when considering 20 animals per observation for RSM and 110 animals per
trial for TLM. (B,C) For an effect size of 10% (+/- 2 days compared to the reference population) RSM saturates power at a number of animals per observation (B) that
corresponds to a far smaller number of total animal observations per trial compared to TLM (C). The analysis treatments of TLM experiments all perform similarly when
the scoring interval is held constant.
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comparing groups where observations were made with the same
observation schedule (Figures 7A,B). In contrast, if the groups
compared were observed at variable intervals (“every 2–3 days”),
or if scoring was performed at different intervals between the
groups (e.g. every day for group 1, alternate days for group 2), this
right-censoring bias would influence the results, possibly
producing false positive or negative conclusions. Thus, it is
critical to consider interval censoring or parametric analysis
when designing experiments or reviewing disparate
experimental approaches. In our literature survey of 67 papers
including N2 lifespan experiments, we found no cases where
interval censoring was utilized (Supplementary Table S1),
despite support for such analysis being available in some
common statistical software packages such as SPSS, STATA,
JMP, and R (Supplementary Table S2). Similarly, in
considering the information on analysis software collected
from 824 publications including N2 lifespan experiments in a
recent meta-analysis (Urban et al., 2021), more than 40% of
publications used software that does not presently support
interval censoring- much of which is accounted for by
Graphpad Prism alone- an indication that there is not yet
awareness of the benefits of interval censoring for C. elegans
survival studies.

In contrast to the TLM, the RSM makes a discrete measure
of a discrete phenotype: each day an independent sample of
individuals is counted, and each animal is either alive or dead
at this time. With RSMwe are indifferent to the timing of death
outside of this single time point; instead we measure
proportional survival, a quantity unbiased by scoring time.

The Traditional Method is Less Resilient to
Error
The TLM is less resilient then the RSM in accurately estimatingmean
andmedian lifespan of a population when even a small probability of
incorrectly scoring viability later in life is introduced. The difference
in response to scoring error stems entirely from the fact that dead
animals are removed from the plate once observed in TLM. If a live
animal is incorrectly scored as dead, its lifespan is artificially
shortened at least one day, but potentially more as individual
decrepit and frail animals can remain alive for an extended period
of time (Johnson, 1987; Herndon et al., 2002). Conversely, if a dead
animal is accidentally scored as live, it is likely to be properly scored
dead at the next time point. Thus, TLM scoring error is heavily biased
towards death. In contrast, the RSM measures an individual animal
once, thus incorrectly scoring viability affects only a single
observation, and is consequently more robust to such bias.

In addition to the increasing difficulty with age in determining
whether an animal is alive or dead, aging C. elegans become
increasingly fragile. Touching animals with a platinum wire and
looking for movement is a common technique for applying a
stimulus intended to cause a locomotory response in animals that
are alive but not otherwise moving. Loss of touch responsiveness to
light touch in aged animalsmakes scoring viabilitymore difficult, and
may promote the use of a more forceful touch stimuli that kills a
decrepit animal. While it is difficult to know the actual hazard rate
that occurs from poking animals without a non-damaging approach

to ascertain true live/dead status, for simulation we chose maximal
hazard rates of 1 in 50 (2%), 1 in 25 (4%), and 1 in 10 (10%) intuitively
(Figures 6G,H). The actual rate of animal death from damage due to
touch will be highly dependent on the individual conducting the
experiment. Surprisingly, when we apply a fragility hazard rising with
time from around mid-life, the median lifespan from the TLM is
decreased by 3.1% compared to 0.7% for RSM at a maximum of 2%
error, and up to 15% for TLM compared to just 3.3% for RSM at a
maximum of 10% error, when both assays were treated
parametrically (Figure 6G). An alternative touch response
approach to using a typical platinum wire would be to use an
eyelash or similar fiber, which is less damaging to aged animals
(Sulston and Horvitz, 1977). If a live animal is killed by touching it in
the process of stimulating movement, in the TLM the error
propagates to affect multiple measurements. Importantly, like mis-
scoring, the RSM is also resilient towards this sort of error. This
makes sense intuitively, as the scoring hazard does not accumulate.
Collectively, the independence of individual measurements in the
RSM insulates it from errors introduced by incorrect scoring or
repeated handling of increasingly fragile animals.

Limitations of Both Methods for Assessing
Lifespan
The TLM and RSM for scoring lifespan have distinct limitations. For
instance, throughput is a major limitation to the TLM; scoring a
sample by the RSM can be done much faster, for several major
reasons. First, addition of liquid to the wells in the RSM acts as amild
stimulus that causes animals to swim, which aids in discriminating
live animals from dead ones. Furthermore, sarcopenia in older
animals limits movement particularly in the viscous bacterial
lawn, and the addition of liquid in the RSM scoring approach
helps to liberate the animals. Second, as the RSM insulates the
experimenter from propagating scoring errors, it allows one to more
quickly make decisions on whether an individual animal is alive or
dead without concern of how a mistake would influence the rest of
the experiment. Third, each well of the multi-well plates used for
RSM are small, such that the entire well can fit in a microscope field
of view, which makes for faster tracking of the whole population. In
contrast, the Petri-style plates commonly used for TLM are too large
to view the entire population at one time, which requires scanning
the whole plate.While RSM experiments can involve a large number
of plates, the required initial setup time may be reduced by
employing common laboratory aids such as multi-well electronic
pipettes. If incubator space is found to be limiting, particularly
relevant for experiments in long-livedmutant backgrounds or where
an intervention is expected to extend lifespan, the number of plates
may be reduced by planning to score less frequently until signs of
aging- such as movement decline- are observed. It is worth noting
that specific equipment and software to facilitate the use of the RSM
can be found described in: (Cornwell et al., 2018; Cornwell and
Samuelson, 2020). A limitation inherent to the RSM is that progeny
production must be prevented: either through the use of
fluorodeoxyuridine (FUdR), which in some cases produces
lifespan phenotypes that can confound analysis (Aitlhadj and
Stürzenbaum, 2010; Van Raamsdonk and Hekimi, 2011), or
sterile genetic mutants. However, some genetic interactions that
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influence lifespan are only revealed when progeny production is
actively inhibited. For example, it was long thought that the TGFβ
pathway did not regulate C. elegans aging (Kenyon et al., 1993;
Larsen et al., 1995), however, the use of FUdR revealed that TGFβ
signaling regulates longevity through insulin signaling (Shaw et al.,
2007). The link between TGFβ signaling and longevity was missed
without the use of FUdR, as TGFβ pathway mutations produce a
slight egg laying defect (egl) and extend reproductive longevity,
which causes internal hatching of progeny later in life that kills the
parent prematurely. Of note, starved wild-type animals alsomanifest
an egl phenotype, perhaps as an adaptive survival advantage to
progeny under conditions of low food (Baugh and Hu, 2020); this
has implications for studies on the genetics of dietary restriction
(DR), which may be complicated by overlap between models of DR
and starvation responses (Mair and Dillin, 2008). Thus, using either
a chemical inhibitor or genetic mutant to limit progeny production
versus manually transferring animals are both valid; each has
advantages and disadvantages, and is one aspect to consider
when choosing a methodology.

The type and amount of the bacterial food source is another
important consideration in planning either type of lifespan
experiment. Starvation must be avoided for accurate
assessment of lifespan (Johnson et al., 1984), which is typically
managed by adjusting the bacterial volume added to a well or
plate, the number of animals added, and by concentrating
bacterial cultures if necessary. While using FUdR to inhibit
reproduction obviates the need to transfer parents away from
progeny that will quickly deplete the available food, it is still
possible to accidentally distribute too little bacterial culture or too
many animals to a given plate or well, making for a higher
probability of a single well “starving out”. In TLM, this is avoided
by keeping spare plates prepared at the same time as the others,
but without animals added, onto which the animals are manually
transferred from the at-risk plate- a process which is prone to
error, particularly when animals are aged and fragile, and can
introduce contamination. For RSM, this is avoided by preparing
extra replicate plates at the outset of the experiment- which also
have animals added like all other plates in the set- which can be
scored as necessary to replace a plate with starved wells (Cornwell
et al., 2018; Cornwell and Samuelson, 2020). Starved wells are
easy to identify and are censored. Additionally, the common
bacterial food sources used in C. elegans culture have been found
to differ in nutritional composition and influence developmental
rate and lifespan of C. elegans (Stuhr and Curran, 2020). Thus,
with either lifespan method care must be taken to ensure
consistency in food source (e.g. strain and concentration), and
proactive preparation of spare plates or replicates will reduce the
possibility of having to discard or restart a trial due to starvation.

TLM, RSM, and Lifespan Assay Automation
Improvements in affordable imaging hardware as well as
machine learning have led to an increasing number of
options for automating C. elegans longitudinal assays such
as lifespan. Most such systems utilize cameras and record
images at intervals or video, and use software to identify
animals and determine the time at which movement ceases.
Present approaches represent different positions across a

balance between throughput and detail on the activity of
individual animals: full-motion video is necessary to
reconstruct movement tracks or record activity levels across
the entire adult life of animals, but these systems are difficult to
scale to thousands of animals or conditions (e.g. the Nemalife
Infinity system, SiViS), while periodic imaging is suitable for
constructing a time-lapse across life of many more animals or
conditions, but is not able to track the movement path of
individual animals early in life when used with multiple plates
(e.g. the Lifespan Machine, WormBot) (Stroustrup et al., 2013;
Pitt et al., 2019; Rahman et al., 2020; Puchalt et al., 2021).
Others utilize alternative experiment or measurement
paradigms in order to approach the middle of the balance,
such as the Phylum Arena system (PhylumTech, Santa Fé,
Argentina), which uses an array of infrared microbeams to
detect movement of animals rather than traditional imaging,
and WorMotel (Jushaj et al., 2020) which is based on singling
animals in microplate-sized wells, thus removing the need for
continuous video to build a life history of activity for
individual animals. While all of these systems track the
same population of animals across time, the scoring
approaches are passive, nondestructive, and generally
obviate the need to re-expose animals to the environment
after the start of the experiment, thereby reducing exposure to
airborne contaminants similar to RSM experiments. However,
mechanically stimulating movement- as with adding liquid to
a well in RSM or poking with a wire- may be advantageous
when working with animals harboring mutations that increase
the time spent in a behaviorally quiescent sleep-like state, such
as daf-2 mutants, which, if unstimulated, can cease movement
for periods long enough to be called as dead by the default
movement analysis models that are bundled with the Lifespan
Machine software, in our experience (Gaglia and Kenyon,
2009; Stroustrup et al., 2013). These hardware platforms
may also be unsuitable for chronic heat tolerance assays, as
this could require elevating the temperature of the
surrounding environment or enclosure and thus also the
instruments themselves. The “set it and forget it” nature
may also lead to mistakes that are not caught until the
planned end of the experiment- starvation, progeny,
contamination, etc- unless the researcher checks for
anomalies periodically. Large-scale automation of lifespan
experiments still involves substantial upfront costs, such
that RSM remains an attractive option for applications such
as RNAi library screening across large gene families or across
the genome. Even when automated approaches are available,
investigators might consider running a manually-scored TLM
or RSM trial alongside the automated experiment, thereby
acquiring two trials worth of data, with the hands-on time of
just one.

Statistical Analysis of the Traditional
Longitudinal and Replica Set Methods
At the completion of a lifespan experiment, it is important to
determine the mean, median, and maximum lifespan within a
sample, as well as to identify significant differences in lifespan
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between conditions of interest. For TLM experiments, summary
statistics of lifespan can be estimated using the Kaplan-Meier
estimator. The Kaplan-Meier estimator is a non-parametric
statistical estimator frequently applied to lifespan data because it
provides a number of benefits for survival analysis applicable to
many studies in research and clinical settings (Kaplan and Meier,
1958). First, the Kaplan-Meier estimator accounts for one-sided
censoring of animals; censoring is important in situations where an
animal must be removed from study (i.e. died for reasons other than
aging). For instance, in the case of C. elegans, animals that crawl up
the side of the plastic dish will desiccate and die. In these cases, it is
known approximately how long the animal lived before the event
that warranted censoring, but when the animal would eventually
have died due to aging is unknown. The non-parametric nature of
Kaplan-Meier removes the necessity of verifying that the data is
appropriate for a given distribution- there are very few assumptions
to satisfy. However, parametric survival functions- which require
ensuring that the data is a good fit to the chosen distribution (often
Gompertz, logistic, or Weibull)- are also available for longitudinal
lifespan data, andmay bemore accurate for cases when the surviving
fraction approaches zero at the termination of the study (Miller,
1983; Wilson, 1994; Mudholkar et al., 1996).

To determine whether there are significant differences in lifespan
between two populations when using Kaplan-Meier analysis, the
Mantel-Cox log-rank test is applied (Mantel, 1966). This statistical
test has been a standard within the field for many years and allows
one to identify significant differences in mean/maximum lifespan.
The log-rank test is non-parametric, and takes censoring into account
(Bland and Altman, 2004). A popular alternative to the log-rank test
is the Wilcoxon test, which is also non-parametric, but whereas log-
rank has been found to be biased toward differences near the end of
the experiment timeline (i.e. termination of the study), Wilcoxon can
be biased toward differences at the beginning (Tarone, 1981).

The RSM yields current status data, representing a form of
interval censoring in which every data point is either left-censored
(for animals that are dead at time of observation) or right-censored
(for animals that are alive at time of observation). As the basic
Kaplan-Meier estimator does not handle current status data,
calculation of mean, median, and maximal lifespan of data
generated through the replica set method must be determined
by other methods. While non-parametric methods for handling
current status data have been described and implemented, this
remains an active area of development. In particular, the
nonparametric maximum likelihood estimate (NPMLE) (Gomez
et al., 2009) as implemented in the R packages “Interval” (Fay and
Shaw, 2010) or “icenReg” (Anderson-Bergman, 2017) may provide
a basis for nonparametric analysis of RSM data. For the present
work, we chose to model this data parametrically using the logistic
distribution, as C. elegans lifespan has previously been shown to fit
this distribution well (Vanfleteren et al., 1998). Consistently, we
have also previously found that large lifespan datasets derived from
the RSM fit best to a logistic model, but can also fit a Gompertz
distribution (Samuelson et al., 2007b; 2007a), the latter of which is
frequently used for demographic analysis of mortality in mammals
(Finch and Pike, 1996). Parametric and nonparametric methods of
survival analysis have been shown to perform similarly when the
data is a good fit for the chosen distribution (Efron, 1988).

Identifying significant differences in lifespan between two
populations through the RSM is determined by first fitting the
data from a given condition to a logistic model. The median
lifespan values are calculated from these model fits; logistic curves
are symmetrical about their inflection point, such that the median is
equal to the mean (Winsor, 1932). The p-values for the desired
comparison are then computed using a Monte Carlo resampling
approach using 10,000 iterations to obtain precise p-values
(Robinson, 2007; Phipson and Smyth, 2010). Confidence intervals
for the median lifespan values can also be derived from the Monte
Carlo simulation. Although these results can take some time to
compute for a large number of comparisons, it is trivial to parallelize
for significant speedup on most modern computers.

Our analysis of power to detect differences for traditional lifespan
is concordant with previous findings using simulations and non-
parametric analysis (Petrascheck and Miller, 2017). Additionally,
both studies highlight the importance of adequate sample size for
detection of a given magnitude difference in lifespan for traditional
longitudinal experiments, and identify that accuracy is compromised
with longer scoring intervals in traditional experiments. We further
highlight that scoring frequency can influence accuracy and precision
in determining mean and median lifespan, and that analysis of TLM
experiments with interval censoring may produce estimates of
longevity that are more comparable between studies. Importantly,
we show that Replica Set experiments require relatively few animals
per observation to obtain similar or better detection power compared
to TLM experiments (Figure 7). Furthermore, our results
demonstrate that scoring errors- simulating an incorrect
assessment of animal vital status or accidentally damaging fragile
aged animals during scoring- even at low probability and introduced
late within an experiment, can drastically influence lifespan estimates
for TLM assays.

We demonstrate that the RSM is more accurate, precise, and
robust to error then the TLM for estimating lifespan in C. elegans.
A lack of repeated handling reduces exposure to airborne
contaminants, and removes possible error from prodding of
increasingly fragile aging animals. Furthermore, the RSM is
amenable to measuring lifespan at high throughput and at low
cost. Lifespan of several hundred test conditions (e.g. feeding
based RNAi) can be simultaneously followed, allowing one to
hasten the discovery of genetic interactions and pathways
(Samuelson et al., 2007a). Furthermore, when applying the
RSM to C. elegans, liquid is added to the well at the time of
scoring, which not only increases scoring accuracy, but also
provides a stimulus for spontaneous movement, reducing the
need for time-consuming manual touch stimulation (Cornwell
et al., 2018; Cornwell and Samuelson, 2020). Through video
capture of thrashing/swimming C. elegans it is possible to
quantify activity, using pixel displacement (A.V.S. unpublished
observations), to obtain an estimate of healthspan (i.e. the period
of life that animals actively respond to stimuli, see (Samuelson
et al., 2007a)). Thus the RSM can easily and simultaneously track
both survival and health during aging. Collectively this study
highlights the limitations and pitfalls of the TLM for measuring
lifespan of C. elegans and provides, in the RSM, an accurate,
precise, high-throughput alternative that is less susceptible to
common types of experimental errors.
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