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Abstract

Mammary gland is present in all mammals and usually functions in producing milk to feed

the young offspring. Mammogenesis refers to the growth and development of mammary

gland, which begins at puberty and ends after lactation. Pregnancy is regulated by various

cytokines, which further contributes to mammary gland development. Epithelial cells, includ-

ing basal and luminal cells, are one of the major components of mammary gland cells. The

development of basal and luminal cells has been observed to significantly differ at different

stages. However, the underlying mechanisms for differences between basal and luminal

cells have not been fully studied. To explore the mechanisms underlying the differentiation

of mammary progenitors or their offspring into luminal and myoepithelial cells, the single-cell

sequencing data on mammary epithelia cells of virgin and pregnant mouse was deeply

investigated in this work. We evaluated features by using Monte Carlo feature selection and

plotted the incremental feature selection curve with support vector machine or RIPPER to

find the optimal gene features and rules that can divide epithelial cells into four clusters with

different cell subtypes like basal and luminal cells and different phases like pregnancy and

virginity. As representations, the feature genes Cldn7, Gjb6, Sparc, Cldn3, Cited1, Krt17,

Spp1, Cldn4, Gjb2 and Cldn19 might play an important role in classifying the epithelial mam-

mary cells. Notably, seven most important rules based on the combination of cell-specific

and tissue-specific expressions of feature genes effectively classify the epithelial mammary

cells in a quantitative and interpretable manner.
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Introduction

The mammary gland is an exocrine gland in mammals. It distinguishes mammals from all

other animals and functions to produce milk to feed young offspring. The milk containing

nutrients and antibodies is passed to the newborn through breastfeeding to ensure its develop-

ment and growth. The mammary glands exist in both sexes, while male mammary glands are

generally non-functional because of degeneration. Mammogenesis, which refers to the growth

and development of the mammary gland, has different growth cycles, including puberty

growth, pregnancy, lactation, and degeneration. Considering that the ectoderm forms a mam-

mary gland, it resolves into a plate and the first one in the embryo occurs. The placodes

descend into the underlying mesenchyme and produces the basic ductal structure of the glands

present at birth, and the processes are regulated by interactions between epithelial and mesen-

chymal cells. Branch morphogenesis occurs at puberty, and this process requires growth hor-

mone, estrogen, and IGF1 to produce a dust tree filled with a fat pad. During pregnancy, the

combined action of progesterone and prolactin produces alveoli, which secretes milk during

lactation. The lack of milk demand during weaning can lead to a degenerative process that

restores the gland to its pre-pregnancy state [1]. During menopause, mammogenesis stops,

and the breasts undergo atrophy.

Mammogenesis mainly occurs during gestation, and certain cytokines that maintain preg-

nancy play a crucial role in regulating mammary gland development during pregnancy. Some

pregnancy hormones, such as estrogen and progesterone, are essential for mammary growth

and maturation [2]. During pregnancy, the breast experiences significant growth and matura-

tion in preparation for breastfeeding. Estrogen and progesterone levels increase greatly in a

short time, reaching hundreds of times higher than the usual menstrual cycle levels during late

pregnancy [3]. Estrogen and progesterone cause the anterior pituitary gland to secrete high

levels of prolactin, which can reach 20 times than the normal menstrual cycle level [4].

Generally, the mammary epithelium cells consist of two main cell types, namely, basal and

luminal cells. The mechanisms underlying the differentiation of mammary progenitors or

their offspring into luminal and myoepithelial cells require further study [5]. Luminal cells or

luminal progenitors can introduce alveolar epithelial cells during pregnancy, and this differen-

tiation is driven by several factors, including transcription factor Gata-3,β3-integrin/CD61 [6].

The luminal cell compartment of the mouse mammary gland can be resolved into non-clono-

genic estrogen receptor-positive (ER+) luminal cells, ER+ luminal progenitors, and estrogen

receptor-negative (ER-) liminal progenitors. All luminal progenitor cells in human and mouse

have pluripotency that can produce offspring differentiating into all mammary cell types at

low frequencies. The luminal cell compartment in the mammary epithelium becomes more

heterogeneous during differentiation and proliferation, because varied levels of cellular plastic-

ity can be identified in luminal progenitor cell [7]. Moreover, basal cells are important com-

partment of mammary epithelium; they are contractile and contact the basement membrane.

Cells of the basal lineage may have a critical tumor suppressive role in preventing the progres-

sion of ductal carcinoma in situ to invasive ductal carcinoma [2]. However, some transcription

factors are involved in the differentiation of a basal progenitor into a myoepithelial cell. Tran-

scription factors such as Slug, Smad 3, and Notch signaling are related to the basal phenotype

[8].

Actually, the development of epithelial mammary cells, which are consisted of basal and

luminal, significantly differ at different stages. They develop differently in the phases of virgin-

ity and pregnancy, and research is lacking about the genes that can be used to classify epithelial

mammary cells. In the present work, a deep investigation on the single-cell sequencing data on

mammary epithelia cells of virgin and pregnant mouse was conducted. The feature genes were
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analyzed by Monte Carlo Feature Selection (MCFS) [9]. The result was fed into the incremen-

tal feature selection (IFS) [10], incorporating support vector machine (SVM) [11] or repeated

incremental pruning to produce error reduction (RIPPER) [12] as classification algorithm to

determine essential gene features and rules that are significant to divide the mammary cells

into four types, including basal and luminal cell in the phases of pregnancy and virginity.

According to these feature genes and rules, Cldn7, Gjb6, Sparc, Cldn3, Cited1, Krt17, Spp1,

Cldn4, Gjb2 and Cldn19might play an important role in classifying the epithelial mammary

cells. In addition, we determined the seven most important rules for classifying the epithelial

mammary cells in a quantitative manner by the combination of cell- and tissue-specific expres-

sions of feature genes.

Materials and methods

Dataset

Single-cell sequencing data on mammary epithelia cells of virgin and pregnant mouse were

downloaded from the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.

gov/geo/query/acc.cgi?acc=GSE110371) [13]. A total of 102 PB (basal mammary cell, pregnant

day 12), 49 PL (luminal mammary cell, pregnant day 12), 34 VB (basal mammary cell, virgin),

and 54 VL (luminal mammary cell, virgin) cells were observed. The expression data of 18,850

genes were analyzed using the Illumina HiSeq 2500 platform. We aimed to explore the mam-

mary epithelia changes after pregnancy.

Monte Carlo feature selection

MCFS [9] is a widely used and stable feature selection method in many biological studies, and

this method is based on random sampling approach. Briefly, in an MCFS analysis, many deci-

sion trees are built on one bootstrap sample-set with a randomly selected feature subset (e.g.,

feature subset withm features are selected from the rawM features, andm is far smaller than

M). For each feature subset, p decision trees can be obtained through training and evaluation

on bootstrapping sets consisting of data with this feature subset. When this procedure is iter-

ated for T times, p × T decision trees can be produced, and relative importance (RI) can be cal-

culated based on the contribution of features in each decision tree classifier constructed by the

above steps. In detail, the formula for calculating the RI score of a feature g is as follows:

RIg ¼
Xp�T

t¼1

ðwAccÞuIGðngðtÞÞð
no:in ngðtÞ
no:in t

Þ
v
; ð1Þ

where wAcc is the weighted accuracy generated by the average sensitivity of all decision classes,

ng(τ) is the node that participate in the decision tree τ using feature g, IG(ng(τ)) is the informa-

tion gain of ng(τ), and no.in τ and no.in ng(τ) denote the size of sample data in the decision tree

τ and the number of training sample data in node ng(τ), respectively. Besides, u and v are the

corresponding weighting factors for adjusting the contributions of different optimal targets.

Clearly, features with high RI scores are more important than those with low RI scores.

Accordingly, a feature list can be built by the decreasing order of features’ RI scores. In this

study, this list was denoted by F.

To execute the MCFS, we downloaded its program at http://www.ipipan.eu/staff/m.

draminski/mcfs.html. For convenience, it was performed with its default parameters.
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Incremental feature selection

After generating a ranked feature list by MCFS, IFS can be used to further determine a series

of key features to precisely distinguish different sample groups (e.g., cell types) [10]. In detail, a

series of feature subsets with an interval of 10 was generated from the ranked feature list F by

MCFS. We generatedm feature subsets F1
1
; F1

2
; . . . ; F1

m, where the i-th feature subset contains

the top-ranked 10×i features F1
i ¼ ½f1; f2; . . . ; fi�10�. Then, on each feature subset, a classifier

was built with a given classification algorithm and samples represented by features in this sub-

set. The classifier was further tested by 10-fold cross-validation [14]. After all classifiers have

been tested, the classifier providing the best performance can be identified. This classifier was

called the optimum classifier and features used in this classifier were termed as optimum

features.

Classification algorithm

To execute IFS method, a classification algorithm was necessary. Here, we employed two clas-

sic algorithms: SVM [11] and RIPPER [12].

Support vector machine. SVM is a popular and useful machine learning algorithm for

supervised learning [11, 15–21]. It adopts kernel techniques (e.g., Gaussian kernels) based on

statistical learning theory, and it maps raw data from low-dimensional nonlinear feature space

to high-dimensional linear feature space, so that, a hyperplane (e.g. a linear function) in the

high-dimensional space with the largest margin can be used to separate the samples in the

training data set. In the present work, the tool “SMO” implemented in Weka [22] software was

employed for the building of SVM with the default parameter setting. Although SVM is quite

powerful, its classification principles are very hard for human to understand. Thus, it is proper

to set up efficient tools for classifying mammary epithelia cells rather than uncover the mam-

mary epithelia changes after pregnancy. In view of this, another rule learning algorithm, RIP-

PER, was also employed.

Rule learning. In addition to the above “black-box” algorithm, SVM, we also used RIP-

PER to learn decision classification rules for model interpretation. In RIPPER, each rule is rep-

resented as an IF-ELSE statement. For instance, gene1>2.5 and gene2 <10 indicate a basal

cell. These learned rules can be used to make human-readable predictions for new samples. In

the present work, the tool “JRip” implemented in Weka [22] was used for extracting RIPPER

rules.

Performance measurement

To access the performance of particular classification models, we adopted Matthew’s correla-

tion coefficient (MCC) [23, 24] as an evaluation metric. MCC was first designed for binary

classification and is widely used in the field of bioinformatics [15, 25–29]. In the present work,

considering the multi-classification model learned, the multi-class version of MCC was applied

[24], and this parameter is calculated using the following formula:

MCC ¼
covðX;YÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
covðX;XÞcovðY;YÞ

p ; ð2Þ

where X is a 0–1 matrix representing the predicted category of each sample, Y is also a 0–1

matrix representing the true classes of all samples, and cov(�,�) is the covariance of the two

matrices. The multi-class version of MCC has been broadly employed [30–32] so that it is still

referred to as MCC in the following analysis for convenience.
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In addition, we also calculated other measurements to fully evaluate the performance of

classifiers, including overall accuracy and individual accuracy on each class. The overall accu-

racy is defined as the proportion of correctly predicted samples among all samples, whereas

the individual accuracy on one class is the proportion of correctly predicted samples in this

class among all samples in such class.

Results and discussion

In this study, a deep computational analysis was conducted on the single-cell sequencing data

for virgin and pregnant mouse mammary epithelia cells. The entire procedures are shown in

Fig 1. This section gave the detailed analysis results and further discussions.

Results of MCFS method

According to Fig 1, the MCFS method was first applied to the single-cell sequencing data. It

analyzed the importance of each feature by assigning it a RI score, which is provided in S1

Table. After that, all features were sorted by the decreasing order of their RI scores in a feature

list, which is also provided in S1 Table.

Results of IFS with SVM

The feature list yielded by the MCFS method was fed into IFS method. We first employed

SVM as the classification algorithm. Several SVM classifiers were set up using different top fea-

tures in the list. And these classifiers were tested by 10-fold cross-validation. Obtained mea-

surements are listed in S2 Table. To clearly display the performance of these classifiers, an IFS

curve was plotted, as shown in Fig 2, by setting MCC as Y-axis and number of features as X-

axis. It can be observed that the highest MCC was 0.976. This value was obtained by a SVM

Fig 1. Entire procedures to analyze the single-cell sequencing data for virgin and pregnant mouse mammary

epithelia cells. The data is retrieved from Gene Expression Omnibus. Powerful Monte Carlo Feature Selection is

applied on such data, resulting in a feature list. This list is fed into incremental feature selection, incorporating two

classification algorithms, to build efficient classifiers and extract discriminative genes and rules.

https://doi.org/10.1371/journal.pone.0267211.g001
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classifier using top 420 features. Thus, this classifier was called optimum SVM classifier. The

overall accuracy of such classifier was 0.983, as listed in Table 1. Four individual accuracies on

four classes are shown in Fig 3. The classifier gave quite high performance on all classes, espe-

cially on VB and VL.

Although the optimum SVM classifier provided quite good performance, its efficiency was

not very high due to the number of features. By carefully checking the IFS results in S2 Table,

we found that when top 90 features were used, the SVM can yield the MCC of 0.906. This

value was lower than the highest MCC, however, it was still acceptable. The overall accuracy of

this classifier was 0.933 (Table 1). Its detailed performance on four classes is shown in Fig 3.

Such classifier gave high even perfect performance on PB and VL, whereas its performance on

VB was low. As this classifier used much less features, it was much more efficient than the opti-

mum SVM classifier. It can be a fast tool to classify mammary epithelia cells.

Results of IFS with RIPPER

As mentioned above, SVM is a black-box algorithm. It cannot provide useful clues to help us

understand the mammary epithelia changes after pregnancy. In view of this, RIPPER was also

employed in the IFS method. Similarly, lots of RIPPER classifiers were built and tested by

10-fold cross-validation. The measurements are available in S2 Table. An IFS curve was also

plotted, as illustrated in Fig 2. The highest MCC was 0.905, which was based on top 120 fea-

tures. Accordingly, the optimum RIPPER classifier was constructed with these features. The

overall accuracy of this classifier was 0.933, as listed in Table 1. The detailed performance on

four classes is shown in Fig 3. Evidently, the optimum RIPPER classifier was inferior to the

Fig 2. IFS curves of two classification algorithms based on feature list yielded by MCFS. The highest MCC values

for SVM and RIPPER are 0.976 and 0.905, respectively, which are obtained by using top 420 and 120, respectively,

features in the list. The SVM classifier using top 90 features also provides good performance.

https://doi.org/10.1371/journal.pone.0267211.g002

Table 1. Performance of some key classifiers.

Classification algorithm Number of features Overall accuracy MCC

Support vector machine 420 0.983 0.976

Support vector machine 90 0.933 0.906

Repeated incremental pruning to produce error reduction 120 0.933 0.905

https://doi.org/10.1371/journal.pone.0267211.t001
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optimum SVM classifier. However, it almost gave equal performance to the SVM classifier

with top 90 features. Thus, such performance was acceptable.

Discriminative genes and rules

Two SVM classifiers were proposed in this study. They used top 420 and 90 features, respec-

tively. As the SVM classifier with top 90 features provided acceptable performance, top 90 fea-

tures were quite essential for classifying mammary epithelia cells. Their corresponding genes

were picked up as discriminative genes.

The optimum RIPPER classifier used top 120 features. With these features, we further used

RIPPER to learn rules based on all cell samples represented by them. Seven rules were

obtained, as listed in Table 2. Four rules were for VB and one rule was for each of other classes.

Analysis of discriminative genes

Based on the 90 top ranked features, we selected seven optimal genes as examples for further

discussion, which are listed in Table 3. Based on literature, these genes are widely used as bio-

markers for classification.

Fig 3. Individual accuracies of three key classifiers. The optimum SVM classifier gives quite high even perfect performance

on four classes. The SVM classifier with top 90 features and the optimum SVM classifier provide almost equal performance.

https://doi.org/10.1371/journal.pone.0267211.g003

Table 2. Rules generated by RIPPER.

ID Rule Class

Rule-1 (Tbata > = 1.3033) and (Ssh2 > = 0.1463) VB

Rule-2 (Apoe > = 1564.7779) and (Acta2 < = 6013.4274) VB

Rule-3 (Iqub > = 0.0098) VB

Rule-4 (Tusc5> = 3.6569) VB

Rule-5 (Gjb6 > = 0.0158) and (Mal2 > = 0.1745) PL

Rule-6 (Cldn7 > = 0.8431) VL

Rule-7 Others PB

https://doi.org/10.1371/journal.pone.0267211.t002
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The first identified gene in our prediction list is Cldn7, which encodes a protein named as

Claudin 7. Claudin 7 is a type of membrane protein that participates in the formation of tight

junctions between epithelial cells. Tight junctions physically block the free diffusion of the liq-

uids through the lacuna between cell sheets and are involved in cell and cell communications.

Claudin 7 may be involved in the transportation of vesicle to the basolateral membrane, possi-

bly stabilizing cytoplasmic vesicles or participating in cell–matrix interactions [33]. Claudin 7

plays a significant role in mammary neoplasia, and its loss or reduction in expression can

result in cellular disorientation, detachment, and invasion in breast tumors [34]. In addition,

the claudins, as a family of tight junction, play a specific role in mammary tumorigenesis. For

example, claudin 1 and 3 are associated with mammary tumor [35]. As for its correlation with

pregnancy, in 2016, researchers reported that the expression level of claudin 7 in the mammary

basal cells is altered even during different stages of pregnancy and post-pregnancy period

together with other pregnancy associated famous proteins, such as Connexins, E-cadherin,

and β-catenin and during non-pregnancy [36]. Therefore, such predicted gene can not only

distinguish basal mammary cell from luminal mammary cell but can also identify the pregnant

status of the mice, corresponding with our prediction.

Connexin 30 (Cx30), also known as gap junction beta-6 protein (Gjb6), is prevalent in the

two distinct gap junction systems, including the epithelial cell gap junction network and the

connective tissue gap network. Cx30 has a stage-dependent expression pattern [37]. During

the early stages of pregnancy, the expression cannot be detected in the mammary glands, while

its mRNA and protein have strong expression in late pregnancy and lactation period. At the

beginning of lactation, the expression is dramatically upregulated. Moreover, in vitro study on

the Cx30 expression in mouse mammary cells demonstrated its unique expression in epithelial

cell, which can be affected by lactogenic hormones [37]. Therefore, Cx30may be essential for

the development of the mammary gland. As a major ingredient of gap junctions, connexin

proteins have diverse distribution. For example, Cx43 (Gja1) has unique expression in myoe-

pithelial cells, while Cx30, Cx26 (Gjb2), and Cx32 (Gjb1) are only expressed in the luminal epi-

thelial cells [38]. The above results indicate that our selected gene Cx30 can function as an

optimal marker, because it has differential expression pattern not only in pregnancy and virgin

phases of mammary cells, but also in different mammary cells, including luminal and basal

epithelial cells.

Secreted Protein Acidic And Cysteine Rich (Sparc), also known as osteonectin (ON), is a

matricellular glycoprotein involved in the calcification process of bone collagen, wound heal-

ing, and extracellular matrix synthesis. In mammary carcinoma cells, SPARC, which is pro-

duced by host leukocytes instead of the tumor, shapes the stroma of the tumor [39]. SPARC
functions as an extracellular modulator of calcium and contributes to the damage repair and

proliferation in endothelial cell [40]. In comparison with normal breast, the transcript level of

Table 3. Important discriminative genes for distinguishing mammary epithelia cells.

Gene symbol Description RI score

Cldn7 Claudin 7 0.6574

Gjb6 Gap Junction Protein Beta 6 0.5942

Sparc Secreted Protein Acidic And Cysteine Rich 0.5584

Cldn3 Claudin 3 0.3598

Cited1 Cbp/P300 Interacting Transactivator With Glu/Asp Rich Carboxy-Terminal Domain 1 0.3334

Krt17 Keratin 17 0.3098

Spp1 Secreted Phosphoprotein 1 0.2669

https://doi.org/10.1371/journal.pone.0267211.t003
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SPARC is significantly high in tumor tissue, suggesting that especially in basal cells [41],

SPARC plays an important role in tumorigenesis [42]. Although not reported in mice, our pre-

dicted gene SPARC is upregulated during pregnancy in humans [43] compared with virginal

status. Therefore, SPARC, as an up-regulated gene during pregnancy, which is mostly detected

in the basal cells, contributes to the classification of different cell types at different physical

stages as a potential effective biomarker.

As an effective homologue of Cldn7mentioned above, Claudin 3 (Cldn3) is a member of

the Cldn family. Cldn family consists of 24 gene members and is the major component of tight

junctions. Only few data have been reported on the role of Cldn family in breast lesions, and

their function has not been fully determine. The loss of CLDN expression in the majority of

grade 1 invasive carcinomas suggests a special role for this protein in mammary glandular cell

differentiation and carcinogenesis [44]. Moreover, claudin 1 and 3 are commonly detected in

mammary tumors, and the wide distribution of claudin 3 suggests its important role in mam-

mary physical differentiation and tumorigenesis [35]. These findings indicate that the pre-

dicted gene claudin 3 might be differentially expressed in the pregnancy and virgin phases of

mammary epithelial cells. In luminal or basal cells, claudin 3 is remarkably upregulated in

basal cells during pregnancy, indicating that such protein may not only distinguish different

cell subtypes but also different pregnancy status [45].

Cbp/p300-interacting trans-activator 1 (Cited1), also known as melanocyte-specific gene 1,

functions as a transcriptional coactivator. A human breast cancer dataset revealed that

CITED1 has a similar expression pattern with STC2, AREG, and Erα, and CITED1 expression

is always associated with good prognosis in breast cancer [46]. Cited1 knockout mouse was

constructed, and the homozygous mice showed abnormal mammary ductal morphogenesis at

puberty [47]. This phenomenon occurred, because Cited1 can affect the expression of both

individual estrogen and TGFβ downstream transcriptional target genes in the pubertal gland.

Estrogen is differentially detected and expressed in luminal and basal cells [48, 49]. Moreover,

during different stages of pregnancy and comparing pregnant or virginal status, the expression

level of estrogen also differs [50]. Therefore, considering its tight correlations with estrogen,

such protein Cited1 has different expression level between basal and luminal cells at different

stages of pregnancy/virgin.

The next predicted gene Krt17, also known as type I cytoskeletal 17, is a type of basal cyto-

keratin. A keratin protein regulates the epithelial cell growth. The Akt/mTOR signaling path-

way plays an important role in the synthesis of proteins and thus regulates the cell

proliferation, tissue development, and organogenesis. The simultaneous stimulation of mTOR

activity and cell growth requires two amino acid residues in the 17 amino-terminal head struc-

tural domain of keratin [51]. Krt17 is identified by supervised analysis, differentially expressed

in luminal and basal cell lines, and is a type of overexpressed gene and reported basal maker

[52]. Therefore, Krt17may be differentially expressed in basal and luminal cells. As for its dif-

ferential expression level under pregnant and virginal status, the biological procedure preg-

nancy itself can control the epithelial composition and hormone regulation via regulating

functional proliferation-associated genes, such as KRT17, implying that KRT17may also have

different expression levels during pregnancy [53].

The predicted gene Spp1, also known as osteopontin (Opn), has been observed by various

human cancers, including breast cancer. It is a secreted glycophosphoric acid protein involved

in mammary gland development. The expression of Spp1 differs at different stages during

mammogenesis. Spp1 has low-to-moderate expression levels in the nulliparous gland but

remarkably high expression in the lactating gland [54], suggesting that it can be used as a

maker to identify differentiated epithelial cells. Spp1 expression is crucial for mammary gland

development [55]. Therefore, the Spp1 is differentially expressed in different phases of basal
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and luminal cells. Spp1 is upregulated during pregnancy, thus inhibiting cell apoptosis and

promoting cell proliferation in multiple female regeneration-associated tissues [56].

The top optimal genes are differentially expressed in basal and luminal cell subtypes under

pregnant and virginal status, corresponding with our prediction and validating the efficacy

and accuracy of our newly presented methods.

Functional enrichment analysis on discriminative genes

The functional enrichment analysis was also performed on top 90 feature genes to uncover

biological meanings behind these genes. The results are provided in S3 Table. It can be

observed that several top terms are related to cell junction organization, including

GO:0120193 (tight junction organization), GO:0045216 (cell-cell junction organization),

GO:0034329 (cell junction assembly), GO:0120192 (tight junction assembly), GO:0007043

(cell-cell junction assembly) and mmu04530 (Tight junction), which is consistent with the

inclusion of Cldn7, Cldn3, Cldn4, Cx26 (Gjb2) and Cx30 (Gjb6) in our top ranked features and

rules.

Cldn7, Cldn3, Cldn4 and Cldn19 all belong to the Claudin family consisting of 24 gene

members. Claudin is the major component of tight junction complex, which provides a form

of adhesion for epithelial or endothelial cells, and regulates cell proliferation, differentiation

and maintaining cell polarity [57]. Claudins play an important role in mammary gland devel-

opment. Blanchard et al. brings strong evidence that Cldn1, 3, and 4 are differentially expressed

in the mammary gland at different stages of mammary gland development [35]. The expres-

sion of Claudins differs in different mammary epithelial cell subtypes. Cldn3 is remarkably

upregulated in basal cells during pregnancy and Cldn4 has a strong expression in luminal epi-

thelial cells, indicating that such protein may not only distinguish different cell subtypes but

also different pregnancy status [41, 45]. Furthermore, the previous studies have proved the

aberrant expression of Claudins are associated with the malignant transformation of mam-

mary epithelial cells [58–60]. As a member of tight junction molecules, the expression of

Cldn19 is downregulated in breast carcinomas, indicating it plays a key role in the mainte-

nance of normal mammary gland [61].

Cx26 and Cx30 belong to Connexins, which can interact with Claudin-7 and participate in

the transient formation of junctional nexuses in mammary gland after pregnancy, indicating

that they may have different expression in the phases of virginity and pregnancy [36]. The

expression of Connexins can help to distinguish basal and luminal cells. According to Mroue

et al.’s study [38], Cx43 has unique expression in myoepithelial cells, while Cx30, Cx26, and

Cx32 are only expressed in the luminal epithelial cells.

Quantitative analysis of discriminative rules

In addition to the qualitative analysis, we also identify seven rules for quantitative analysis on

the distinction of PB, PL, VB, and VL, which are listed in Table 2.

The first rule (Rule-1) involves two significant genes: thymus, brain, and testes associated

(Tbata) and protein phosphatase slingshot homolog 2 (Ssh2). According to our prediction,

these two genes might be highly expressed in basal mammary cells in virgin period. Tbata
gene is mainly expressed in highly polarized cell types, including testis germ cells, brain neu-

rons, and thymic epithelial cells (TEC [62]. Considering the mammary epithelium cell as a

type of highly polarized cell, the higher expression of Tbatamay indicate VB case (basal mam-

mary cells in virgin). Although no confirmed reports have validated the differential expression

level of Tbata in pregnant and virginal status at present, another candidate rule parameter

Ssh2may contribute to the further classification. Ssh2 plays an important role in actin
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dynamic, which is important for the formation of epithelial cells by reactivating ADF/confilin

proteins in vivo [63], suggesting that the Ssh2 gene is important for epithelial mammary cells.

Further, in 2011, SSH2 has been selected as a potential biomarker for early pregnancy predic-

tion in peripheral blood at the mRNA level [64]. Considering the source of peripheral blood

mRNA and the expression distribution patterns of Ssh2, in breast tissues, Ssh2may also have

specific expression level during pregnancy, corresponding to our rule.

The identified rule (Rule-5) also involves two genes, namely Gjb6 and Mal2. Based on the

analysis above, the higher expression of these two genes indicates that such sample may be

luminal mammary cells of pregnancy. As described above, Gjb6 is highly expressed in luminal

epithelial cells in pregnancy mammary, corresponding to our prediction rules.Mal2 encodes a

multi-span trans-membrane protein, and Mal2 protein is a component of lipid rafts. ML is an

essential element of the machinery in the epithelial cells.Mal2 is correlated to the proliferation

of mammary cells and also a general phenotype during pregnancy [65]. Therefore, these two

genes, which are highly expressed, are potential parameters for the distinction of luminal and

basal cells.

The last two rules (Rule-6 and Rule-7) are related to the gene Cldn7, whose higher expres-

sion may represent the basal mammary cells in pregnancy and the luminal mammary cells in

virgin. Claudin 7 is expressed constitutively in the mammary epithelium and Claudin 7 may

be involved in the transportation of vesicle to the basolateral membrane [33], suggesting its

participation in both two types of epithelial mammary cells and can be the feature to differenti-

ate the epithelial cells in virgin and pregnancy mammary cells.

Conclusion

Collectively, using machine learning algorithms, we recognized discriminative feature genes

and identified some discriminative rules to classify luminal and basal cells in the phases of vir-

gin and pregnancy. The cross-validation results suggested that they were efficient to make clas-

sification. The biomarkers (discriminative genes) and rules we identified can not only help

reveal molecular profiling patterns for different mammary cells at different phases, but also set

up a quantitative standard to recognize mammary cell different subtypes and different phases

for further clinical applications. Our newly presented computational approach can detect

potential biomarkers and determinative rules for cell identity and provide molecule founda-

tion for further mechanism study of the different types of epithelial mammary cells and their

interactions.
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