
 International Journal of 

Molecular Sciences

Review

The Relationship between the Gut Microbiome and Metformin
as a Key for Treating Type 2 Diabetes Mellitus

Chae Bin Lee 1, Soon Uk Chae 1, Seong Jun Jo 1, Ui Min Jerng 2 and Soo Kyung Bae 1,*

����������
�������

Citation: Lee, C.B.; Chae, S.U.; Jo,

S.J.; Jerng, U.M.; Bae, S.K. The

Relationship between the Gut

Microbiome and Metformin as a Key

for Treating Type 2 Diabetes Mellitus.

Int. J. Mol. Sci. 2021, 22, 3566.

https://doi.org/10.3390/ijms22073566

Academic Editor: Eliana B. Souto

Received: 28 February 2021

Accepted: 27 March 2021

Published: 30 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of
Korea, Bucheon 14662, Korea; aribri727@catholic.ac.kr (C.B.L.); zldtnseo@catholic.ac.kr (S.U.C.);
seongjun6734@catholic.ac.kr (S.J.J.)

2 Department of Internal Medicine, College of Korean Medicine, Sangji University, Wonju 26339, Korea;
healmind@paran.com

* Correspondence: baesk@catholic.ac.kr; Tel.: +82-2-2164-4054

Abstract: Metformin is the first-line pharmacotherapy for treating type 2 diabetes mellitus (T2DM);
however, its mechanism of modulating glucose metabolism is elusive. Recent advances have identi-
fied the gut as a potential target of metformin. As patients with metabolic disorders exhibit dysbiosis,
the gut microbiome has garnered interest as a potential target for metabolic disease. Henceforth,
studies have focused on unraveling the relationship of metabolic disorders with the human gut
microbiome. According to various metagenome studies, gut dysbiosis is evident in T2DM patients.
Besides this, alterations in the gut microbiome were also observed in the metformin-treated T2DM
patients compared to the non-treated T2DM patients. Thus, several studies on rodents have sug-
gested potential mechanisms interacting with the gut microbiome, including regulation of glucose
metabolism, an increase in short-chain fatty acids, strengthening intestinal permeability against
lipopolysaccharides, modulating the immune response, and interaction with bile acids. Furthermore,
human studies have demonstrated evidence substantiating the hypotheses based on rodent studies.
This review discusses the current knowledge of how metformin modulates T2DM with respect to the
gut microbiome and discusses the prospect of harnessing this mechanism in treating T2DM.
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1. Introduction

Type 2 diabetes mellitus (T2DM) is one of the most common chronic metabolic dis-
orders and is characterized by hyperglycemia resulting from the combination of insulin
resistance and inadequate insulin secretion [1–4]. The number of people with T2DM has
drastically increased over the past several decades [1]. Metformin, a biguanide class drug,
is recommended by the American Diabetes Association and European Association for the
Study of Diabetes as a first-line medicine for the treatment of T2DM [2]. Metformin is a
derivative of phenformin and buformin from galegine in Galega officinalis, traditionally
used to decrease blood sugar and relieve the symptoms of diabetes (Figure 1) [3,4]. Among
the three biguanides, phenformin and buformin were withdrawn from the market due to
the high frequency of lactic acidosis in the 1970s. However, metformin showed superior
safety and better efficacy in the treatment of T2DM [5–9]. These advantages for clinical
use have resulted in metformin being widely used for more than 60 years [5]. Metformin
does not target a specific pathway or disease mechanism [4]; therefore, studies have aimed
to reveal the mechanism of action of metformin related to the treatment of cancer and
cardiovascular diseases [1–5]. Metformin exhibits the peak plasma concentrations in 3 h
with Cmax 1.0–1.6 mg/L for dose of 500 mg and approximately 55% of bioavailability ([6]
and refences therein). After absorption, metformin is distributed in the liver, kidneys,
adrenal glands, and pancreas at about seven-fold higher concentration than that of the
serum [7,8]. Based on the evidence suggesting a higher accumulation of metformin in
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the liver as well as another report by Rena et al. [9], the liver is a potential target organ
of metformin [10–12]. Several studies have suggested that metformin suppresses the
hepatic gluconeogenesis resulting from glucose tolerance modulation mediated by the
adenosine monophosphate-activated protein kinase (AMPK) activity [3,13,14]. Recent
evidence from three studies suggests that the gut is a major target of metformin action
and not the liver. First, metformin when administered intravenously, instead of orally,
demonstrated no glucose-lowering effects [15–17]. Further, the jejunum tissue was found to
exhibit a metformin concentration of up to 2000 µmol/kg of tissue, which was 30–300 times
higher than the plasma concentrations [18–20]. The jejunum biopsy under pre-dose and
post-dose of metformin demonstrated the gastrointestinal tract as a prominent target of
metformin [18]. Second, the organic cation transporter (OCT) 1, expressed in the mem-
brane of enterocytes, might be possibly involved in the absorption of metformin from
the intestinal lumen [10,21]. According to Dujic et al. [22], a reduced function of OCT1
might increase the intestinal metformin concentration and the risk of gastrointestinal in-
tolerance in the metformin-treated patients. Finally, the gut-restricted glucose-lowering
effect of metformin was observed for intermediate-release metformin, extended-release
metformin, and delayed-release metformin, and the same dose of metformin was more
effective through those dosage forms than extended-release form [23]. Although various
putative mechanisms of glucose homeostasis modulation in the gut by metformin have
been proposed, more studies are needed to establish these hypotheses.
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Microbiome in the human body assist in the expansion of host genomes, by facilitating
the host’s metabolism and physiology [24,25]. Over the last few decades, the development
of sequencing technologies and drastic progress in population-scale studies have revealed
the host and microbiome relationship. Large-scale research projects on the microbiome have
been actively conducted, such as the Human Microbiome Project (HMP) consortium funded
by the United States National Institutes of Health (NIH) and the Metagenomics of the
Human Intestinal Tract (MetaHIT) consortium funded by the European Commission [24].
A microbiome study demonstrated that the human gut microbiome abundance correlates
with metabolic markers, such as adiposity, insulin resistance, and dyslipidemia [26]. Fur-
thermore, gut dysbiosis has also been observed in T2DM patients [27–35]. Based on the
hypothesis that metformin targets the human gastrointestinal tract, the gut microbiome
has attracted attention as a key factor in the treatment of T2DM [36–41]. Thus, this review
focused on the various studies related to the gut microbiome and its association with the
anti-diabetic effects of metformin.
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2. Gut Microbiome and T2DM

Over the past decade, several studies have demonstrated that patients with T2DM,
obesity, or inflammatory bowel diseases often show dysbiosis in the gut microbiota [42–45].
The report by Larsen et al. [30] differentiated the composition of the gut microbiota in
the T2DM patients from that in the non-diabetic adults (Table 1), and other studies have
demonstrated dysbiosis in T2DM patients under different conditions, such as subject’s race
and co-administration with other drugs. According to Larsen et al. [30], at the phylum
level, the abundance of Firmicutes in T2DM patients was lower than that in the control
group, and Bacteroidetes and Proteobacteria were more abundant than in the control group.
The tendency of abundance at the phylum level was similar among the other clinical
trials [29,30,33–35]. Furthermore, at the genus level, Roseburia, a butyrate-producing
bacterium, was less abundant in the T2DM patients [27,29,30,32]. These results were in
line with the other studies showing an increase in the abundance of Roseburia and insulin
sensitivity after intestinal microbiota transplantation from lean donors to recipients with
metabolic syndrome [46]. In addition, the abundance of Lactobacillus spp. was higher in
T2DM patients than in the control groups [28–30]. The abundance of Lactobacillus spp. was
positively correlated with blood glucose levels in the two clinical trials [29,30] and these
results were consistent with those evident in a mice study [47]. The positive correlation
between Lactobacillus spp. and the glucose levels might be due to the immunomodulatory
role of Lactobacillus spp. [48]. Similarly, dysbiosis in T2DM patients might be due to the
interaction of the gut microbiota with the host immune system, which was supported by
several animal studies. In particular, the gut microbiota, which communicates with the
host through pattern recognition receptors, such as toll-like receptors (TLRs), contributes
to the development of insulin resistance with increased plasma LPS concentration [49,50].
According to Larsen et al. [30], the abundance of Gram-negative bacteria, which can
stimulate the immune system like TLRs, was increased in T2DM patients. The role of TLRs
in insulin resistance has been established through various studies. The TLR-5 deficient
mice became obese and exhibited a metabolic syndrome. Further, when the gut microbiome
from the TLR-5 deficient mice was transplanted to the germ-free mice, the germ-free mice
showed a similar phenomenon as the TLR-5 mice [51]. In addition, Song et al. [52] reported
that TLR-4 activation is associated with insulin resistance in adipocytes. Previously cited
clinical studies have identified SCFA-producing bacteria as the key for dysbiosis in T2DM
patients in response to the immune responses [27–29,32–34]. The gut microbiota has
been considered as one of the factors affecting T2DM; thus, the gut microbiota might be
considered a potential target for the treatment of T2DM. Several studies have demonstrated
the positive effects of probiotics for the treatment of T2DM, such as the decrease in systemic
LPS levels and improvement in insulin resistance [53,54].
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Table 1. Alteration of the gut microbiota biochemical properties in the T2DM patients compared to the healthy subjects or
alteration in the metformin treatment compared non-treatment T2DM patients or healthy subjects. ↑ (increase), ↓ (decrease),
– (no alteration), NA (not applicable), Ref * (reference number).

Ref * Population Study Design Gut Microbiota Biochemical
Alterations

[27] Chinese T2DM patients
(n = 170)

versus Healthy subjects (n = 174)
Family: Lachnospiraceae ↑, Erysipelotrichaceae ↓

Genus: Alistipes ↑, Clostridium ↑, Eubacterium ↓,
Faecalibacterium ↓, Subdoligranulum ↑, Parabacteroides ↑

Species: Akkermansia muciniphila ↑, Bacteroides intestinalis ↑,
Clostridium bolteae ↑, Clostridium hatheway ↑, Clostridium
ramosum ↑, Clostridium symbiosum ↑, Eggerthella lenta ↑,
Escherichia coli ↑, Eubacterium rectale ↓, Faecalibacterium

prausnitzii ↓, Haemophilus parainfluenzae ↓, Roseburia
intestinalis ↓, Roseburia inulinivorans ↓

NA

[30] Danish T2DM patients
(n = 18)

versus Healthy subjects (n = 18)
α-diversity (Chao 1): –

Phylum: Bacteroidetes ↑, Firmicutes ↓, Proteobacteria ↑
Class: Bacilli ↑, Bacteroidetes ↑, Betaproteobacteria ↑,

Clostridia ↓
Genus: Akkermansia ↑, Alistipes ↑, Bacteroides ↓,

Bifidobacterium ↓, Bilophila ↑, Catenibacterium ↓, Dialister ↑,
Dorea ↑, Erysipelotrichaceae IS ↑, Faecalibacterium ↓,

Lachnospiraceae IS ↓, Lactobacillus ↑, Parabacteroides ↑,
Prevotella ↑, Roseburia ↓, Ruminococcus ↓, Sporobacter ↑,

Subdoligranulum ↓, Succinivibrio ↑, Sutterella ↑
Species: Dorea longicatena ↓

NA

[32] Chinese T2DM patients
(n = 13)

versus Healthy subjects (n = 44)
α-diversity (Chao 1, Shannon index): ↓

Class: Clostridia ↑, Clostridiales ↑
Family: Lachnospiraceae ↑

Genus: Abiotrophia ↑, Bacteroides ↓, Collinsella ↑, Dorea ↑,
Eubacterium ↑, Haemophilus ↓, Megamonas ↓, Peptostreptococcus
↑, Prevotella ↑, Roseburia ↓, Ruminococcus ↑, Sporobacter ↑,

Subdoligranulum ↑

NA

[34] Pakistani
Obese-T2DM

patients
(n = 40)

versus Healthy subjects (n = 20)
α-diversity (Shannon index): ↓

Phylum: Bacteroidetes ↓, Elusimicrobia ↓, Firmicutes ↓,
Proteobacteria ↓, Verrucomicrobioa ↓

Class: Bacilli ↓, Bacteroidia ↓, Clostridia ↑, Coriobacteriia ↑,
Deltaproteobacteria ↓, Elusimicrobia ↓,

Gammaproteobacteria ↓, Negativicutes ↑,
Genus: Allisonella ↑, Bacillus ↓, Christensenellaceae_R_7 ↑,

Dialister ↑, Escherichia_Shigella ↓, Eubacterium
coprostanoligenes groups ↑, Lactobacillus ↑, Prevotella_9 ↓,

Ruminococcus_2 ↓, Subdoligranulum ↑

NA

Metformin Treatment Effects in T2DM Patients

[28] Japanese

T2DM patients
(n = 50)

versus normal subjects (n = 50)
Genus: Atopobium cluster ↓, Lactobacillus ↑, Prevotella ↓

Species: Clostridium coccoides ↓, Lactobacillus plantarum ↑,
Lactobacillus reuteri ↑

Fecal organic acids ↓
Acetic acid ↓

Propionic acid ↓
Fecal isovaleric acid ↑

CRP ↑, IL-6 ↑

Metformin treated
T2DM (n = 17)

versus non treated T2DM (n = 33)
Family: Enterobacteriaceae ↑

Genus: Staphylococcus ↑
Species: Clostridium coccoides ↓, Lactobacillus plantarum ↑,

Lactobacillus reuteri ↑

NA
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Table 1. Cont.

Ref * Population Study Design Gut Microbiota Biochemical
Alterations

[29]
European

old
woman

T2DM patients
(n = 53)

versus normal glucose tolerance (n = 43)
Class: Clostridiales ↓

Family: Coriobacteriaceae ↓
Genus: Alistipes ↓, Clostridium ↓, Roseburia ↓,

Species: Bacteroides intestinalis ↓, Eubacterium eligens ↓,
Lactobacillus gasseri ↑, Streptococcus mutans ↑

C-peptide ↑

Metformin
treated T2DM

(n = 20)

versus non treated T2DM (n = 33)
Genus: Clostridium ↓, Escherichia ↑, Eubacterium ↓, Klebsiella ↑,

Salmonella ↑, Shigella ↑
Species: Escherichia coli ↑

NA

[31]

Danish

T2DM patients
(n = 75)

versus normal subjects (n = 277)
Family: bp Clostridiales ↓, Peptostreptococcaceae ↓

Genus: Akkermansia ↓, Acidaminococcus ↑, Bilophila ↑,
Collinsella ↑, Coprococcus ↓, Escherichia ↑, Holdemania ↑,

Lactobacillus ↑, Parabacteroides ↑, Roseburia ↓, Veillonella ↓

NA

Metformin treated
T2DM
(n = 58)

versus non treated T2DM (n = 17)
Family: Peptostreptococcaceae ↓

Genus: Akkermansia ↑, Bilophila ↓, Escherichia ↑, Holdemania ↑,
Roseburia ↑, Veillonella ↓

NA

Swedish
female

T2DM patients
(n = 53)

versus normal subjects (n = 92)
Family: Peptostreptococcaceae ↓

Genus: Lactobacillus ↑
NA

Metformin treated
T2DM
(n = 20)

versus non treated T2DM (n = 33)
Family: bp Clostridiales ↓, Peptostreptococcaceae ↓

Genus: Bilophila ↑, Escherichia ↑, Holdemania ↓, Lactobacillus ↑,
Roseburia ↓, Veillonella ↓

NA

Chinese

T2DM patients
(n = 71)

versus normal subjects (n = 185)
Family: bp Clostridiales ↓, Peptostreptococcaceae ↓,

Genus: Acidaminococcus ↑, Bilophila ↑, Collinsella ↑,
Coprococcus ↓, Escherichia ↑, Haemophilus ↓, Holdemania ↑,

Lactobacillus ↑, Oscillibacter ↑, Roseburia ↓, Veillonella ↓

NA

Metformin treated
T2DM (n = 15)

versus non treated T2DM (n = 56)
Family: bp Clostridiales ↑, Peptostreptococcaceae ↓

Genus: Bilophila ↑, Collinsella ↑, Escherichia ↓, Holdemania ↑,
Parabacteroides ↑, Roseburia ↑, Subdoligranulum ↑, Veillonella ↓

NA

[33] Chinese

T2DM patients
(n = 26)

versus normal subjects (n = 50)
α-diversity (Shannon index): ↓

Phylum: Firmicutes ↓
Class: Fusobacteriia ↑

Family: Enterobacteriaceae ↓, Erysipelotrichaceae ↑,
Erysipelotrichaceae ↑, Porphyromonadaceae ↑

Genus: Faecalibacterium ↓, Fusobacterium ↑, Lactobacillus ↑,
Ruminococcus ↓

NA

Metformin treated
T2DM
(n = 51)

versus non treated T2DM (n = 26)
α-diversity (Shannon index): –

Phylum: Actinobacteria ↓
Family: Enterobacteriaceae ↓, Spirochaetaceae ↑,

Turicibacteraceae ↑
Genus: Fusobacterium ↑, Turicibacter ↑

NA

[55] British

On metformin
T2DM

(visit 1 and 4,
n = 12)

versus off metformin T2DM (visit 2 and 3, n = 12)
Genus: SMB53 ↓, Adlercreutzia ↓, Eubacterium ↑

Serum bile acids ↓
Fecal bile acids ↑

GLP-1 ↑
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Table 1. Cont.

Ref * Population Study Design Gut Microbiota Biochemical
Alterations

[56] Spanish
Metformin treated

T2DM for 4 months
(n = 22)

versus before metformin treatment in T2DM (n = 22)
Phylum: Proteobacteria ↑, Firmicutes ↑

Genus: Actinetobacter ↑, Alkaliphilus ↓, Citrobacter ↑,
Cronobacter ↑, Dermcoccus ↑, Desulfurispirillum ↑, Dickeya ↑,

Edwardsiella ↑, Enterobacter ↑, Erwinia ↑, Escherichia ↑,
Holdemania ↓, Intestinibacter ↓, Klebsiella ↓, Methylobaciilus ↑,

Pantoea ↑, Pectobacterium ↑, Photorhabdus ↑, Providencia ↑,
Pseudomonas ↑, Rahnella ↑, Rheinheimera ↑, Salmonella ↑,

Subdoligranulum ↓, Xanthomonas ↑, Xenohabdus ↑, Yersinia ↑
Species: Akkermansia muciniphila ↑, Bifidobacterium

adolescentis ↑

Fecal propionate,
butyrate, lactate and

succinate ↑
Plasma bile acids ↑

[57] Colombian

T2DM patients
(n = 28)

versus normal subjects (n = 84)
Genus: Enterococcus casseliflavus ↓, Clostridiaceae 02d06 ↑,

Prevotella ↑
NA

Metformin treated
T2DM
(n = 14)

versus non treated T2DM (n = 14)
Genus: Bacnesiellaceae ↓, Butyrivibrio ↑, Clostridiaceae 02d06 ↓,

Megasphaera ↑, Oscillospira ↓, Prevotella ↑
NA

[58] Scandinavian
Metformin treated

T2DM
(n = 23)

versus non treated T2DM (n = 7)
Family: Enterobacteriaceae ↑,

Genus: Bacnesiellaceae ↓, Butyrivibrio ↑, Clostridiaceae 02d06 ↓,
Megasphaera ↑, Oscillospira ↓, Prevotella ↑

SCFA concentration –

[59] Chinese
Metformin treated
for 3 days in T2DM

(n = 22)

versus before metformin treatment in T2DM (n = 22)
Genus: Bacteroides ↓

Species: Bacteroides fragilis ↓, Bacteroides finegoldii ↓,
Bacteroides thetaiotaomicron ↓, Bacteroides uniformis ↓,

Bacteroides ovatus ↓, Bacteroides intestinalis ↓, Bacteroides
stercoris ↓, Bacteroides eggerthii ↓, Bacteroides fluxus ↓,

Bacteroides caccae ↓, Bacteroides dorei ↓

GUDCA, Taurour-
sodeoxycholic acid,

Conjugated
Secondary bile acids

↑
Total bile acids –

Metformin Treatment Effects in Healthy Subjects

[60] Caucasian

Metformin treated
for 7 days in

healthy subjects
(n = 18)

versus before metformin treatment in healthy subjects
(n = 18)

α-diversity (Shannon index): ↓
Class: Bacilli ↑, Enterobacteriales ↑, Episilonproteobacteria ↑,

Gammaproteobacteria ↑, Negativicutes ↓
Order: Clostridiaceae_1 ↓, Lactobacillales ↑,

Peptostreptococcaceae ↓, Selenomonadales ↓
Family: Asaccharospora ↓, Enterobacteriaceae ↑, Romboutsia ↓

Genus: Blautia ↑, Ruminiclostridium_6 ↓, Streptococcus ↑

NA

[61] Danish

Metformin treated
for 6 weeks in

healthy subjects
(n = 22)

versus before metformin treatment in healthy subjects
(n = 18)

Genus: Bilophila ↑, Caproiciproducens ↑,
Clostridium_sensu_stricto_1 ↓, Escherichia-Shigella ↑,

Intestinibacter ↓, Prevotella ↑, Terrisporobacter ↓
Species: Alistipes finegoldii ↑, Bilophila wadsworthia ↑,

Intestinibacter bartlettii ↓

NA

3. Potential Mechanisms of Metformin on the Gut Microbiome
3.1. Regulation of Glucose Homeostasis

Based on the knowledge regarding metformin’s gut-restricted glucose-lowering effects,
further investigations have been undertaken to understand the role of metformin in the
gut (Figure 2) [23]. In particular, the upper small intestine is responsible for triggering gut
peptide-dependent negative feedback signals, followed by nutrient intake [62,63]. One of
the signals is glucagon-like peptide-1 (GLP-1) release via sodium-glucose cotransporter-



Int. J. Mol. Sci. 2021, 22, 3566 7 of 26

1 (SGLT-1), which plays a dominant role in GLP-1 secretion via the transport of 3-O-
methyl glucose [64–68]. In this regard, metformin exhibited an increase in GLP-1 secretion
and SGLT1 expression in the upper small intestine, suggesting that metformin might
interact with the upper small intestinal SGLT-1 mediated glucose-sensing pathway [69–72].
According to this hypothesis, the germ-free mice, physiologically used for the “microbial
knockout” model, showed alterations in the glucose metabolism-related genes in the gut
when the microbiota was inoculated from the healthy mice [73]. In addition, prebiotics and
probiotics changed the gut microbiome in relation to changes in GLP-1 secretion [53,74,75].
Based on these relationships, Bauer et al. [76] demonstrated that metformin altered the
upper small intestinal microbiota, resulting in the upregulation of SGLT-1 expression.
Additionally, a high-fat diet in rodents reduced SGLT-1 expression, which was recovered
on metformin administration [76]. This effect might be due to the alteration in microbiota
in the upper small intestine, demonstrated by the transplantation of microbiota in the
metformin-treated high-fat diet (HFD)-fed rats to untreated HFD-fed rats. In particular,
the abundance of Lactobacillus exhibited significant recovery from dysbiosis, suggesting
that Lactobacillus is related to SGLT-1 modification after metformin administration. This
result was also observed in the metformin-treated HFD-fed mice with increased Sglt1
mRNA levels in the upper small intestine [59]. In addition, a previous study revealed that
upregulation of SGLT-1 mediated metabolites produced by Lactobacillus resulted in the
increased glucose uptake in Caco-2 cells, and this study supported that Lactobacillus might
be related to the glucose modulation of metformin [77]. In terms of modulating the glucose-
sensing pathway, Lactobacillus was shown to modulate the glucose-sensing machinery
related to other pathways, not only for SGLT-1. When Caco-2 cells were incubated with
the supernatant from the cultured Lactobacillus, there was an increase in the expression of
the GPR120 gene, known to affect the expression of GLP-1 [78,79]. Furthermore, L. gasseri,
one of the species in the genus Lactobacillus, was shown to affect the long-chain acyl-CoA
synthetase (ACSL)-dependent glucoregulatory fatty acid-sensing pathway [80]. Thus, this
evidence suggests that Lactobacillus plays a role in modulating glucose metabolism and
might be associated with the improvement of glucose parameters in rodents and humans
treated with probiotic supplements containing Lactobacillus [74,75].

In conclusion, metformin recovered dysbiosis in HFD-rats, and the genus Lactobacillus
was identified as key for modulating the glucose-sensing pathway [76]. However, the
mechanism by which metformin alters the abundance of Lactobacillus remains unknown.
Thus, future studies might be required to elucidate the mechanism by which metformin
affects the abundance of the gut microbiota. Furthermore, alteration of Lactobacillus by
metformin and T2DM was not consistent between the animal and human studies, as shown
in Tables 1 and 2. For these results, Sato et al. [28] suggested that in human studies, the
innate bacteria and bacteria originating from foods such as yogurt were not distinguished.
In addition, Bauer et al. [76] investigated the anti-diabetic effect of metformin on the upper
small intestine, comparing changes in the gut microbiome in the upper and distal intestines.
Hence, these confounding factors were also regulated to unveil the relationship between
metformin and the genus Lactobacillus.
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Figure 2. Impact of metformin on the gut microbiota. Various in vitro and in vivo studies demon-
strated that metformin might exhibit glucose-modulating effects by interacting with the gut micro-
biome. Each box presents the putative mechanism suggested in this review. For more details, refer to
the main text.

3.2. Effects on Bacteria Producing Short-Chain Fatty Acid

Short-chain fatty acids (SCFAs), including acetate, propionate, butyrate, and lactate,
are the major products of fermentation of undigestible food by the anaerobic bacteria. Based
on the increasing number of studies on the relationship between the gut microbiota and
metabolic disease, the effects of SCFAs produced by the gut microbiota on metabolic disease
have attracted interest [81]. Indeed, SCFAs exhibit beneficial effects on glucose metabolism
via multiple pathways, including activation of gut hormone receptors (e.g., Ffar2 and
Ffar3) [81–85]. In particular, SCFAs can bind to the G protein-coupled receptor (GPR)-41
(referred to as FFAR3) and GPR-43 (referred to as FFAR2), expressed on enteroendocrine L
cells, stimulating the release of GLP-1 and peptide YY that regulate glucose metabolism
and insulin secretion [86,87].

Some studies have suggested that gut dysbiosis in T2DM alters the SCFA concentration.
First, rodents have been used to reveal the relationship between metformin’s positive
effects and SCFAs [88–94], specifically in the phylum Bacteroidetes, abounding in the
intestine, which mainly produces acetate and propionate, imparting protective effects
against insulin resistance [81,89,95,96]. The abundance of Bacteroides, one of the genera in
the phylum Bacteroidetes, were observed to increase with metformin treatment in high-fat
diet mice (Table 2) [88–91]. Following an increase in the abundance of Bacteroides, the
concentration of SCFAs in feces of those treated with metformin was higher than that in
db/db mice [91]. In vivo experiments using rodents, in vitro gut microbiome culture [97],
and in silico modeling demonstrated similar results [98]. However, Brandt et al. [99]
showed a negligible difference in the abundance of Bacteroides, as shown in Table 2 [89,90].
These studies used the same animal model C57BL/6J mice, but the gut microbiome was
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altered owing to the difference in sex, similar to the previous studies that revealed sex-
dependent alterations in the gut microbiome [100,101]. Bacteroides were observed to be
more abundant in female mice than in male mice. In this respect, Lee et al. [88] suggested
that gut microbiota could be affected by hormone levels, subsequently influencing glucose
and lipid metabolism [102,103] and one of the studies demonstrated that progesterone
promotes the growth of oral Bacteroides species [104]. Although various studies have
demonstrated a positive relationship between the abundance of Bacteroides and therapeutic
effect of metformin, future studies should consider sexual effects to understand the effect
of the hormones on Bacteroides.

Butyricimonas spp., one of the genera in the phylum Bacteroidetes, produces butyrate,
a moiety known to increase insulin sensitivity [105] and regulate the gut hormones [106].
Butyricimonas spp. were increasingly abundant in metformin-treated mice [89,91]. Besides
this, the abundance of genus Allobaculum, a butyrate producer [107], and Parabacteroides,
producer of succinate, [108] were also increased in metformin-treated mice [89,90,109,110].
Abundant microbiota-producing SCFAs were also observed in the human fecal samples,
details regarding the same are given in Section 4.

In summary, an increase in the abundance of gut microbiota-producing SCFAs might
be considered as an anti-diabetic mechanism mediated by metformin treatment. Although
gut microbiota producing SCFAs (e.g., the genus Allobaculum, Bacteroides, and Parabac-
teroides) might impart beneficial metabolic homeostasis in the host, the mechanism by
which metformin affects the gut microbiota is unclear.

3.3. Enhancement of the Gut Permeability

Several studies have revealed that metabolic disorders are associated with increased
gut permeability, which further increases the intestinal LPS permeability and induces
chronic inflammation that causes insulin resistance [49,111–113]. The mucus layer plays an
important role in maintaining gut permeability and gastrointestinal functions by pro-
viding substrates for bacterial growth adhesion and protection [114–116]. From this
perspective, several studies suggest that colonization of several gut microbiota on the
mucus layer induces diabetes or metabolic disorders from a dysbiosis-mediated high-fat
diet [110,117,118].

Akkermansia muciniphila, belonging to the phylum Verrucomicrobia, colonizes the
mucus layer of the human gastrointestinal tract and exhibits 3%–5% more microbial com-
munity in the healthy subjects than in the diabetic subjects (patients or animals) ([116,119]
and references therein). A. muciniphila is an intestinal mucin-degrading bacterium that
simultaneously stimulates mucin production, playing a key role in regulating glucose
homeostasis in A. muciniphila [88,110,120]. Several studies have revealed that metformin
treatment increases the abundance of A. muciniphila in the gut [88–91,99,109,110,121–123].
According to the study of Shin et al. [110], A. muiciniphila administered to HFD-fed mice
showed improvement in glucose tolerance, consistent with metformin treatment in HFD-
fed mice. In addition, they revealed that the proportion of A. muciniphila increased in
metformin-treated HFD-mice and showed a positive correlation with the number of goblet
cells producing mucin. As previously reported, an increase in the mucus layer by goblet
cells might function as a barrier for LPS [49,111,112]. In this regard, Ahmadi et al. [92]
suggested that metformin suppresses Wnt signaling, a critical pathway to regulate iSCs
differentiation to goblet cells. In addition, these alterations were observed when the
fecal microbiome was transplanted from the metformin-treated mice to control mice, sug-
gesting that modulation of the gut microbiome by metformin is also associated with an
increase in the goblet cells [92]. In this context, the expression of MUC2 and MUC5 genes,
which contribute to the mucin levels, was increased in the metformin -treated HFD female
mice [88]. With an increase in the expression of MUC2, several studies demonstrated that
the tight-junction proteins, such as Zonulin-1 and occludin, were recovered after metformin
treatment [92,94,99,124], and the intestinal permeability was reduced [94].
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Table 2. Alteration of the gut microbiota-mediated metformin treatment in animal studies. ↑ (increase), ↓ (decrease), – (no
alteration), NA (not applicable), Ref * (reference number).

Ref * Animal Study Design Gut Microbiota Biochemical
Alterations

[76] Rats
Metformin

treatment in
high-fat diet

versus without metformin treatment in high fat diet
Family: Lactobacillaceae ↑

Genus: Achromobacter –, Acinetobacter –, Azorhiziphilus –,
Enterococcus –, Escherichia –, Klebsiella –, tobacillus ↑, Sarcina –,

Stenotrophomnas –

NA

[88] Mice

Metformin
treatment in
high-fat diet

versus without metformin treatment in high fat diet
α-diversity (Shannon): ↓

Phylum: Bacteroidetes ↑, Verrucomicrobia ↑
Family: Bacteroidaceae ↑, Clostridiales familyXIII ↑, Incertae sedis ↑,

Rikenellaceae ↑, Ruminococcaceae ↑, Verrucomicrobioaceae ↑
Species: Akkermansia muciniphila ↑, Clostridium cocleatum ↑

Inflammation
scores –

Metformin
treatment in normal

diet

versus without metformin treatment in normal diet
α-diversity (Shannon): –
Phylum: Bacteroidetes –

Family: Rikenellaceae ↑, Ruminococcaceae ↑, Verrucomicrobioaceae ↑
Genus: Alistipes spp. ↑, Akkermansia spp. ↑, Clostridium spp. ↑

NA

[89] Mice

Metformin
treatment for 16

weeks in high-fat
diet

versus without metformin treatment in high fat diet
α-diversity (observed OTU): –

Phylum: Bacteroidetes ↑, Firmicutes ↓, Verrucomicrobia ↑
Genus: Akkermansia ↑, Bacteroides ↑, Butyricimonas ↑,

Parabacteroides ↑

IL-6 mRNA ↓
IL-1β mRNA ↓

[90] Mice

Metformin
treatment for 24

weeks in high-fat
diet

versus without metformin treatment in high fat diet
α-diversity (Shannon): ↓

Phylum: Bacteroidetes ↑, Firmicutes ↓, Verrucomicrobia ↑
Family: Desulfovibrionaceae

Genus: Akkermansia ↑, Bacteroides ↑, Christensenella ↑,
Coprococcus↓, Dorea ↓, Lachnoclostridium ↓, Parabacteroides ↑,
Papillibacter ↓, Oscillospira ↓, Ruminococcus ↓, Desulfovibrio ↓,

Muribaculum ↓

Plasma threonine ↓,
methionine

sulfoxide ↓, Tetrade-
canoylcarnitine ↓,

Hexadecenoylcarni-
tine
↓

[91] Mice
Metformin

treatment in obese
mice (db/db mice)

versus without metformin treatment in obese mice
(db/db mice)

α-diversity (Shannon): ↑
Genus: Akkermansia ↑, Butyricimonas ↑, Clostridium ↓,

Coprococcus ↑, Dehalobacterium ↑, Dorea ↑, Lactobacillus ↑,
Oscillospira ↑, Parabacteroides ↓, Paraprevotella ↑, Prevotella ↓,

Proteus ↓, Ruminococcus ↑

Total SCFA
concentration

in feces ↑
Acetic acid ↑,
Butyric acid ↑
LPS levels ↓

[92] Mice
Metformin

treatment in
high-fat diet

versus without metformin treatment in high fat diet
α-diversity (Shannon, evenness): –

Phylum: Bacteroidetes ↑
Family: Coriobacteriaceae ↓, Ruminococcaceae ↑, S24_7 ↑,

Veilonellaceae ↓
Genus: Dorea ↓, Dehalobacterium ↓, Lactobacillus ↓, Lactococcus ↑,

Roseburia ↓, SMB53 ↓

IL-6 ↓, IL-1β ↓, TNF
α ↓

Taurine ↑, Butyrate
↑, Total Bile acids ↑,

Propionate ↑,
Leucine ↑,

Creatinine ↓,
Sarcosine ↓,

Glutamate ↓,
Pyruvate ↓,
Formate ↓

[93] Rats

Metformin
treatment in
high-fat diet

combined with a
low dose

streptozocin

versus without metformin treatment in high fat diet
α-diversity (Simpson, Shannon): ↑

Class: Coriobacteriia ↑
Family: S24_7 ↑

Total SCFAs ↑,
Butyric acid ↑,

Isovaleric acid ↑
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Table 2. Cont.

Ref * Animal Study Design Gut Microbiota Biochemical
Alterations

[94] Rats

Metformin
treatment in
high-fat diet

combined with a
low dose

streptozocin

versus without metformin treatment in high fat diet
α-diversity (Chao1): ↑

Family: S24_7 ↓
Genus: Anaerotruncus ↑, Escherichia-Shiegella ↓, Eubacterium

xylanophilum ↑, Lachnospiraceae NK4A136 ↑,
Lachnospiraceae-UCG_006 ↑, Roseburia ↑

Serum LPS ↓,
Serum CRP↓,

Serum TNF α ↓,
Serum IL-6 ↓
Propionate in

cecum ↑,
Butyrate in cecum ↑

[99] Mice
(female)

Metformin
treatment in fat,

fructose and
cholesterol rich diet

versus without metformin treatment in fructose and
cholesterol rich diet

Family: Alloprevotella ↓
Genus: Bacteroides –, Romboutsia ↓

Species: Akkermansia muciniphila –, Lactobacillus animalis ↓

TNF α ↓
Endotoxin ↓

[109] Mice

Metformin
treatment for 5

weeks in high-fat
diet

combined with a
low dose

streptozocin

versus without metformin treatment in high fat diet
α-diversity (observed OTU): –

Genus: Akkermansia ↑, Bacteroides spp. ↓
NA

[110] Mice
Metformin

treatment in
high-fat diet

versus without metformin treatment in high fat diet
Phylum: Verrucomicrobia ↑,

Genus: Akkermansia ↑, Alistipes ↑, Anaerotruncus ↓, Blautia ↓,
Lactococcus ↓, Lactonifactor ↓, Lawsonia ↓, Odoribacter ↓,

Parabacteroides ↓

IL-6 mRNA ↓
IL-1β mRNA ↓

[121] Mice
Metformin
treatment

for 30 days

versus without metformin treatment in healthy mice
α-diversity (Shannon): –

Class: Lachnopiraceae ↓, Porphyromonadaceae ↑,
Prevoltellaceae ↑, Rhodobacteraceae ↓, Rikenellaceae ↑,

Verrucomicrobiaceae ↑

NA

[123] Rats
Metformin
treatment

in high-fat diet

versus without metformin treatment in high fat diet
α-diversity (Shannon): ↓

Phylum: Bacteroidetes –, Firmicutes –, Proteobacteria ↑
Species: Akkermansia ↑, Allobaculum ↑, Bacteroides ↑, Blautia ↑,

Butyricoccus ↑, Clostridium ↓, Klebsiella ↑, Lactobacillus ↑,
Parasutterella ↑, Phascolarctobacterium ↑, Prevotella ↑,

Roseburia ↓

NA

[124] Rats

Metformin
treatment

in high-fat diet
combined with a

low dose
streptozocin

versus without metformin treatment in high fat diet
α-diversity (Chao1, Shannon): ↑

Phylum: Bacteroidetes ↑, Firmicutes ↓, Proteobacteria ↓
Order: Clostridiales ↑, Enterobacteriales ↓, Lactobacillales ↑

Genus: Akkermansia ↑, Desulfovibrio ↓, Lachnospiraceae NK4A136
↓, Lactobacillus ↑, Roseburia ↑

NA

[125] Mice

Metformin
treatment for 3

weeks in high-fat
diet

versus without metformin treatment in high fat diet
α-diversity (Shannon, evenness): –

Genus: Akkermansia ↑, Allobaculum ↓, Clostridium ↓,
Enterococcus ↓, Lactococcus ↓, Leuconostoc ↓, Oscillospira ↑,

Parabacteroides ↑, Prevotella ↑, Ruminococcus ↓, Streptococcus ↓

NA

[126] Mice
with

Metformin
treatment for 5

weeks in high-fat
diet

combined with a
low dose

streptozocin

versus without metformin treatment in high fat diet
α-diversity (Chao1): ↓

Phylum: Bacteroidetes ↓, Firmicutes ↑, Proteobacteria ↓
Genus: Lactobacillus ↑

NA
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Table 2. Cont.

Ref * Animal Study Design Gut Microbiota Biochemical
Alterations

[127] Mice
Metformin
treatment

in high-fat diet

versus without metformin treatment in high fat diet
α-diversity (Shannon, evenness): –

Species: Bacteriodetes fragilis ↓, Escherichia coli ↓

Serum endotoxin ↓
IL-6 ↓, TLR4 ↓

[128] Rats

Metformin
treatment

in high-fat diet
combined with a

low dose
streptozocin

versus without metformin treatment in high fat diet
α-diversity (Chao1): ↑

Phylum: Bacteroidetes ↑, Proteobacteria ↓, Verrucomicrobia ↓
Family: Alcaligenaceae ↑, Peptococcaceae ↑, Prevotellaceae ↑, S24_7 ↑

Genus: Prevotella ↑, Sutterella ↑, 02d06 ↑, rc4 ↑

IL-6 mRNA in
pancrease ↓, TNF α

mRNA in pancrease
↓, LPS ↓

[129] Rats

Metformin
treatment

in high-fat diet
combined with a

low dose
streptozocin

versus without metformin treatment in high fat diet
Genus: Bifidobacterium ↑, Lactobacillus ↑

Species: Clostridium perfringens ↓, Escherichia coli ↓

Plasma endotoxin ↓,
Total SCFAs in

cecum ↑, Lactic acid
in cecum ↑,

Acetic acid in
cecum ↑

[130] Rats

Metformin
treatment in

Otsuka Long-Evans
Tokushima Fatty

(OLETF) rats

versus without metformin treatment
Genus: Akkermansia ↑, Prevotella ↓, Roseburia ↑

Species: Escherichia coli ↓

Serum endotoxin ↓,
Fecal endotoxin ↓,

serum TNF α ↓,
serum IL-6 ↓

[131] Rats
Metformin

treatment in Zucker
diabetic fatty rats

versus without metformin treatment
α-diversity (Shannon): –

Phylum: Bacteroidetes –, Firmicutes –↑, Proteobacteria ↓,
Tenericutes –, Verrucomicrobia ↑

Genus: Lactobacillus ↑
Species: Lactobacillus intestinalis ↑, Lactobacillus johnsonii ↑

NA

Furthermore, A. muciniphila has been shown to strengthen the intestinal barrier by
increasing the expression of the tight junction proteins [132–134]. Based on this support-
ing evidence, metformin might be capable of reducing gut permeability via increased
expression of the mucin and tight-junction proteins. However, Shin et al. [110] revealed
that there was no substantial change in the gut permeability of LPS and suggested that
increased goblet cells may act as a barrier against LPS by producing immune-effector
molecules [135,136]. These differences among studies might be due to the duration of
treatment, dosage, or the amount of A. muciniphila in the gut. In addition, the in vitro
culture [132–134] using bacteria is complex; thus, it might be different from the in vivo
studies [88–91,99,109,110,121–123].

In conclusion, the increase in the abundance of A. muciniphila by metformin treatment
promotes mucin production, which might recover the increased gut permeability induced
by high-fat diets or metabolic disorders. However, until now, the direct effects of metformin
on cellular pathways to increase A. muciniphila remain unclear. Thus, further investigation
to identify the physiological pathway by which metformin increases A. muciniphila will
help understand the unidentified effects of metformin on the gut microbiota.

3.4. Modulation of the Immune Response

In the past decade, accumulating evidence from a variety of animal models or clin-
ical studies has shown that metabolic disorders, including T2DM, are associated with
chronic or subacute tissue inflammation in the adipose tissue and liver, causing insulin
resistance [137–141]. Several studies in T2DM, have reported that metformin modulates
inflammation via inflammatory modulating signaling pathways, such as STAT3 signal-
ing [142] or the NF-κB (nuclear factor kappa light chain enhancer of activated B cells)
signaling pathway [94,143,144]. Metformin directly suppresses the release of an inflam-
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matory cytokine such as interleukin 6 (IL-6), interleukin 1β (IL-1β), and TNF-α (tumor
necrosis factor– α) [92,127,128]. Thus, several studies have reported alterations in the
expression of IL-6 following metformin treatment, and some reports have even showed
that the alteration of microbiota due to metformin treatment was related to the modulation
of inflammation.

In detail, A. muciniphila, the abundance of which increased upon metformin treatment
as mentioned above, also exhibited anti-inflammatory effects in the gut, consistent with
previous studies that revealed the anti-inflammatory effect of A. muciniphila [110,145,146].
Shin et al. [110] demonstrated that decreased regulatory T cells, a regulator of immune
responses, in the stromal vascular fraction of the HFD-control mice was recovered by
A. muciniphila and metformin treatment. Furthermore, the IL-6 and IL-1β mRNA levels
were significantly decreased in A. muciniphila on metformin treatment [110]. In this con-
text, a negative correlation can be drawn between the abundance of A. muciniphila upon
metformin treatment and inflammatory markers, such as inflammatory cytokines or LPS
concentration [89,91,121,122]. These effects of A. muciniphila on inflammation have also
been demonstrated in human studies (Clinical Trials.gov Identifier: NCT02637115) with
fewer inflammation markers and improved insulin sensitivity [147].

Likewise, the abundance of Bacteroides and Butyricimonas also increased upon met-
formin treatment [89–91,97,98,109,123]. In particular, Lee et al. [89] revealed that IL-6 ex-
pression negatively correlated with the abundance of Bacteroides and Butyricimonas. Above
all, IL-6 possesses not only pro-inflammatory effects but also attenuates insulin signaling
in adipocytes [148–150]. Thus, decreased IL-6 expression on metformin treatment may
contribute to its anti-diabetic effect. In addition, Lee et al. [89] showed that the expression
of IL-1β, which is related to insulin resistance, decreased while the abundance of Bacteroides
and Butyricimonas was increased. The tendency to decrease the expression of IL-6, IL-1β
and TNF-α was also observed in other studies, but the types of bacteria that correlated
with the expression of inflammatory cytokines were different [92,94,128,130]. With the inhi-
bition of pro-inflammatory cytokines, modulation of the inflammatory signaling pathway
is a potential mechanism to attenuate inflammation. The TLR/NF-κB signaling pathway
also plays a role in intestinal inflammation [151]. Zhang et al. [91] demonstrated that the
metformin-treated group exhibited downregulation of the intestinal TLR/NF-κB signaling
activities. A similar result was observed wherein phosphorylation of IKKα/β upstream of
NF-κB signaling was decreased in metformin-treated mice [99]. In addition, abundance of
other gut bacteria increased in the metformin-treated group and were known to interact
with the host immune response. For example, Roseburia is more abundant in the metformin-
treated group and is known to inhibit the activity of NF-κB [92,94,124,130,152,153]. In
addition, the genus Lactobacillus and several Lactobacillus species have been shown to mod-
ulate inflammation, as reported in previous studies [154–157]. Thus, future studies should
be warranted to unveil how metformin prevents the host inflammatory response related to
the alteration of gut bacteria.

To conclude, various inflammatory markers were correlated with the alteration of
bacteria on metformin treatment. Furthermore, these effects have also been supported
by other studies that demonstrated the therapeutic effects of metformin on inflammatory
diseases (e.g., non-alcoholic fatty liver disease and polycystic ovary syndrome) through
interaction with the gut microbiota [99,158].

3.5. Actions on the Circulation of the Bile Acids

Bile acids are synthesized from cholesterol in the liver and secreted into the intestine,
following which cholic acid and chenodeoxycholic acid are converted to secondary bile
acids, such as deoxycholic acid and lithocholic acid, via enzymes and gut microbiota. For
several decades, bile acids have been shown to play a role in glucose, lipid, and energy
metabolism [159]. The modulation effects of bile acids on several metabolic pathways are
mainly via binding to several intracellular nuclear receptors, including farnesoid X receptor
(FXR), pregnane X receptor (PXR), and cell surface G protein-coupled receptors (GPCRs)
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([160] and references therein). In this regard, metformin showed an inhibitory effect on the
bile acid resorption, resulting in increased exposure of the gut to bile acids [92,161–163].
Napolitano et al. [55] demonstrated the effect of metformin on bile acid in a clinical trial
in T2DM patients. Extended exposure to bile acid might allow bile acids to bind to the
intestinal FXR. Thus, the glucose-modulating effect of metformin via bile acids seems to be
related to the FXR signaling. However, the glucose-modulating effect mediated by FXR
remains controversial. There is some evidence that inactivation of FXR results in better
glucose control and increased GLP-1 secretion [164–166]. For example, FXR-deficient mice
exhibit increased GLP-1 expression and improved glucose metabolism [164]. In contrast to
these results, some studies suggested that activation of FXR via FXR agonists improves
glucose tolerance and insulin sensitivity [167–171]. Thus, the glucose-modulating effect of
metformin via bile acid circulation has not yet been clarified. Recently, a study revealed
that metformin acts on the B. fragilis-glycoursodeoxycholic acid (GUDCA)-intestinal FXR
axis, improving hyperglycemia [59]. GUDCA, a conjugated bile acid, is deconjugated by
the gut microbiome and is demonstrated to be an FXR antagonist. Sun et al. [59] revealed
that metformin inhibited the deconjugation of GUDCA through the activity of the bile
salt hydrolase of B. fragilis, resulting in an increased GUDCA concentration. This result
is consistent with the correlation between GUDCA levels in stool and the presence of B.
fragilis. Additionally, the abundance of Lactobacillus sanfrancisensis, contained in the genus
Lactobacillus known to affect intestinal FXR signaling, was increased in the metformin-
treated HFD-fed mice [80].

Taken together, metformin has a role in modulating glucose homeostasis via the
regulation of the bile acid circulation. Conflict in the function of FXR in glucose homeostasis
might be due to different agonists and antagonists for FXR (e.g., intestinal FXR agonist
or whole-body FXR agonist) [160]. Furthermore, bile acid pools in mice and humans are
known to be quite different and might have a conflicting role in FXR. As a result, further
studies could be conducted by considering these confounding factors.

4. Relationships between Metformin and Gut Microbiome in Human Studies

The glucose-modulating effect of metformin on the gut microbiome has been evaluated
in various clinical trials. The first clinical study that observed the relationship between
metformin and the gut microbiome was conducted as an open-label, single-group study in
T2DM patients [55]. In this study, they demonstrated alterations in the composition of the
gut microbiome, glucose hormone, glucose-related parameters, and bile acid concentration
in feces. A similar tendency was observed in the present study, despite minor differences
in the gut microbiome composition (Table 1).

First, at the phylum level, the alterations in the abundance of Firmicutes and Bac-
teroidetes were remarkable on comparing visits 3 (non-treatment) and 4 (metformin treat-
ment). Although there were differences among subjects, the abundance of Firmicutes
was commonly increased, whereas that of Bacteroidetes was decreased after metformin
treatment. This result is in line with the previous finding that the Firmicutes/Bacteroidetes
ratios were considered a predictor for metabolic disease such as T2DM or obesity in several
human studies [30,172,173]. The Firmicutes/Bacteroidetes ratios were decreased in the
T2DM patients, and this phenomenon was recovered by metformin treatment in several
clinical studies [55,56]. In contrast to these results, some studies did not show an alteration
in the ratio of Firmicutes to Bacteroidetes [60]. Inconsistencies among studies could be
considered for the following reasons. The phyla Firmicutes and Bacteroidetes are the most
abundant bacteria in the human gut and include a large number of bacterial species. Thus,
a comparison of the Firmicutes and Bacteroidetes ratio is considered too simple to evaluate
metabolic disease or improvement. In addition, the difference might be attributed to the
compositional difference between the stool and biopsy specimens. Clinical studies in this
review used fecal samples to analyze the gut microbiome, but previous studies have shown
differences in the microbial compositions of biopsy and fecal samples [42,174]. In particular,
the mucosa-associated microbiota, to which the phylum Firmicutes is enriched, exhibited
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compositional differences in biopsies derived from colon and stool samples [175,176]. Thus,
Hollister et al. [174] suggested biopsy or surgical specimens for the evaluation of mucosa-
associated microbiota. For these reasons, further investigations require the validity of the
Firmicutes/Bacteroidetes ratio as a relevant marker for metabolic diseases. At the genus
level, it is noteworthy that Escherichia, including Escherichia/Shigella and Escherichia coli,
exhibited a significant increase in T2DM patients upon metformin treatment. An increase
in the abundance of Escherichia/Shigella upon metformin treatment was also observed in
the other clinical trials including healthy volunteers [29,31,56,60,61]. Forslund et al. [31]
suggested that metformin administration creates a competitive environment for Escherichia
coli using nitrate or other energy sources, resulting in changes in the abundance of the gut
microbiome [177]. Wu et al. [56] also demonstrated a change in the abundance of E. coli as
an indirect effect of metformin treatment in the in vitro gut simulation. Elbere et al. [60]
demonstrated that the abundance of Escherichia/Shigella before metformin treatment is
associated with side effects. In this study, the increased presence of Escherichia/Shigella
showed mild and severe side effects; however, this level was lower than the detection limit
in the no-side-effect group. Thus, increased abundance of Escherichia was considered as a
marker for the gastrointestinal side effects of metformin. Forslund et al. [31] suggested that
side effects derived from Escherichia are due to an increase in lipopolysaccharide synthesis
or sulfate metabolism potential, known to contribute to intestinal bloating [31,178–181].

In contrast, the abundance of Intestinibacter spp. decreased in T2DM patients treated
with metformin in several clinical studies [31,56,61]. Until now, the role of Intestinibacter is
still unclear, Forslund et al. [31] suggested that Intestinibacter showed resistance to oxidative
stress and degradation of fucose, indicating indirect mucus degradation through analysis
of SEED (http://pubseed.theseed.org/, accessed on 30 March 2021) [182] and gut microbial
modules (GMM) functional annotations.

In addition, A. muciniphila, which is positively correlated with metformin treatment,
showed a less clear link in human studies. Although Wu et al. [56] demonstrated an
increase in A. muciniphila in the in vitro pure cultures, there was no correlation between the
abundance of A. muciniphila and % hemoglobin A1c. Furthermore, clinical studies in healthy
volunteers showed no change in the abundance of A. muciniphila when they were treated
with metformin [60,61]. The reasons for these differences might be considered to be affected
by factors dependent on individuals, such as fibers [183], polyphenol availability [184,185],
immune response [186,187], and age [188,189]. Thus, it might be difficult to conclude
the role of A. muciniphila in humans as a major contributor to the anti-diabetic effect of
metformin, although improvements in the metabolic parameters were observed in the A.
muciniphila-treated human studies.

From the perspective of biochemical alterations upon metformin treatment, there
were some differences in the bile acid and SCFA concentrations in the feces. They found
that metformin exposure increased the excretion of bile acid in feces, consistent with the
inhibitory effect of metformin on the resorption of bile acids [161–163]. In addition, the
abundance of Firmicutes and Bacteroidetes correlated with the bile acid concentration and
gut peptide, suggesting that metformin indirectly regulates the secretion of gut hormones
via bile acid metabolism. Increased SCFA concentration in feces or an increase in the
abundance of SCFA-producing bacteria has been observed in human studies [31,56–58]. In
particular, Wu et al. [56] only demonstrated that the concentration of SCFA in fecal samples,
resulting in formation of butyrate and propionate, substantially increased on metformin
treatment. This result is consistent with animal studies that showed that metformin
increases SCFA-producing bacteria [88–91,109,110]. Thus, these clinical results support the
hypothesis that metformin exerts beneficial effects via bile acids and SCFAs.

The clinical studies discussed in this review exhibited differences among studies,
including observed taxonomic groups in metformin treatment and diversity in abundance.
As far as diversity is concerned, only a few subjects were engaged in the clinical study,
resulting in no statistical difference in the diversity of the gut microbiome. This issue has
been inconsistent in clinical trials (Table 1). Forslund et al. [31] conducted a meta-analysis

http://pubseed.theseed.org/
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of metagenomic data from Swedish, Danish, and Chinese individuals. In this study, gut
microbiome was less rich T2DM patients without metformin treatment; this richness
slightly recovered, almost as much as that in the control group, in T2DM patients on
metformin treatment [31]. The diversity was also shown to decrease in the Chinese T2DM
patients [79], which was consistent with the results from the study by Forslund et al. [31].

These differences might be derived from the dosage, study duration, disease state,
race differences, and sample size. Thus, to elucidate the anti-diabetic effect of metformin
via modulation of the gut microbiome, clinical studies in ethnic-controlled environments or
comparisons among ethnicities are required. Indeed, clinical studies in various populations
have been conducted at ClinicalTrial.gov (assessed on 30 March 2021) (Table 3). Most of
the research to date has revealed taxonomic groups in the gut at the genus level, and not
at the species level, due to technical limitations. To counter this limitation, recent studies
introduced a gut microbiome analysis method to make a possible profile at the species
level [190–192]. In the future, these methods to analyze the gut microbiome could help
clarify the relationship between metformin and the gut microbiome.

Table 3. Enrolled clinical studies to investigate the relationship between the gut microbiome and metformin in recruiting or
active state.

Clinical Trials.gov
Identifier Study Title Country Study Population Interventions

NCT04194515
Gut Microbiota and Bile
Acids in Type 2 Diabetes

Mellitus
Taiwan

Outpatients and
treatment-naïve male
patients with type 2

diabetes

Drug: YH1
Drug: metformin

NCT04287387

Response of Gut
Microbiota in Type 2

Diabetes to Hypoglycemic
Agents

China Type 2 diabetes patients
(18–65 years)

Drug: Glucophage 500 mg
Tablet

Drug: Acarbose Tablets
Drug: Sitagliptin tablet

Drug: Dapagliflozin Tablet
Drug: Pioglitazone Tablets
Drug: Glimepiride Tablets

NCT04639492

Postbiotic MBS and
Metformin

Combination in Patients
With T2DM

Taiwan Type 2 diabetes patients
(20–70 years)

Dietary Supplement: MBS
oral solution

Oral BIDAC, twice a day
before breakfast and dinner

times

NCT02960659

Title: Therapeutic Targets
in African-American
Youth With Type 2

Diabetes

United States African-American
(12–25 years)

Drug: Metformin and
Liraglutide

Drug: Metformin

NCT03558867

Personalized Medicine in
Pre-diabetes and Early

Type 2
Diabetes

Australia

Pre-diabetes or
newly-diagnosed with

type 2 diabetes
(in the last 6 months)

Drug: Metformin +
Healthy diet

Drug: Metformin +
Personalized diet

NCT03732690

The Interaction Between
Protein

Intake, Gut Microbiota
and Type 2 Diabetes in
Subjects With Different

Ethnic Backgrounds

France

T2DM patients: Caucasian
(n = 80), Caribbean (n = 40)
stable dose of metformin

and
do not use insulin or

proton-pump inhibitors.

Other: Diet HP
Other: Diet LP

NCT04089280
Probiotics in Metformin
Intolerant Patients With

Type 2 Diabetes
Poland

T2DM patients (18–75
years) with metformin
treatment in the last 3
months (<1500 mg/d)

Dietary Supplement:
Sanprobi

Barrier-multispecies
probiotic

Other: Placebo Comparator

ClinicalTrial.gov
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Table 3. Cont.

Clinical Trials.gov
Identifier Study Title Country Study Population Interventions

NCT03718715

The Interaction Between
Metformin and

Microbiota—The MEMO
Study. (MEMO)

Sweden

Newly diagnosed patients
with type 2 diabetes

without previous
treatment with metformin

(40–80 years).

Drug: Metformin

NCT03489317
Gut Microbiomes in

Patients
With Metabolic Syndrome

Hongkong

Residents in Hongkong
(no metabolic syndrome,

metabolic
syndrome-partial,

metabolic syndrome-full)

Drug: Metformin
Behavioral: lifestyle

modification
Drug: Simvastatin 10 mg
Drug: Amlodipine 5 mg

NCT02609815

Initial Combination of
Gemigliptin and

Metformin on
Microbiota Change

Republic of
Korea

Type 2 patients with drug
naive for 6 weeks

Drug:
gemigliptin/metformin

Drug:
glimepiride/metformin

NCT04341571

Effect of Probiotics Versus
Metformin on Glycemic

Control, Insulin
Sensitivity and Insulin

Secretion in Prediabetes.

Mexico Pre-diabetes
Dietary Supplement:

Probiotics
Drug: Metformin

NCT04209075

Prebiotics and Metformin
Improve Gut and

Hormones in Type 2
Diabetes in Youth
(MIGHTY-fiber)

United States Type 2 patients (10–25
years)

Dietary Supplement:
Biomebliss Drug:

Metformin
Dietary Supplement:

Placebo

5. Perspective and Conclusions

Metformin, the first-line medicine for T2DM, has been investigated to elucidate its
antidiabetic effects. In the recent decade, with progress in metagenomic technology, the
role of the gut microbiome in host metabolism has been highlighted. Several studies
have demonstrated that some medicines alter the composition of the gut microbiome,
and this phenomenon might be considered as one of the mechanisms for treatment. In
this regard, some scientists have also investigated the relationship between metformin
and the gut microbiome. In this review, we focused on the current knowledge about the
glucose-modulating effect of metformin on the gut microbiome. Taken together, metformin
might affect the intestinal microbiome via the modulation of inflammation, gut perme-
ability, glucose homeostasis, and abundance of SCFA-producing bacteria. However, it
is still not clear how metformin modulates glucose homeostasis via the gut microbiota.
Hence, elucidation of the mechanism to treat T2DM with intestinal microbiota remains a
challenge for future research. In addition, without metformin, the composition of intestinal
microbiota is affected by several factors, including genetics, sex, foods, lifestyle, and other
medications [193–195]. Thus, to fully elucidate the mechanism, these confounding factors
must be taken into account to determine the sole effects of metformin on the gut microbiota.
However, control of the interventions is quite difficult in clinical studies. Furthermore, fecal
microbiome transplantation could be recommended to validate the mechanism of action via
gut microbiome-based Koch’s postulates [89,196]. However, it is difficult to conduct fecal
microbiome transplantation to validate the mechanism of action via the gut microbiome in
clinical settings. In addition, most of the studies dealt with within this review conducted
functional annotation, categorizing microbial functions at the community level; however,
it is difficult to suggest a mechanistic explanation for how these functions arise [197–199].
In this context, computational methods have been used as supportive tools to help eluci-
date the mechanism of action, and several experiments could be supportive to validate
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the hypothesis. Pryor et al. [98] suggested a notable approach to identify drug-nutrient
interactions, combined with the in silico microbial modeling. Additionally, the results from
the suggested methodology are consistent with those of other human studies [31,56,98].
In addition, Rosario et al. [122] showed the contribution of four bacteria (Escherichia spp.,
Akkermansia muciniphila, Intestinibacter bartlettii, and Subdoligranulum variable) in the physi-
ology of metformin-treated T2DM patients through genome-scale models, and this study
was in line with the previous observations [200,201]. Recent studies have demonstrated
the drug-microbiome-host relationship via various in silico studies [122,202,203]. Hence,
combined with computational methods and experimental methods, it might be helpful to
understand the mechanism of action of metformin on the gut microbiome.

Understanding how metformin modulates glucose metabolism through gut microbiota
may be helpful for patients with T2DM who fail upon metformin treatment, and it is
possible to inform dietary guidelines to maximize the therapeutic effects, such as using
probiotic products and reducing the gastrointestinal side effects [38,98,204].
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