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Abstract: Hemoglobin (Hb) is the most abundant protein in whole blood. This fact implies that
the oxygen binding and releasing function of Hb is the most vital for sustaining life. All Hb is
compartmentalized in red blood cells (RBCs) with corpuscular Hb concentration of about 35 g/dL,
covered with a thin biomembrane. In spite of its abundance, Hb sometimes shows toxicity once
it is leaked from RBCs. The shielding effect of the RBC membrane is physiologically important.
Based on this structural importance, we have studied artificial red cells (Hb vesicles, HbV) as artificial
oxygen carriers, which encapsulate a purified and concentrated Hb solution in phospholipid vesicles,
mimicking the cellular structure of RBCs. Our academic research consortium has clarified the safety
and efficacy of this HbV, aiming at clinical applications. Because of some superior characteristics to
those of RBCs, HbV has the potential for use not only as a transfusion alternative but also for oxygen
and carbon monoxide therapeutics, perfusate for transplant organs, and photosensitizer. In this
review paper, such potential applications are summarized.

Keywords: blood substitutes; artificial red cells; oxygen carriers; hemoglobin; liposomes; hemoglobin
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1. Introduction

The established blood donation and transfusion system has contributed to human health
and welfare. Nevertheless, the system could be greatly improved; (i) if the pathogen contamination
could be eliminated completely; (ii) if the blood type antigen on the red blood cell (RBCs) surface could
be removed completely and the resulting RBCs could be supplied as universal blood; (iii) if the donated
blood could be stored for years at ambient temperature; and (iv) if the donated blood could be useful
whenever and wherever it is required without a cross-matching test and without fear of infection;
(v) It is also important to maintain a sufficient number of donors to support the system. To address such
challenges and to support the present blood donation and transfusion system, hemoglobin (Hb)-based
oxygen carriers (HBOCs) of various kinds have been developed as a transfusion alternative [1].
Several HBOCs such as intramolecular cross-linked, polymerized, and polymer conjugated Hbs have
been tested in clinical phase studies but the cell-free structures of these chemically modified HBOCs
retained some side effects of molecular Hbs, such as renal toxicity, vasoconstriction, hypertension,
higher incidence of infarction, and death [2]. These results imply the importance of mimicking
the cellular structure of RBCs to shield the toxic effects of molecular Hbs. Ultrathin membranes of
polymer and cross linked protein membrane artificial red blood cells containing Hb and enzymes were
prepared in 1964 [3]. Studies of encapsulation of functional molecules with phospholipids started
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after the discovery of liposomes by Bangham in the 1960s [4]. Djordjevici and Miller in 1977 first
reported liposome encapsulated Hb (LEH) [5]. Many research groups have attempted encapsulation
of Hb using liposomes, improving the biocompatibility, stability during storage, and oxygen-carrying
capacity (Figure 1). Because of the difficulty in resolving the issues above and because of the need for
large-scale production, most groups terminated the development. However, our academic consortium
has continued the research and development of hemoglobin vesicles (HbV) since late Emeritus Prof.
Tsuchida started in the 1980s. Considerable efforts have been undertaken to attain the present
formulation of HbV [6].
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virus-free by specific nucleic acid amplification tests. The processes of Hb purification from outdated 
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or any colloidal solution such as 5% albumin solution for clinical use. The percentage of the occupied 
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55%). Therefore, the suspension is a concentrated particle dispersion, similar to RBCs in blood. 
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Figure 1. Preparation of hemoglobin vesicles (HbV) from outdated NAT (nucleic-acid amplification
testing)-inspected red blood cells (RBC) provided by the Japanese Red Cross. The HbCO
purification procedure includes pasteurization and nanofiltration for utmost safety from infection.
Liposome encapsulation shields the toxic effects of molecular hemoglobin (Hbs).

2. Preparation, Characteristics and Biocompatibility of HbV

In Japan, the research and development of HBOCs began in the 1980s with the concept of
recycling of unused donated blood. The former concept of using Hb from outdated RBCs was
based on the preservation of other glycolytic and metHb reducing enzymes present in RBCs.
However, our present concept is to eliminate such unstable enzymes during virus inactivation
and removal processes for the utmost safety from infection, even though the donated blood was
confirmed as virus-free by specific nucleic acid amplification tests. The processes of Hb purification
from outdated donated human blood includes procedures of pasteurization (60 ◦C, 12 h) and
nanofiltration, respectively, for virus inactivation and removal. The concentrated and purified carbonyl
hemoglobin (HbCO) solution (35–40 g/dL) is encapsulated with liposomes comprising four lipids:
1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC), cholesterol, 1,5-O-dihexadecyl-L-glutamate,
and 1,2-distearoyl-sn-glycero-3-phosphatidylethanolamine-N-PEG5000. These lipids are selected in
terms of stability, encapsulation efficiency, and biocompatibility [6]. The oxygen affinity (P50) of HbV is
adjusted by co-encapsulation of an allosteric effector, pyridoxal 5′-phosphate, to 9–30 Torr, depending
on the usage. The particle size is adjusted to 250–280 nm by extrusion or kneading. Small-angle X-ray
scattering (SAXS) clarified the spherical unilamellar structure (one bilayer membrane) encapsulating
a concentrated Hb solution [7]. HbCO can be converted to HbO2 by illuminating visible light
under an aerobic atmosphere. Finally, the deoxygenated HbV is purged with nitrogen in vials for
long-term storage. In the case of using HbV as a CO carrier, carbonyl state HbV without the processes
of decarbonylation and deoxygenation is purged with CO gas. The Hb concentration is adjusted
to 10 g/dL, which is slightly lower than that of human blood (12–15 g/dL), but much higher than
the transfusion trigger, known as 6–7 g/dL in critical patient blood. Usually, HbV is suspended
in a physiological saline solution (0.9% NaCl), but it can be suspended in a phosphate buffered
saline or any colloidal solution such as 5% albumin solution for clinical use. The percentage of the
occupied volume of the HbV particles corresponds to about 40%–45% (c.f., hematocrit of blood is about
40%–55%). Therefore, the suspension is a concentrated particle dispersion, similar to RBCs in blood.
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Encapsulation can shield the toxic effects of molecular Hbs [8–10]. However, the biocompatibility
of the materials for encapsulation, e.g., the lipid membrane, must be considered. The present lipid
formulation of HbV shows no significant effects on the complement system, immunological response,
blood coagulation, platelet function, kallikrein–kinin, hematopoiesis, etc. [11–16]. The HbV particles
are finally captured by the reticuloendothelium system (RES). Therefore, transient splenohepatomegaly
is observed depending on the dosage of HbV [17,18]. During storage, HbV is stable for over two years
at room temperature. During blood circulation, HbV does not rupture. The particles maintain their
integrity [19]. After HbV is degraded in RES, the decomposed materials are excreted in urine and feces.

3. Potential Usage of HbV as a Transfusion Alternative

One important characteristic of HbV is that the suspension of HbV shows no colloid osmotic
pressure [20] (Figure 2), similarly to RBC when suspended in saline solution. Plasma proteins in blood,
mainly albumin, contribute to the colloid osmotic pressure, about 20–25 Torr, which is important to
maintain equilibrium of water contents between blood and interstitial tissue. In the case of massive
blood loss, restoration not only of the oxygen-carrying capacity, but also of blood volume is important.
Blood volume is first restored by injection of the crystalloid solution, followed by injection of a plasma
substitutes such as albumin, hydroxyethyl starch, modified fluid gelatin, or dextran. When the blood
Hb level declines below a transfusion trigger, 6–7 g/dL, an RBC concentrate is transfused to restore
the oxygen-carrying capacity. This is the basic protocol of RBC transfusion at massive hemorrhage,
minimizing the usage of allogeneic transfusion. In the case of HbV, it is possible to follow the protocol
and to inject HbV in place of RBC [21], or inject HbV from the beginning of resuscitation. HbV can
be mixed with a plasma expander before injection to provide a physiologically appropriate colloid
osmotic pressure to the HbV suspension. This is a quite important point because a chemically modified
Hb solution shows colloid osmotic pressure depending on its own concentration. When the Hb
concentration of a chemically modified Hb solution is approximately 10 g/dL, the colloid osmotic
pressure greatly exceeds the physiological pressure. However, both RBC and HbV suspended in saline
possess no colloid osmotic pressure.
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Figure 2. Colloid osmotic pressure (COP) of solutions of various Hb-based oxygen carriers. Chemically
modified Hb solutions show concentration-dependent COP because of the colligative property of
homogeneous macromolecular solution, and COP exceeds physiological values (20–25 Torr) at higher
Hb concentrations. However, HbV as well as RBC shows no COP. When HbV is suspended in human
serum albumin (HSA), it shows physiological COP values, cited partly from [19], independent of the
Hb concentration.

Table 1 presents results of animal experiments of HbV to confirm the potential usage of HbV as
a transfusion alternative. In most cases, HbV were suspended in 5% HSA or recombinant rHSA in
advance to adjust colloid osmotic pressure. Results confirmed that over 90% exchange transfusion
with HbV suspended in HSA sustained the hemodynamics and blood gas parameters, indicating that
HbV surely carries oxygen even at a low hematocrit [22]. Microhemodynamics and tissue oxygenation



J. Funct. Biomater. 2017, 8, 10 4 of 11

were observed after hemodilution with HbV [23,24]. Isovolemic hemodilution in rats was achieved
by repeating 1 mL blood withdrawal from an artery and 1 mL HbV intravenous injection [15,22].
This procedure of hemodilution might correspond to repeated injection of HbV at repeated hemorrhage
without induction of a shock state.

In the case of hemorrhagic shocked animals, HbV suspended in HSA showed a sufficient
resuscitative effect [25–31]. Repeated resuscitation at a repeated shock state of massive hemorrhage was
tested with rabbits [26,27]. The beagle dogs survived for over 1 year and the rats for over 14 days after
resuscitation from hemorrhagic shock without major side effects except the transient splenomegaly,
with an increase in plasma cholesterol levels attributable to the RES trap of HbV and succeeding
degradation [28,31]. Recovery of hematocrit was confirmed. It is noteworthy that one-year-stored HbV
showed effective resuscitation without showing acute lung injury [29]. Continuous injection of HbV
into rats with hemorrhagic shock and uncontrolled hemorrhage showed survival even after hematocrit
decreased to less than 2% [32].

Cardiac surgery using extracorporeal membrane oxygenator (ECMO) requires a fluid to prime
the circuit, resulting in the dilution of blood. The effect of hemodilution to the neurological function
of the newborn patient is significant because the decreased oxygen supply during surgery affects
the brain function. Damage appears after the newborns are grown up. It was confirmed using a rat
model that ECMO primed with HbV suspended in HSA showed sustained oxygenation and prevented
neurocognitive decline [33].

Table 1. Usage of HbV as a transfusion alternative (substitute for RBC transfusion).

Application Animal Species Brief Description of Main Results References

Isovolemic
hemodilution

(repeated injection
at hemorrhage)

Wistar rats 90% blood exchange with HbV suspended in
HSA showed stable hemodynamics [22]

Syrian golden hamsters
80% blood exchange with HbV suspended in
HSA showed stable hemodynamics and
microvascular responses

[23,24]

Wistar rats 40% blood exchange with HbV suspended in
rHSA, and 14 days observation [15]

Wistar rats
60% blood exchange with a plasma expander
(high Mw HES, low Mw HES, MFG, or rHSA)
and subsequent injection of HbV (20 mL/kg)

[21]

Hemorrhagic shock

Wistar rats 50% blood withdrawal and resuscitation,
6 h observation [25]

Japanese
white rabbits

Twice of 40% blood withdrawal
and resuscitation [26]

New Zealand
white rabbits

Withdrawing blood to a mean arterial blood
pressure of 30–35 mm Hg, and resuscitation
with HbV/rHSA

[27]

Wistar rats 50% blood withdrawal and resuscitation,
14 days observation [28]

Lewis rats

40% blood withdrawal and resuscitation,
6 h observation showed absence of acute
lung injury. One-year-stored HbV was used
for resuscitation

[29]

Beagle dogs 50% blood withdrawal and resuscitation.
4 h observation of hemodynamics [30]

Beagle dogs 40% blood withdrawal and resuscitation,
one year safety observation [31]

Uncontrolled
hemorrhage Wistar rats

Animals were heparinized and bled
continuously from caudal artery. Injection of
HbV suspended in HSA extended survival

[32]

Priming of ECMO Wistar rats Use of HbV for cardiopulmonary bypass
priming prevented neurocognitive decline [33]
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4. Potential Usage of HbV as an Oxygen Carrier for Ischemic Disease and Ex Vivo Perfusion,
a Photosensitizer, etc.

Microscopic view of peripheral blood flow demonstrates the heterogeneous distribution of RBCs in
blood vessels (Figure 3). Because of the centralization of RBCs in blood vessels, especially in fast blood
flow in arterioles, an RBC-free layer (plasma layer) is formed near the vessel wall. At a bifurcation of
arterioles where blood flow rates of two daughter branches are extremely different, plasma skimming
is induced, resulting in different distribution of RBCs to the two branches. The lowered RBC
distribution is expected to be significant at the entrance to the pathological tissues of circulation
disorder such as infarction. In normal capillaries, hematocrit is lower than the systemic hematocrit
because of the Fahraeus effect. As a result, the distance between the aligned RBCs in the narrow
capillaries lengthens. In such situations, injection of HbV is expected to improve tissue oxygenation
because of the following reasons.
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Figure 3. Schematic representation of blood flow in an arteriole and a capillary. (A) An arteriole
with a bifurcation shows different blood distributions to daughter branches when the branches show
different blood flow rates, causing plasma skimming. HbV distributes homogeneously in plasma
phase and contributes to increased Hb content in the daughter branch of lower blood flow; (B) RBCs
(8 µm) flow through a capillary (about 5 µm diameter). Injected HbV are expected to be distributed
homogeneously in the plasma phase and to increase the total contents of Hb in the capillary.

One important benefit of HbV is the smaller particle size (230–280 nm) than RBC (8 µm). HbV is
dispersed homogeneously in the plasma phase after administration into blood circulation. As a result,
the HbV concentration after plasma skimming and in normal capillaries becomes higher in theory than
the systemic HbV concentration. In a condition where plasma flow is retained in spite of suppressed
RBC supply, the presence of HbV in plasma can sustain the oxygen supply to peripheral tissues.
This concept supports the efficacy of HbV as oxygen therapeutics for oxygenation of ischemic brain
tissues [34], skin flap ischemic tissues [35,36], pre-eclampsia [37], etc. (Table 2). Oxygen affinity of HbV
can be adjusted by co-encapsulation of an allosteric effector such as pyridoxal-5′ phosphate (PLP).
Without PLP, the oxygen affinity (P50) of HbV becomes 9 Torr. This left-shifted HbV is advantageous
to target oxygen to ischemic tissues, whereas, in normal tissues, HbV does not release oxygen. This is
a concept of targeted oxygen delivery [35,36]. A high O2-binding affinity (lower P50) might also be
effective for improving the O2 saturation of Hb in pulmonary capillaries when exposed to a hypoxic
atmosphere or with an impaired lung function. The viscosity of HbV suspended in HSA is about 3 cP.
Some plasma substitutes cause flocculation of HbV and hyperviscosity. Hyperviscosity, however,
would not necessarily be deleterious in the body and might even be beneficial for peripheral perfusion
in some cases such as skin flap ischemia for improved functional capillary density and higher shear
stress on the vascular wall that would induce vasorelaxation.

Systemic administration of HbV can elevate tumor tissue oxygen tension. The combination of
irradiation therapy reduces the tumor size [38]. Tumor capillaries are irregularly shaped and narrow in
comparison to normal capillaries. Therefore, hematocrit is much lower than normal. Small-sized HbV
dispersed in the plasma phase can permeate through such irregular capillaries. Because of the junction
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gap separating the endothelial cells, the vascular wall is leaky. Small particles such as HbV permeate
to the tumor cells in a phenomenon called the enhanced permeability and retention (EPR) effect.

Positron emission computerized tomography using 15O2 is an effective tool to measure the
cerebral metabolic rate of oxygen (CMRO2) for diagnosis of brain infarction. Inhalation of 15O2 gas
presents substantial problems such as difficulties in handling radioactive gas, exposing the patient and
hospital staff to radioactivity. Injectable systems of 15O2-carrier are expected to solve such problems.
Injection of 15O2-HbV has been proven to be effective for CMRO2 to detect rat brain infarction [39,40].

Organ preservation should be improved by supporting oxygen metabolism by perfusion with
a fluid such as oxygen-carrying blood. It has been confirmed that a dissected and immersed mouse
intestine perfused arterially with HbV suspended in HSA at 37 ◦C maintained peristaltic motility and
tissue intactness for over 2 h, and enabled ex vivo observation of intestinal function. This was the first
attempt to test HbV as an organ perfusate [41]. Araki et al. tested perfusion of amputated rat hind legs
with HbV suspended with ET-Kyoto fluid for 6 h and successive replantation of the leg. The rat used
the replanted leg to walk at 3 months [42]. These results strongly support the potential for use of HbV
as an oxygen-carrying organ preservation fluid for other vital organs, and for oxygen-carrying cell
culturing media to maintain aerobic metabolism of the cells [43].

Table 2. Usage of HbV as an oxygen carrier for oxygen therapeutics and diagnosis, and as
a photosensitizer and an ex vivo perfusate.

Application Animal Species Brief Description of Main Results References

Brain ischemia Wistar rats

HbV injection to a middle cerebral artery
occlusion/reperfusion model reduced cerebral
infarct volume. HbV injection to an arachidonic
acid-induced stroke model improved motor
dysfunction score and suppressed edema

[34]

Skin flap ischemia

Syrian golden hamsters
Dorsal skin flap oxygenation was improved by
systemic application of a highly viscous
left-shifted HbV (P50 = 9 Torr)

[35]

DDY mice
Dorsal skin flap oxygenation and wound healing
was improved by systemic application of
left-shifted HbV (P50 = 9 Torr)

[36]

Pre-eclampsia Wistar rats

L-NAME was infused intravenously for 7
consecutive days between gestational day 14
(G14) and G21 to prepare a pre-eclampsia model
with narrow placental spinal artery remodeling
and impaired fetal growth. Co-injection of HbV
improved fetal oxygenation and growth

[37]

Tumor C57BL/6 mice

Lewis lung carcinoma in the left hind leg of mice.
HbV administration increased tumor tissue
oxygen tension and, following 20-Gy irradiation,
delayed tumor growth

[38]

15O-PET Sprague Dawley rats

15O2-HbV was injected to measure the cerebral
metabolic rate of oxygen for diagnosis of
brain infarction

[39,40]

Organ perfusion

BALB/c mice Ex vivo arterial perfusion of intestine with
HbV/HSA for 2 h maintained peristaltic motion [41]

Wistar rats
Amputated hind limb was perfused with
HbV/ET-kyoto for 6 h and re-planted. The rat
used the replanted leg after 3 months

[42]

Cell culturing Rat hepatocyte Culturing rat hepatocytes with HbV in 2D
flat-plate perfusion bioreactor [43]

Photo-sensitizer Chicken wattle as a model
of port-wine stain

Injection of HbV increases the capillary content of
total Hb as a target of dye laser treatment.
It would produce more heat and
photocoagulation by the treatment

[44]

Apnea Sprague Dawley rats Injection of HbV prolonged the time to circulatory
collapse during apnea in anesthesia [45]
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Rikihisa et al. reported utilization of HbV as a photosensitizer, a target of laser treatment of
port-wine stain (capillary malformation) [44], because injection of HbV can increase capillary Hb levels
effectively as depicted in Figure 3B, producing more heat and photocoagulation.

The situation ‘cannot ventilate, cannot intubate’ during the induction of anesthesia is one of
the most serious complications. It was recently clarified that HbV injection can prolong the time to
circulatory collapse during apnea [45].

5. Potential Usage of HbV as a Carbon Monoxide Carrier

Motterlini et al. synthesized a series of CO-releasing metal complexes and discovered some
therapeutic benefits such as a cytoprotective effect in animal models of hemorrhagic shock, septic shock,
and ischemia reperfusion injury [46]. CO-bound RBC has been tested for ischemia reperfusion injury at
hemorrhagic shocked animals [47]. CO-HbV was first tested for resuscitation from hemorrhagic shock
in a rat model [48] (Table 3). Shock was induced by withdrawing 50% of circulating blood volume.
Isovolemic CO-HbV suspended in HSA was injected after 15 min. It is particularly interesting
that the blood HbCO level decreased in 3 h, and that the dissociated CO appeared in the
exhaled air. Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were
reduced as compared to O2-HbV injection, indicating that CO showed cytoprotective effects against
reperfusion injury. It is well-known that CO binds to Hb 200 times more strongly than O2 does.
In blood circulation, however, O2 is more abundant than CO, and CO tends to be dissociated from
Hb and exhaled through the lung with time. No toxicological symptom was observed during the
experiment in spite of the large dosage. Otagiri and Maruyama et al. applied CO-HbV for models of
bleomycin-induced pulmonary fibrosis [49], dextran sulfate sodium-induced colitis [50], and acute
pancreatitis [51]. Liberated CO showed significant anti-inflammatory and anti-oxidative properties,
probably attributable to the interaction of CO with hemeproteins related to the production of reactive
oxygen and nitrogen species in the body in pathological conditions.

From the viewpoint of production, CO-bound HbV is more easily produced for storage than
deoxygenated HbV because the processes of decarbonylation and deoxygenation can be omitted. After
releasing CO in blood circulation, HbV reversibly binds O2, and becomes an oxygen carrier. CO-HbV is
expected to provide a unique opportunity for the clinical treatment of various pathological conditions.

Table 3. Usage of HbV as a CO carrier for anti-inflammatory and anti-oxidative effect.

Application Animal Species Brief Description of Main Results Reference

Hemorrhagic shock Wistar rats
Hemorrhagic shocked rats were resuscitated with
CO-HbV suspended in HSA. AST and ALT levels
were reduced as compared to O2-HbV injection

[48]

Pulmonary fibrosis Sea-ICR mice

Bleomycin-induced pulmonary fibrosis mice that
received CO-HbV showed suppression of
progression of fibrosis and improved
respiratory function

[49]

Colitis Sea-ICR mice

Dextran sulfate sodium-induced colitis model
mice receiving CO-HbV improved colitis
symptoms, colonic histopathological changes and
the duration of survival compared to both saline
and O2-HbV administration

[50]

Pancreatitis BALB/cN mice

Pancreatitis model mice were prepared with
a choline-deficient ethionine-supplemented diet.
CO-HbV inhibited the production of systemic
proinflammatory cytokines, neutrophil
infiltration, and oxidative injuries

[51]

6. Conclusions

In addition to the efficacy evaluations summarized in this paper, we have reported numerous
safety evaluations ([52], and references therein), all of which assure the biocompatibility of HbV
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even at a high dosage. The research of HbV was initiated aiming at a transfusion alternative.
However, HbV now has the potential to be used for clinical situations other than transfusion.
The estimated marketability in the future is expected to be greater than that anticipated earlier.
With strong funding support from Japan Agency for Medical Research and Development, we are
struggling to start clinical studies aimed at the eventual realization of HbV for clinical usage.
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