
1Scientific RepoRts | 5:11415 | DOi: 10.1038/srep11415

www.nature.com/scientificreports

Quantitative assessment of single-
cell whole genome amplification 
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Single-cell genomic analysis has grown rapidly in recent years and finds widespread applications 
in various fields of biology, including cancer biology, development, immunology, pre-implantation 
genetic diagnosis, and neurobiology. To date, the amplification bias, amplification uniformity and 
reproducibility of the three major single cell whole genome amplification methods (GenomePlex 
WGA4, MDA and MALBAC) have not been systematically investigated using mammalian cells. In this 
study, we amplified genomic DNA from individual hippocampal neurons using three single-cell DNA 
amplification methods, and sequenced them at shallow depth. We then systematically evaluated the 
GC-bias, reproducibility, and copy number variations among individual neurons. Our results showed 
that single-cell genome sequencing results obtained from the MALBAC and WGA4 methods are 
highly reproducible and have a high success rate. The MALBAC displays significant biases towards 
high GC content. We then attempted to correct the GC bias issue by developing a bioinformatics 
pipeline, which allows us to call CNVs in single cell sequencing data, and chromosome level and sub-
chromosomal level CNVs among individual neurons can be detected. We also proposed a metric to 
determine the CNV detection limits. Overall, MALBAC and WGA4 have better performance than MDA 
in detecting CNVs.

Interest in single-cell whole genome analysis is growing rapidly, especially for profiling rare or heter-
ogeneous populations of cells. Single-cell whole genome sequencing has been applied to study cancer 
biology, cell development, neurobiology, and pre-implantation genetic diagnosis1–4. Single-nucleotide pol-
ymorphisms (SNPs) and copy number variations (CNVs) are two major types of genetic polymorphism 
contributing to the heterogeneity of cell populations. To detect SNPs in single cells, deep sequencing at 
> 30X coverage is usually performed. For example, Hou et al.5 performed single cell exome sequencing 
on myeloproliferative neoplasm at 30X coverage and identified essential thrombocythemia-related can-
didate mutations. To detect CNVs, chromosome rearrangement, large-scale insertion/deletion, shallow 
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sequencing to < 1X coverage is usually performed. Shallow sequencing for identifying CNVs is a com-
mon practice reported by several researchers. For example, by sequencing 100 single neurons at about 
0.04X coverage, McConnell et al.2 identified aneuploid neurons, as well as numerous subchromosomal 
CNVs in euploid neurons. While whole genome deep sequencing is still expensive, shallow sequencing 
for CNV detection can be used to study hundreds of cells with a reasonable budget. CNVs have impor-
tant roles in human health and have been reported to be associated with various human diseases, such as 
tumors, autism, autoimmunity, systematic lupus, and erythematous. In this study, we will focus on three 
whole genome amplification methods for the detection of CNVs in single neurons.

The key to the success of identifying CNVs and large-scale rearrangement in individual neurons is 
amplification of the genetic materials from a single cell by a high-fidelity and low-bias method. Over the 
years, several single-cell whole genome amplification methods were reported. The first method is multi-
ple displacement amplification (MDA). MDA is a non-PCR-based DNA amplification technique, which 
uses a high fidelity enzyme, typically Φ 29 DNA polymerase, to amplify the target genome. Previous stud-
ies in other groups have reported mixed results of calling chromosome-level CNVs in single cell samples 
by MDA methods performed in eppendorf tubes. Gole et al. suggested that the MDA method performed 
in an eppendorf tube is not able to identify trisomy 216. Cai et al. suggested that the MDA method was 
able to identify the sex chromosome in a male sample7. However, several studies have demonstrated 
that in microfluidic devices and nanoliter devices, the MDA method’s performance can be significantly 
improved compared to studies conducted in eppendorf tubes, and therefore is able to call chromosome 
level CNVs1,8. GenomePlex whole genome amplification (WGA4) is another single-cell whole genome 
amplification method, which is based on the PCR amplification of randomly fragmented genomic DNAs 
using universal oligonucleotides as primers. Recently, WGA4 was applied to analyze cancer cell CNVs9. 
The WGA4 method has also been used to study genomic diversity in neurons2. In 2012, Zong et al. 
described a third single-cell genome amplification method, the multiple annealing and looping-based 
amplification cycles (MALBAC) method10. Given the extreme scale in size and high complexity of the 
genome structure, none of these single-cell whole genome sequencing methods has revealed genomic 
details in single cells with complete satisfaction. To date, reports of single-cell whole genome studies have 
been carried out by employing only one of these three methods, thus there is an urgent need to compara-
tively evaluate all of the methodologies to guide future research. Recently, de Bourcy et al. compared the 
performance of three single cell sequencing methods (MALBAC, NEB-WGA and MDA) using a bacteria 
genome11. In their study, the comparison was between single-cell MDA in microfluidics, single-cell MDA 
in tubes, single-cell NEB-WGA in tubes and single-cell MALBAC in tubes. Their results showed that the 
product using small-volume microfluidics has a higher mapping rate. However, no such studies have 
been reported for mammalian cells. The goal of this study is therefore to characterize the amplification 
uniformity and biases for WGA4, MDA and MALBAC based sequencing at shallow sequencing depth 
using neurons as the model system.

In the human brain, the 85 billion individual neurons12,13 show remarkable diversity in their matura-
tion, morphology, electrophysiological properties, and inter-neuronal connectivity. Somatic variations of 
the genome and epigenome, including chromosome instability, aneuploidy (rarely polyploidy), mosaic 
sub-chromosomal rearrangements, and changes in epigenetic modifications, contribute to the creation 
of neuronal diversity14. Thus, neurons are a suitable system to study single-cell genome diversity. In this 
study, after the quality of single-neuron genome sequencing was confirmed by comparison to the results 
of traditional sequencing studies (using genomic DNA from ≈  2 million neurons of the same rat, referred 
to as bulk cells in this study), we quantitatively analyzed 19 neurons amplified by the WGA4, MDA and 
MALBAC techniques with an emphasis on the following questions: 1) Is there amplification bias among 
different genomic regions, and can the bias issue be addressed? 2) How reproducible are these three 
whole genome amplification methods? 3) What are the major advantages for each of the three single-cell 
whole genome amplification methods? Our results demonstrated that single-cell genome sequencing 
results using either the MALBAC or WGA4 method are highly reproducible and have a high success 
rate, chromosome-level and sub-chromosomal level CNVs among individual neurons can be detected.

Results
Experiment design. The general strategies that were used in sample preparation, DNA sequencing, 
and data analysis are summarized in Fig. 1a. Hippocampal neurons were prepared from individual E18 
rat embryos and cultured in neurobasal medium as described previously15,16. Nuclei of individual hip-
pocampal neurons were collected using a glass micropipette (Fig.  1b,c)17,18 and transferred directly to 
200-μ L PCR tubes. We collected two batches of single neuron cells for our experiments. The first batch 
was collected in November 2012 and 11 cells were sequenced in March 2013. The second batch was 
collected in December 2014 and 8 more cells were sequenced in January 2015 (Supplementary Table 
S1). The single neuron nucleus was subjected to whole genome amplification using one of three meth-
ods (8 nuclei by MALBAC, 5 nuclei by MDA and 6 nuclei by WGA4). At the same time, genomic DNA 
was also isolated from ≈  2 million cultured neurons (bulk cells). Sequencing libraries were constructed 
following the Illumina standard protocol and sequenced by an Illumina HiSeq 2000. On average, there 
were 29.4 ±  4.8 million clean reads per sample. The data were mapped to the rat reference genome (rnt5) 
using Bowtie219. Using the sequencing results from bulk cells as the benchmarks, single-cell genome 
sequencing results were analyzed for genome coverage, GC-bias, reproducibility, and CNVs20.
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GC-bias. GC-bias is a parameter that is used to quantitatively evaluate whether there is a correlation 
between the observed coverage of a specific genomic region and its GC content. The presence of GC-bias 
can complicate data analysis, including copy number estimation. In single-cell whole genome sequenc-
ing studies, GC-bias may result from either the whole genome amplification step or the sequencing 
step11,21–24. In our study, before analyzing individual cells, the sequencing results of DNA from bulk cells 
were used as the benchmark to quantitatively evaluate the sequencing platform because this sample was 
sequenced without the need for genome amplification. The average GC content of bulk-cell genomic 
DNA sequencing data is 41.4%, which is 0.5% less than the GC content of the reference genome (41.9%) 
(Fig. 2a). Previous studies suggested that the GC-rich regions are prone to low coverage with the Illumina 
HiSeq 2000 platform25. Our results indicated that there is a very low level of GC-bias when sequencing 
the rat genome using the Illumina HiSeq 2000 platform.

Because of low level of GC-bias at the sequencing step on the Illumina HiSeq 2000 platform, we 
mainly focused on the GC-bias during the whole genome amplification step. The average GC content 
(41.6%) of the DNA samples amplified from a single cell using the WGA4 method is very close to that 
of the reference genome (41.9%), with a difference of ≈  0.3% (Fig. 2a). The average GC content (43.4%) 
of the DNA samples amplified from a single cell using the MDA method is ≈  1.5% greater than that of 
reference genome (41.9%). However, the average GC content (46.6%) of DNA prepared by the MALBAC 
method is ≈  4.7% greater than that of reference genome, indicating some degree of preference for GC-rich 
regions during the amplification process for MALBAC based amplification. After examining the overall 
GC-bias, we then analyzed the relationship between the observed reads and the GC content of individual 
genomic regions (Fig. 2b–d and Supplementary Fig. S1). The majority of rat genomic sequences (75%) 
have a GC content of 20–60%. Using the sequencing results from bulk cells, the plot of the relative 

Figure 1. Experimental design. (a) Flow chart of bulk-neuron and single-neuron genomic isolation, DNA 
sequencing sample preparation, sequencing, and data processing. (b,c) Hippocampal neuronal culture and 
isolation of the nucleus from individual neurons. The nucleus was extracted directly from cultured neurons 
through a glass micropipette on an electrophysiological recording system. A typical isolated nucleus in the 
micropipette is shown (c).
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coverage at various genomic regions versus the GC content (20–60%) is almost uniform with a very small 
bias toward regions having ≈  35–40% GC. For single-cell genomes amplified using the WGA4 method, 
a significant level of cell-to-cell variation exists at the low-GC-content regions (< 30% GC content). 
MALBAC has a clear preference for high-GC-content regions relative to the low-GC-content regions. 
Genomic regions with a high-GC-content tended to be over-amplified when the MALBAC method was 
used. A similar GC-bias was also noticed when MALBAC was applied to characterize human cancer cell 
lines10. The five MDA cells displayed a similar trend with bulk cell samples, which suggests that the MDA 
method has a low level of GC bias during the amplification step.

Reproducibility. Because each cell has only a tiny amount of DNA, which is typically at the level 
of picograms, the success of each experiment highly depends on the quality of the sample, the skills of 
operators, and potential contamination in the lab. To extract useful information from single-cell genomic 
studies, one of the key issues to be addressed is to distinguish between true biological cell-to-cell varia-
tion and non-specific experimental noise or errors. Thus, the next question addressed in our study was 
the cell-to-cell genome amplification reproducibility. To evaluate the reproducibility of the three whole 
genome amplification methods (WGA4, MDA and MALBAC), the rat reference genome was partitioned 
into 500 kb-sized bins, yielding 5,797 bins in total. After calculating the reads mapped to each bin, we 

Figure 2. GC content analysis. (a) The GC-composition of four samples (bulk-cell sample and DNA 
amplified by three different single-cell amplification methods). The y-axis is the frequency of normalized 
reads with different GC contents. The total reads of each sample is normalized to 10 million. The average 
GC content of the rat reference genome is 41.9% (dashed line). The average GC content of MDA, WGA4, 
MALBAC, and unamplified samples are 43.4%, 41.6%, 46.6%, and 41.4%, respectively. (b,c) The GC-bias 
plot. The relative coverage (y-axis) represents the ratio between the coverage of a sample and the coverage 
predicted by the reference genome. A relative coverage of 1 indicates no bias. A relative coverage above 1 or 
below 1 indicates higher or lower coverage than that expected, respectively. The results from the bulk-cell 
sample (red line) are plotted as a benchmark.
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then compared the number of normalized reads of each bin between two representative cells amplified 
using the same method or amplified using two different methods (Fig. 3a–c and Supplementary Fig. S2 
and S3). Our data show that amplifications by both MALBAC and WGA4 are highly reproducible, with 
a correlation coefficient > 0.9 among cells amplified using the MALBAC method and close to 0.9 among 
cells amplified using the WGA4 method. Such high correlation coefficients suggests that single-cell 
genome amplification by either the MALBAC or WGA4 method is highly reproducible and that the 
information extracted from single-cell genomic studies can be used to analyze cell-to-cell genomic 

Figure 3. Reproducibility of different whole genome amplification methods. (a-c) For each bin that 
is 500 kb in size, the normalized read abundance of one cell is the x-axis value, and the normalized read 
abundance of another cell is the y-axis value. The combination of these values will give one dot on the plot 
for a particular bin. There are 5,797 bins in total. The 5,797 dots are plotted to show the reproducibility 
of the single-cell genome amplification methods. A narrow distribution of dots along the y =  x (red line) 
indicates good correlation between the two cells. See Supplementary Fig. S2 for all cells used in this study 
and Supplementary Fig. S3 for results using 200-kb bin size. (d) Hierarchical clustering is performed on the 
correlation of each of the single cells used in this study and the bulk-cell sample.
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diversity. Consistent with a high level of cell-to-cell variation reported in literature for studies using 
MDA as the amplification method26–28, the cell-to-cell correlation of MDA is also very low in our studies.

We also calculated the correlation coefficient matrix between any two cells among the 19 single cells 
and their correlation with the sequencing results from bulk cells (Supplementary Fig. S4). Hierarchical 
clustering of the correlation coefficient matrix shows that single cells from MALBAC are clustered 
together, while single cells from WGA4 are grouped into two clusters (Fig.  3d). Two single cells from 
MDA display almost no correlation with any other cells. Cells that were amplified using different meth-
ods display poor correlation, indicating that each method has its own built-in pattern of biases. Thus, 
single-cell genomes that are amplified using different methods may not be suitable for comparative stud-
ies. Because of their high reproducibility, very useful information might be extracted from single-cell 
genomic studies using either the WGA4 or MALBAC method once proper GC-bias and other built-in 
patterns of bias are considered.

Genome coverage uniformity. The genome coverage uniformity represents the evenness of sequence 
read distribution over the entire genome. Among the three single-cell genome amplification methods 
examined in this study, samples amplified using the WGA4 method showed the smallest bin-to-bin 
variation in read abundance (Fig. 4a), which is also consistent with the GC-bias results shown in Fig. 2.

To quantitatively measure the bin-to-bin variation, a box-plot was prepared for each of the cells 
used in our studies (Fig. 4b). Box plots characterize a sample using the 25th (Q1), 50th, and 75th (Q3) 
percentiles and the interquartile range (IQR =  Q3-Q1). It covers the central 50% of the data. Quartiles 
are insensitive to outliers and preserve information about the center and spread. Consequently, they are 
preferred over the mean and standard deviation for population distributions. Among the three single-cell 
amplification methods, the IQR of the WGA4 method is the smallest, indicating that WGA4 has the 
least read fluctuation among the bins and the best performance with respect to coverage uniformity. We 
also plotted the normalized single-cell reads of each bin against results from bulk cells (Fig.  4c). The 
WGA4 method gives the best correlation (correlation efficiency 0.56) with bulk-cell samples. Random 
fragmentation of genomic DNA to around 300 bp in the WGA4 method may be responsible for the 
evenness of the whole genome amplification. Because MALBAC has a GC-bias toward higher GC con-
tent (Fig.  3), the correlation between MALBAC and bulk-cell samples is poor. Therefore, we applied a 
GC-correction, locally weighted scatterplot smoothing (LOWESS) algorithm29, to correct the GC-biases 
in all three single-cell methods and recalculated the correlation (Fig. 4d and Supplementary Fig. S5a, b). 
The correlation between MALBAC and bulk-cell samples was significantly improved, from 0.36 to 0.53. 
There is a slight change in the correlation after GC-correction in the WGA4-amplified samples (from 
0.54 to 0.56). However, the sequencing reads by MDA are too random to be correlated and corrected 
(0.02, no correlations and no improvement after GC-correction). In our hands, the WGA4 method pre-
sents superior genome coverage uniformity and correlation with the bulk-cell sample. When single-cell 
genomes are amplified by MALBAC, after GC-correction, high-quality data can also be obtained.

MAPD metric to determine the detection limit for CNVs. In order to quantify the amplification 
biases and noise, we adapted a QC metric, the median absolute pairwise difference (MAPD) algorithm 
(Affymetrix, 2008)30,31. MAPD is originally designed for microarray data, and is widely used in the 
Affymetrix microarray. MAPD measures the absolute difference between the log2 copy number ratios of 
neighboring bins and then calculates the median across all bins. Larger MAPD values indicate greater 
noise. For example, at the 500 kb bin size, unamplified bulk cell samples display the lowest MAPD score 
(mean value: 0.10 ±  0.001), as expected. The WGA4 and MALBAC single-cell samples have similar 
MAPD scores (mean value: 0.22 ±  0.004 and 0.24 ±  0.002, respectively), both of which are lower than 
MAPD scores for single-cell samples amplified using the MDA method (mean value: 0.79 ±  0.23). We 
have also calculated the MAPD scores, while the genomic bin sizes were modulated from 50 kb to 1 Mb. 
This practice may allow us to further optimize the data analysis and enhance our chances to detect CNVs 
form single-cell whole genome sequencing information (Fig. 5). MAPD scores decreased with large bin 
size for all three methods, suggesting less noise with larger bin size. Although single-cell whole genome 
sequencing always gave higher MAPD scores than bulk sample7, this can be partially compensated by 
increasing the bin size, at the cost of CNV resolution. We chose a MAPD score of 0.45 as the cutoff as 
suggested by Cai et al.7. Single-cell samples with MAPD score of > 0.45 are considered to be acceptable 
for CNV analysis. Therefore, single-cell MALBAC and WGA4 methods can reliably detect CNVs using 
a bin size of 100 kb (Fig. 5). The copy number profiling in MDA single cells are not suitable for small 
CNV studies less than 1 Mb in size, because the MAPD score is as high as 0.7 even at 1 Mb bin size.

Detecting copy number variations. It has long been accepted that all neurons in a brain share 
the same genome. However, recent evidence suggests that individual neurons could have non-identical 
genomes because of aneuploidy, active retrotransposons, and other DNA content variations32–35. We 
applied the algorithm from Navin et al. to call CNVs in neurons29. In contrast to using fixed intervals 
to calculate copy number, we used bins of variable length, while having uniform expected unique read 
counts. The variable length bin method has been proved to increase the ability to detect CNVs in pre-
vious studies29. We also used the LOWESS algorithm25, which corrects for GC content bias. As shown 
in Fig.  6a, sequencing results from both the bulk-cell sample and the single neurons amplified by the 
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Figure 4. Read abundance. (a) Read abundance distribution across the genome from three single-cell 
amplification methods and a bulk-cell sample (left) and a magnified plot of part of chromosome 3 (right). 
The five circles from outside to inside are the chromosome position index, read abundance of MALBAC 
(black), read abundance of WGA4 (blue), and read abundance of the bulk-cell sample (red). Each bar 
represents the total reads in a 500 kb bin, and all 5,797 bins are plotted. (b) Box plot representing the 
normalized reads in 5,797 bins in log10 scale. x-axis are all 19 single cells and bulk sample. y-axis are the 
average, 25th (Q1), 50th, and 75th (Q3) percentiles of normalized reads for each sample. (c,d) Correlation 
between the three single-cell amplification methods and the bulk-cell sample without GC-correction (c) and 
with GC correction (d) in autosome region. The normalized read abundance in a bin of one sample is the 
x-value and the normalized read abundance of another sample is the y-value. The combination of these two 
values will give one dot on the plot for a particular bin. A narrow distribution of dots along the y =  x (red 
line) indicates good correlation between a single-cell method and the bulk-cell sample. For each method, 
one particular cell is chosen for this plot. Supplementary Fig. S4 illustrates the results for all of the other 
cells.
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MALBAC, WGA4, or MDA methods all showed one copy of the X chromosome. These results sug-
gest that all three single-cell whole genome amplification methods can reveal chromosome level CNVs. 
Fig. 6a shows an example of the CNV detection data quality. At the 500 kb bin size resolution, the copy 
number patterns of most autosomal chromosome regions (Fig. 6a) from both MALBAC and WGA4 are 
similar to bulk-cell samples, while the MDA method detected less CNVs than the non-amplification 
method in bulk-cell samples. A recent study suggested that individual neurons may have somatic mosaic 
CNVs, in particular, aneuploidy as shown in human postmortem brain samples2. We examined such a 
possibility in rats using our single-neuron sequencing results (Supplementary Table S2). As shown in 
Fig. 6b, a neuron (labeled WGA4 cell 6) displays a 20.5-Mb sub-chromosomal deletion in chromosome 
8, which is not detected in another neuron (labeled WGA4 cell 5) or the bulk-cell sample. This result 
suggests that rat neurons also have mosaic CNVs, which is consistent with findings in human studies2.

Discussion
In this work, using rat embryonic neurons as the model system, we evaluated the GC-bias, reproducibil-
ity, uniformity and the ability to detect CNVs in three single cell amplification methods. The MALBAC 
method displays amplification preference towards high GC content, while the WGA4 and MDA meth-
ods display less GC content biases. Single cells amplified by WGA4 and MALBAC have much higher 
reproducibility and genome coverage uniformity than that of the MDA method. By using the MAPD 
metric, we found that both the WGA4 and MALBAC methods can detect the chromosome-level and 
sub-chromosomal level CNVs, while the copy number profiling in MDA single cells was not suitable for 
small CNV studies.

In our experiments, the second batch of single cells amplified by MDA method had better quality in 
the coverage and reproducibility than that of the first batch. We investigated the reason why the second 
batch has better results than the first batch. The first batch of single cells was isolated and stored in − 80 
degree for 14 weeks before the MDA amplification performed, while individual neurons of the second 
batch were isolated, shipped and performed MDA amplification without delay. Also, the handling by 
different technicians who performed the MDA amplification may also contribute to the variation to 
some degree.

Choosing which method to use for single cell studies depends on the scientific questions we want 
to ask. In cancer biology, tumors display extensive somatic mutations and chromosome instability. 
Single-cell sequencing is now applied to assess the clonal structure of intra-tumoral heterogeneity. In 
tumor metastasis, single-cell genome sequencing is also suitable for addressing the origin of metastasis 
and being applied clinically to monitor the metastasis by sequencing single circulating tumor cells21. A 
combination of MALBAC and WGA4 can produce a comprehensive profile of genomic variations in 
tumors. In pre-implantation genetic diagnosis, we need to select embryos that have the greatest chance 
for a successful pregnancy and are free of monogenic disorders. MALBAC sequencing of a polar body 
enabled us to accurately detect aneuploidy and SNPs in disease-associated alleles36. In neurobiology, 
neuronal diversity has been increasingly recognized to be mediated by somatic variations in the genome 
and epigenome, which mainly include chromosome instability, aneuploidy (rarely polyploidy), mosaic 
subchromosomal rearrangements, and intercellular changes in the epigenetic profile. Our results show 

Figure 5. MAPD metric to determine the detection limit of CNVs. The MAPD is calculated in various 
bin size from 50 kb to 1 Mb. The error bar is standard error.
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that the WGA4 and MALBAC methods can successfully detect aneuploidy and sub-chromosomal level 
of CNVs, which is consistent with the report from McConnell et al.2. In the field of microorganism 
genomics, many bacteria and archaea are difficult to culture, and single-cell sequencing is a powerful tool 
to profile their genomes. The MALBAC method is very efficient in amplifying high GC-content regions, 
which will be at a unique position to sequence genomes with high GC content.

Besides issues associated with genome amplification from single cell nuclei, developing new algo-
rithms for sequencing data analysis is another key area to be addressed in the single-cell whole genome 
sequencing area. Thus far, few bioinformatics tools are specifically developed for single-cell genomics 
analysis. Each of the three single-cell amplification methods examined in this report has its own built-in 
pattern of biases. To develop bioinformatics tools better suited for analyzing single cell whole genome 
sequencing results, these built-in patterns of bias will need to be considered20. For example, MALBAC 
preferentially amplifies the high-GC-content regions, and this preference is highly reproducible. We can 
partially correct this bias by normalizing the coverage by the GC content. Better algorithms to identify 
CNVs are also needed, especially algorithms that enable users to systematically modulate a few param-
eters to define the resolution of the CNV detection limit for the method used in their specific studies.

Figure 6. Copy number determination. (a) The copy numbers predicted for three single cells and the bulk-
cell sample after GC-correction. The black dots are the normalized abundance of reads. The red line is the 
predicted copy number. (b) Mosaic CNV is detected in rat neuron chromosome 8. The single-neuron WGA4 
cell 6 has a sub-chromosomal deletion in chromosome 8 that is approximately 20.4 Mb in size.
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In addition to improving the single-cell sequencing techniques, obtaining high quality DNA samples 
from single cells is also vitally important. In this report, we used micromanipulation with a micro glass 
pipette to isolate individual nucleus for amplification. A single nucleus is better for amplification than 
the whole cell because it contains fewer enzymes and proteins that may interfere with the amplifica-
tion, thus reducing the amplification background. Reducing the amplification reaction volume has also 
been shown to be suitable for improving the fidelity and reducing the amplification bias. Microfluidics1 
and nanoliter-based8 single-cell amplifications were noted to be able to achieve better data quality than 
in-tube amplification. To eliminate amplification bias, the third-generation sequencing technologies 
remove the amplification step before sequencing37,38, therefore obtaining high quality DNA will become 
an even more important issue if the third-generation sequencing technologies are used for single-cell 
sequencing studies.

Conclusions
We quantitatively compared the performance of three single-cell whole genome amplification methods 
using rat hippocampal neurons. Using the bulk-cell sample as the benchmark, we have shown that the 
single-cell DNA sequencing varies in genome coverage, reproducibility, GC-bias, and coverage uniform-
ity. At a similar level of sequencing depth, MALBAC displays the best genome coverage with excellent 
reproducibility. WGA4 has the best performance in genome coverage uniformity. Findings from this 
study will guide the selection of an optimal single-cell genome amplification method according to the 
specific scientific questions to be addressed.

Methods
Primary hippocampal neuron culture and single-neuron nucleus isolation. As described previ-
ously15, hippocampi dissected from embryonic day 18 Sprague–Dawley rat embryos were digested with 
papain (0.5 mg/mL in Hank’s balanced salt solution HBSS, 37 °C for 20 minutes), washed, and gently trit-
urated by passing the tissue through a Pasteur pipette with a sterile tip. Neurons were counted and plated 
onto poly-L-lysine (Sigma, 0.5 mg/mL) pre-coated 60-mm Petri dishes (Becton Dickinson, Bedford, MA) 
at 2 ×  106 per dish to isolate DNA from a population of cells (2 million neurons) or dishes containing five 
glass coverslips (0.3 ×  106 per 60-mm dish) for single-neuron nucleus isolation. To ensure high-quality cell 
adhesion and growth, coverslips were first incubated in 100% nitric acid overnight, thoroughly washed 
with five changes of large amounts of de-ionized (DI) water, and stored in 70% ethanol. Coverslips 
were then flamed, dried, coated with poly-L-lysine (Sigma, 0.5 mg/mL) overnight, and washed three 
times with sterile DI water again before being incubated in plating medium for cell plating. The plating 
medium is 1×  Minimum Essential Media (MEM, Cellgro) containing 10% fetal bovine serum, 5% horse 
serum (HS), 31 mg L-cysteine, and 1% penicillin/streptomycin/L-glutamine (P/S/G). Twenty-four hours 
after plating, the plating medium was replaced by feeding medium (Neurobasal medium from Cellgro 
supplemented with 1% HS, 2% Gibco B-27, and 1% P/S/G). Thereafter, neurons were fed twice per week 
with 2 mL feeding medium per dish for 2 weeks until use. Given the important roles played by glial cells 
in neuron development and synaptogenesis, glial cell growth was suppressed by supplementing feeding 
medium with 5-flouro-2-deoxyuridine beginning on day in vitro (DIV) 5, yet they were not completely 
eliminated from the culture.

A single neuron nucleus was extracted directly through micromanipulation using a micro glass pipette 
on an electrophysiological recording system. The micro glass pipettes were made on a flaming micropi-
pette puller (Model P-97, Sutter Instrument) by pulling capillary glass tubing (Model G85150T-3, Warner 
Instruments). The flaming temperature and pulling velocity were adjusted accordingly to generate micro-
pipettes with tip diameters ranging between 5 and 10 μ m. The micropipette was then filled with 1×  arti-
ficial cerebrospinal fluid and installed on the electrophysiological recording system. A micromanipulator 
(Model MP-225, Sutter Instrument) was employed to control the micropipette to slowly approach the 
target neurons. Typical hippocampal pyramidal neurons were identified under a 32×  objective (numeri-
cal aperture, 0.4) with a Zeiss Axiovert 100 microscope. Once in touch with the cell membrane, negative 
pressure was applied to gently inhale the whole nucleus from the neuron and into the micro glass pipette. 
The isolated cell (nucleus) in the micro glass pipette was injected into a 200-μ l PCR-ready vessel with 
3 μ l prepared Phosphate buffered saline (PBS, Sigma-Aldrich, Cat no. P5368-10PAK), which was free of 
DNase, RNase, and pyrogens.

Whole genome amplification. WGA4 amplification was performed on a single neuron nucleus 
as described in the Sigma-Aldrich GenomePlex WGA4 kit (Sigma-Aldrich, Cat no. WGA4-10RXN). 
Briefly, we first lysed the nucleus and removed the proteins by incubating the mixture at 50 °C for 1 hour. 
The genomic DNA was fragmented for 4 minutes at 99 °C. A set of random primers linked with common 
adaptors was annealed to the fragmented DNA template at the following series of temperatures: 16 °C 
for 20 minutes, 24 °C for 20 minutes, 37 °C for 20 minutes, 75 °C for 5 minutes, and 4 °C hold. Then, PCR 
was performed to amplify the library with an initial denaturation at 95 °C for 3 minutes, and 25 cycles 
of 94 °C for 30 seconds and 65 °C for 5 minutes. The PCR product was purified using the Qiagen PCR 
Purification kit. Most DNA in the library is between 200 bp to 400 bp. The single-cell amplification by 
the MALBAC method was performed by Yikong Genomics based on the methods reported by Zong 
et al.10 (http://www.yikongenomics.cn/).

http://www.yikongenomics.cn/
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Sequencing library preparation and sequencing. After single-cell genomic DNA was amplified, 
the sequencing libraries were constructed by BGI-Shenzhen and sequenced using the Illumina HiSeq 
2000 sequencing platform.

Bioinformatics analysis. (A) Read alignment. The total number of reads for each sample ranged from 
8 million to 58 million. Because the MALBAC and WGA4 methods added around 30 bp adaptors to each 
read, we deleted the nucleotide sequences of adaptors and truncated the reads to 60 bp. This truncation 
was performed for all samples to ensure that all single-cell sequencing data were evaluated using reads 
of the same length. After filtering for clean reads, the data were mapped to the rat reference genome 
(rnt5) using Bowtie2 software with the default parameters. Duplicates were removed using SAMtools39 
and MarkDuplicates from the Picard software suite.

(B) GC-bias. To calculate the GC-composition of the reference genome, we divided the reference rat 
genome into continuous 60 bp windows. The GC content of each window was calculated. The frequency 
of reads of 1% of the GC-content intervals was counted. To calculate the GC-composition of single-cell 
samples and the bulk-cell sample, we determined the GC content of each sequencing read, which was 
used to calculate the relationship between the read distribution frequency and GC content. We normal-
ized the total reads of each sample to 10 million.

Relative coverage is defined as the ratio of the normalized read number of a particular sample to the 
normalized read number of the reference genome. A relative coverage of 1 indicates that a particular 
base is covered at the expected average rate. A relative coverage above 1 indicates higher than expected 
coverage, and a relative coverage below 1 indicates lower than expected coverage. This was used to gen-
erate Fig 2.

(C) Reproducibility. We divided the rat genome into 500 kb bins. The total bin number is 5,797. We 
then calculated the ratio between the number of reads of each bin and the average number of reads of 
all 5,797 bins. To quantitatively evaluate the reproducibility, a plot was generated using the ratio of each 
of the 5,797 bins from the first single cell as the x-value and the ratio of the same bin from the second 
single cell as the y-value. The correlation coefficient between the ratios of two single cells was calculated. 
For perfectly reproducible data, data points should all fall onto the y =  x line. Hierarchical clustering was 
performed using the “hcluster” command in R language.

(D) LOWESS model of GC-correction. We employed the LOWESS model to perform GC-correction. 
First, the GC content and read count was calculated for each bin. Then, a local linear polynomial fit was 
performed for the GC content and read count. Finally, the regression value of the read count was used 
to replace the original read count for each bin. The LOWESS model for GC-correction has been system-
atically studied in previous reports25,29. We adopted a LOWESS function in the R package for this study.

(E) MAPD metrics. For quality control purposes, we need to define a metric that demonstrates whether 
the single-cell whole genome sequencing will produce data that is useful for copy number analysis. This 
metric is Median of the Absolute values of all Pairwise Differences (MAPD). The MAPD QC metric was 
developed by adapting the Affymetrix multiple absolute pairwise differences algorithm (Affymetrix, 
2008), and is defined as: MAPD =  Median(log2CNRi + log2CNRi+1), where i stands for individual bins. 
CNRi stands for the copy number ratio. Affymetrix recommended a MAPD threshold of 0.40 for CNV 
calling in microarray. Cai et al. recommended a MAPD threshold of 0.45 for all single-cell samples7. In 
our study, we adopted the MAPD threshold of 0.45.

(F) Copy number calculation. We used the method proposed by Navin et al. to calculate CNV9. Copy 
number was assessed with bins of variable size. We first calculated the number of reads that were mapped 
to each bin. Then, we performed the GC-correction using the LOWESS model19. We used the circular 
binary segmentation algorithm from an R package (DNA copy) to group adjacent bins into segments 
under the following settings40: alpha =  0.02, nperm =  1000, undo.splits =  “sdundo”, undo, SD =  1.0, min.
width =  5. The copy number of each segment was calculated as the mean read number of bins in the 
segment divided by the mean read number of bins of all autosomal chromosomes (multiplied by 2). A 
CNV was called if a given genomic segment met the following criteria: (1) spans at least 4 genomic bins; 
(2) > 2 Mb in size; (3) Segment mean is larger than 2 times of median absolute distance of the segment 
means of the samples. The copy number is shown as the blue line in Fig. 6a. We rounded the copy num-
ber to integers. The rounded copy number is shown as the red line in Fig. 6a.
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