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Effect of sample density in prompt 
γ‑ray analysis
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Atsushi Kimura

A high‑accuracy analytical method is broadly required to obtain reliable research results. Thus, 
prompt γ‑ray analysis (PGA), one of the most accurate non‑destructive analytical methods, has been 
employed in various fields. However, the measurement accuracy of PGA is also known to degrade in 
hydrogenous samples. The degradation is caused by variation in the measurement sensitivity (counts 
per milligram) following the change in neutron energy due to scattering with hydrogen nucleus. 
Number of scatterings is well known to depend on the hydrogen content in a sample. However, 
considering multiple scatterings, hydrogen density, which has not been taken into account as yet, 
may also lead to the accuracy degradation. Here, we show the effect of the hydrogen density in 
PGA by evaluating the measurement sensitivity of samples with the same hydrogen content and 
different densities. We find that the measurement sensitivity varies by more than 30% depending 
on the hydrogen density even at the same hydrogen content. The variation is a particularly serious 
problem for PGA requiring a few percent accuracy in most cases. Additionally, although the variation 
is apparently observed in hydrogenous samples, the similar phenomenon can occur in other nuclides 
with a large scattering cross section; it may affect nuclear cross‑section measurements using neutrons 
in such fields as astrophysics and nuclear energy.

In prompt γ-ray analysis (PGA), a sample is irradiated with neutrons to excite the nuclei intended to be measured, 
and the γ-rays emitted during the de-excitation processes are measured to quantify the amount of target nucleus 
in the sample. Although thermal neutrons are generally used, some measurement systems utilize cold neutrons, 
which most nuclides have a larger capture cross section than the thermal one, to achieve more efficient  anaysis1,2. 
PGA is a powerful analytical method that has high measurement accuracy, enables us to non-destructive analysis 
of bulk samples, and can be applied to light elements which are difficult to measure by most other analytical 
 methods3–5. Owing to the aforementioned advantages, PGA can be applied in many fields such as measurements 
of cadmium in  rice6, measurement of boron in volcanic  rock7, elemental analysis of  meteorites8,9, and measure-
ment of hydrogen in metal samples by focusing on hydrogen embrittlement in the industrial  field10.

Although PGA can measure light elements such as hydrogen, it suffers from a problem in which the measure-
ment accuracy of hydrogenous materials degrades. The rate of γ-ray emission, denoted as Rg can be expressed 
as follows,

where N is the number of nuclei, φ(E) is the neutron flux, and σ(E) is the neutron capture cross section. Equa-
tion (1) represents the rate of nuclear reactions that emit γ rays such as (n, g) and (n, α). Equation (1) shows that 
measurement sensitivity, which is defined by the γ-ray counts per number of nuclei in PGA, strongly depends 
on the energy distribution of neutron flux (or neutron energy spectrum) in the sample. One of the causes of 
measurement-accuracy degradation is neutron scattering in the sample. The scattered neutrons change their flight 
path and length in the sample, and the neutron flux apparently varies depending on the sample geometry. Thus, 
the measurement accuracy is degraded with the variation in the measurement sensitivity. (This phenomenon is 
called as “effect of apparent neutron flux”). Mackey et al.11–13 minimized the accuracy degradation by suppressing 
the change in the path lengths using spherical samples.

Paul et al. reported that in PGA that uses cold neutrons, sensitivity is affected not only by the effect of 
apparent neutron flux but also by the change in neutron energy in scattering with hydrogen nucleus. To obtain 
precise analysis results, the sensitivity should be calibrated as a function of the target geometry and scattering 
power, which depends on the probability of neutron scattering and amount of energy change of neutrons during 
 scattering14,15. By considering the same way as Eq. (1) for the scattering reaction, the scattering power depends 

(1)Rg ∝ N× ϕ(E)× σ(E),
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only on the number of hydrogen nucleus, or hydrogen content, in the sample. In PGA that uses cold neutrons, 
accurate analysis results can seem to be obtained by suppressing the effect of apparent neutron flux using spheri-
cal samples and applying a correction which depends on the hydrogen content. However, this process may be 
insufficient, as explained hereunder. A large difference exists between the scattering and (n, γ) reactions depend-
ing on whether the neutron remains or disappears due to absorption after the reactions. The remaining neutron 
can scatter again after the first scattering, that is, multiple scatterings can occur. Although the probability of the 
first scattering obeys Eq. (1), the probability of the second or later scattering will depend on the solid angle from 
the scattered neutron to the next nucleus. In this case, since the solid angle varies with the internuclear distance 
which depends on the sample density, the number of scatterings depends not only on the hydrogen content 
but also on the hydrogen density. Here, the hydrogen density refers to how densely hydrogen nuclei exist in the 
sample. Figure 1 shows schematic views of the solid angles in (a) high- and (b) low- density samples. The solid 
angle is defined by a projected area on the surface of a unit sphere. When a neutron is scattered by a nucleus 
at the center of a hemisphere, the high-density sample has a larger solid angle with a small distance between 
the nuclei. On the other hand, the low-density sample has a smaller solid angle with a larger distance between 
the nuclei. Therefore, the probability of scattering, which depends on the solid angle, is also larger for higher 
density samples. Thus, the sensitivity is affected by the hydrogen density as well as the hydrogen content. This 
phenomenon occurs not only in hydrogen but also in all nuclides with large scattering cross sections. However, 
hydrogen is the most important element used in many fields, present in various samples, and an element that 
can be measured by PGA with superior results compared with other analytical methods. This is why we focus 
on hydrogen in this study. Since the neutron energy change during scatterings occurs other than the thermal 
energy region, accuracy also degrades in PGA that uses epithermal neutrons. In the present research, we have 
quantitatively evaluated the effect of hydrogen content and density on PGA that uses cold and epithermal neu-
trons by Monte Carlo simulation and validated the simulation results by experiments.

Results
Effect of hydrogen content on sensitivity. First, to confirm that the sensitivity of PGA changes with 
the hydrogen content instead of the effect of apparent neutron flux, the sensitivity was evaluated by simulation 
for different hydrogen contents using samples of the same density and different sizes. In simulation, Monte Carlo 
simulation code  PHITS16 was used, along with nuclear-data library JENDL4.017. As mentioned in “Introduction” 
section, spherical samples were used to suppress the effect of apparent neutron flux. Polystyrene  (C2H4)n samples 
with a density of 1.05 g/cm3 and diameters of 6, 8, 10, and 12 mm, were irradiated with mono-energetic neutron 
beams with a diameter of 22 mm and energies of 25 meV (thermal neutron), 5 meV (cold neutron), and 1 eV 
(epithermal neutron). The sensitivities were evaluated by counting the 2223 keV γ-rays emitted in a neutron 
capture reaction of hydrogen.

Figure 2 shows the evaluation results of the sensitivities normalized by those of 6 mm- diameter samples at 
each incident-neutron energy. In the thermal-neutron irradiation, the sensitivities were almost constant, similar 
to those reported by Mackey et al. In the cold- and epithermal-neutron irradiations, the sensitivities decreased 
by up to 17% and increased by up to 20%, respectively, with the increase in the hydrogen content. Using the 
mass attenuation  coefficient18, an attenuation of 2223 keV γ-rays in the sample was calculated to be 3.0% for 
the largest sample and 1.5% for the smallest sample. It indicates that the differences in sensitivities were mainly 
caused by the differences in the probabilities of the capture reaction rather than the attenuation of γ-rays. These 
results can be explained by the following. In the cold-neutron irradiation, because the energy of the thermal 
motion of the hydrogen nucleus was larger than that of the incident-neutron, the contribution of up-scattering, 
in which the neutron receives energy during scattering, was large. This effect increased the neutron energy and 
decreased the sensitivity because of the smaller cross sections at higher neutron energy. On the other hand, in 
the epithermal-neutron irradiation, the sensitivity increased due to the contribution of down-scattering, in 
which the neutron loses energy during scattering. In both cases, as the hydrogen content increased, the number 
of scattered neutrons increased. Therefore, the energy change in the neutron flux also increased and the degree 
of sensitivity change became larger.

Figure 1.  Comparison of the solid angles that contribute to the probability of the second or later neutron 
scattering reaction between (a) high- and (b) low- density samples.
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Effect of hydrogen density on sensitivity. Next, the effect of hydrogen density on the sensitivity was 
evaluated. In the evaluation, simulation was performed using PHITS under the condition where only the density 
and size of the samples were changed from that presented in the previous section. The density was varied by 1/1 
(density of polystyrene alone: 1.05 g/cm3), 1/2, 1/5, 1/10, and 1/50.

The correlations between the γ-ray counts and hydrogen content in the thermal-, cold-, and epithermal-
neutron irradiations are shown in Fig. 3. In the thermal-neutron irradiation, the correlation graphs almost 

Figure 2.  Evaluation results of the sensitivities of polystyrene samples in the thermal-, cold-, and epithermal- 
neutron irradiations. The sensitivities are normalized by those of the 6 mm-diameter samples for each incident-
neutron energy. The error bars reflect one sigma standard deviations.

Figure 3.  Correlations between γ-ray counts and hydrogen content under each sample density in the (a) 
thermal-, (b) cold-, and (c) epithermal- neutron irradiations.
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overlapped even at different sample densities since the energy change of the neutrons in scatterings was negli-
gible and the sensitivity was constant, similar to that presented in the previous section. On the other hand, in 
the cold- and epithermal- neutron irradiations, different γ-ray counts were obtained depending on the densities 
even at the same hydrogen content. These phenomena indicate that the amount of energy change in the neutron 
flux due to scattering depends on the density as well as the hydrogen content. To quantitatively evaluate the 
sensitivity change, the slopes of the correlation graphs shown in Fig. 3 which have the same dimension as the 
sensitivity (counts per hydrogen content) were derived by linear fit. The obtained slopes for each neutron energy 
and density are shown in Fig. 4. The results were normalized by those of the sample with a density of 1/50 in 
which the effect of the energy change due to neutron scattering was the smallest in each neutron energy. In the 
thermal-neutron irradiation, the slopes were almost constant at different densities since the energy change was 
negligible. In the cold- and epithermal-neutron irradiations, as the density increased, the slopes decreased by up 
to 30% and increased by up to 37%, respectively. As mentioned in the previous section, the γ-ray attenuation was 
3.0% for the heaviest sample with 1/1 density and 12 mm-diameter and the differences in the sensitivities were 
mainly caused by the neutron energy. The number of scatterings increased with the density because the distance 
between the nuclei became smaller and the solid angle became larger. As a result, the amount of energy change in 
the neutron flux also increased. Thus the degree of sensitivity changes increased. The degree of sensitivity changes 
further increases when a higher density sample is measured or incident neutron energy is lower than 5 meV or 
higher than 1 eV. We confirmed that the hydrogen density, as well as the hydrogen content, significantly affects 
the measurement sensitivity of PGA that uses cold and epithermal neutrons.

Validation of the simulation results. Finally, to validate the simulation results, polystyrene samples 
were measured in the accurate neutron-nucleus reaction measurement instrument (ANNRI) installed at the 
Materials and Life Science Experimental Facility in the Japan Proton Accelerator Research  Complex19–21. In the 
ANNRI, PGA with a broad neutron-energy range can be performed, while the incident-neutron energy is meas-
ured using the time-of-flight (TOF) method, which is named TOF-PGA. In other words, the γ-ray spectrum 
for each incident-neutron energy can be obtained. In the validation, different from the previous two sections, 
the samples with diameters of 10, 13, 15, and 20 mm with densities of approximately 1/5 and 1/10 were used. 
Detailed explanation is shown in Method section.

Figure 5 shows the C/E values, which are defined as the ratio of the calculation results obtained by simulation 
to the experimental data, of the sensitivities for each sample and neutron energy. The C/E values were between 
0.99 and 1.06. In general, simulations reproduced the experimental results well and were confirmed to be valid.

Discussions
Effect of neutron scatterings. To confirm that the cause of the sensitivity change is the difference in 
the number of scatterings, which depends on the sample density, the number of scatterings is formulated using 
approximation. We compare the neutron-energy spectra in the samples with different densities, which are 
designed to produce the same number of scatterings using the derived equation.

Here, we consider a spherical sample with scattering cross section σ, distance between the nearest nuclei L, 
sample radius R, and density ρ, as shown in Fig. 6. Assuming that the neutron is isotropically scattered, expected 
value N of the number of second or later scatterings can be expressed as a product of the scattering probability, 
which depends on the solid angle, and the path length of the neutron in the sample.

Figure 4.  Slopes of the correlation graphs shown in Fig. 3 obtained by linear fit for each neutron energy and 
sample density. The slope has the same dimension as the sensitivity (counts per hydrogen mass). The slopes 
were normalized by those of the sample with a density of 1/50. The horizontal axis shows the sample density 
normalized by that of polystyrene alone. The error bars reflect one sigma standard deviations.
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where C is a constant and K is a function that depends on the incident position and flight direction angle of the 
neutron.

Next, we consider matching the number of scatterings in two samples that consist of the same nuclei with 
scattering cross section σ. One of the samples has density ρ1, radius R1, and distance between nuclei L1 while 
the other has density ρ2, radius R2, and distance between nuclei L2. When the numbers of scatterings in both 
samples match, we obtain

Since the samples are assumed to have the same elemental composition and only differ in density, the number 
of the nearest nuclei is the same, i.e.,

(2)N =

Cσ

4πL2
KR

2L
=

CKRσ

8πL3

(3)
CKR1σ

8πL31
=

CKR2σ

8πL32
.

Figure 5.  Comparison of the experimental and simulated results of the sensitivities for the (a) thermal-, (b) 
cold-, and (c) epithermal-neutron irradiations. The C/E value is defined as the ratio of the simulation and 
experimental results. The error bars reflect one sigma standard deviations.

Figure 6.  Schematic diagram of a spherical sample.
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From Eqs. (3) and (4),

According to Eq. (5), the numbers of scatterings of the samples with different densities can be matched by 
creating a radius ratio that is equal to the inverse ratio of the densities. When the numbers of scatterings are 
matched, the measurement sensitivities as well as the neutron energy spectra in both samples will be equal.

For verification, the neutron energy spectra were simulated using PHITS under the same condition as that 
presented in the previous section for the cold and epithermal neutrons incident on three polystyrene spherical 
samples. The first was a standard sample with a density of 1/1 (density of polystyrene alone: 1.05 g/cm3), and a 
radius of 5 mm. The second was a sample with a density of 1/2 and a radius of 6.3 mm and matched the hydrogen 
content to the standard sample. The third was a sample with a density of 1/2 and a radius of 10 mm and matched 
the number of scatterings to the standard sample. Figure 7 shows the obtained spectra for each sample under the 
(a) cold- and (b) epithermal- neutron irradiations. Peaks at 5 meV in (a) and 1 eV in (b) were made by incident 
neutrons without scatterings. The spectrum of the second sample (the masses matched) is different from that 
of the standard sample, whereas the spectrum of the third sample (the numbers of scatterings matched) agrees 
well with that of the standard sample under both irradiations. These results indicate that the sensitivity change 
in the samples with different densities is mainly caused by the difference in the numbers of scatterings in the 
sample. Further, almost the same neutron energy spectra and measurement sensitivities can be obtained from 
the samples with different densities by matching the number of scatterings, which satisfies Eq. (5).

Although the apparent effect of the density is observed in the analysis of a sample that contains hydrogen, 
which has a large scattering cross section, this phenomenon can intrinsically occur in other nuclides. Therefore, 
even for samples without hydrogen, the effect needs to be taken into account in cold- and epithermal- neutron 
experiments such as PGA that uses cold neutrons and neutron cross-section measurements, which are impor-
tant in the astrophysics and nuclear-energy fields. In addition, re-evaluation of the nuclear data based on past 
measurements that did not take into account the effect of density may be necessary.

Summary
In this research, we evaluated the effects of the hydrogen content and the hydrogen density on PGA that uses 
cold and epithermal neutrons by simulations, and validated the simulation results by TOF-PGA experiments. 
The results revealed the importance of the effect of the hydrogen density on PGA as well as the hydrogen con-
tent. In simulation, we confirmed that the measurement sensitivities varied by more than 30% depending on the 
hydrogen density. For different sample densities and incident-neutron energies, the sensitivity will vary by more 
than this value. The sensitivity change was caused by the variation in the neutron spectrum in the sample due 
to the neutron scattering with hydrogen nucleus. Even if the prepared samples had the same hydrogen content, 
the sensitivity change was observed because of the variation in the number of scatterings, which depends on the 
hydrogen density. Although this effect is apparently observed in a sample with hydrogen, it can also intrinsically 
occur in other nuclides.

This effect is not restricted to TOF-PGA in ANNRI. The same effect cannot be neglected in measurement facil-
ities that use neutrons other than those in the thermal-energy region. The sample density affects the experiments 

(4)4πL31
3

ρ1 =
4πL32
3

ρ2.

(5)
ρ1

ρ2
=

R2

R1
.

Figure 7.  Neutron-energy spectra in the samples for the (a) cold- and (b) epithermal-neutron irradiation. The 
density is normalized value to that of polystyrene alone. The sample with a density of 1/1 and radius of 5 mm is 
a standard sample. The hydrogen content of the sample with a density of 1/2 and radius of 6.3 mm is matched 
with that of the standard one. The number of scatterings of the sample with a density of 1/2 and radius of 10 mm 
is matched that of the standard one.
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in many fields, for example, in PGA that uses cold and epithermal neutron and in astrophysics and nuclear energy 
that require nuclear cross section data. Re-evaluation of the nuclear data may be required if the density effect is 
not considered in the analysis of nuclear-data experiments.

Methods
Experiments in ANRRI. TOF-PGA was performed by utilizing the high-intensity pulsed neutron source 
and high-efficiency cluster high purity germanium (HPGe) detectors installed in ANNRI. The measurements 
were performed using a beam diameter of 22 mm, a flight path of 21.5 m, two cluster HPGe detectors, four 
coaxial HPGe detectors, and a helium atmosphere in the sample space. Spherical polystyrene samples with a 
density of approximately 1/5 of a simple-substance polystyrene and diameters of 10, 13, 15, and 20 mm (weights 
of 87.3, 201.6, 303.3, and 713.6 mg, respectively) and the samples with density of approximately 1/10 that of 
a simple-substance polystyrene and diameters of 10, 13, 15, and 20  mm (weights of 52.1, 115.3, 166.8, and 
418.5 mg, respectively) were measured. The samples were double-wrapped in a 25-µm-thick FEP film and set on 
a Teflon sample holder. The samples were measured with a beam power of 600 kW for 2–14 h, depending on the 
hydrogen content of the sample, to within a statistical error of 3% in epithermal-neutron irradiations.

In the analysis, the energy regions of the cold, thermal, and epithermal neutron were set at 4.77–5.22 meV, 
24.2–26.8 meV, and 0.8–1.3 eV, respectively. In the γ-ray spectrum obtained by gating in each incident neutron 
energy region, the capture γ-ray peak of hydrogen at 2223 keV was analyzed to evaluate the sensitivity.
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