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Abstract

Molecular phylogenetics has neglected polymorphisms within present and ancestral populations for a long time.
Recently, multispecies coalescent based methods have increased in popularity, however, their application is limited to
a small number of species and individuals. We introduced a polymorphism-aware phylogenetic model (PoMo), which
overcomes this limitation and scales well with the increasing amount of sequence data whereas accounting for present
and ancestral polymorphisms. PoMo circumvents handling of gene trees and directly infers species trees from allele
frequency data. Here, we extend the PoMo implementation in IQ-TREE and integrate search for the statistically best-fit
mutation model, the ability to infer mutation rate variation across sites, and assessment of branch support values. We
exemplify an analysis of a hundred species with ten haploid individuals each, showing that PoMo can perform inference
on large data sets. While PoMo is more accurate than standard substitution models applied to concatenated alignments,
it is almost as fast. We also provide bmm-simulate, a software package that allows simulation of sequences evolving
under PoMo. The new options consolidate the value of PoMo for phylogenetic analyses with population data.

Key words: incomplete lineage sorting, species tree, phylogenetics, polymorphism-aware phylogenetic model, bound-
ary mutation model.

Introduction
Molecular phylogenetics seeks to estimate evolutionary rela-
tionships of species depicted as species trees by modeling the
change and development of hereditary sequences. Established
methods (e.g., Tavar�e 1986; Yang 2006) that neglect molecu-
lar variation on the population level suffer from incongruen-
cies between genomic regions which may arise due to
incomplete lineage sorting (ILS, Maddison 1997; Knowles
2009). The effect of ILS becomes large if the considered species
are closely related or if internal branches of the species tree
are short when measured in number of generations divided
by the effective population size (Pamilo and Nei 1988). Short
branches, especially when appearing in caterpillar-like topol-
ogies may lead to statistical inconsistency (Degnan and
Rosenberg 2009; Degnan 2013) of approaches such as con-
catenation (Gadagkar et al. 2005), where sequences for differ-
ent genes of the same individual are joined to form one
overall alignment.

Consequently, development of phylogenetic methods has
increasingly focused on explicit modeling of population

genetic effects (Leach�e and Oaks 2017). Most methods em-
ploy the multispecies coalescent model (Rannala and Yang
2003) to reconcile gene trees, that is, the evolutionary histo-
ries of genes, with the species tree. The species tree is either
jointly estimated with the gene trees (e.g., Drummond and
Rambaut 2007; Liu 2008; Heled and Drummond 2010) or
reconstructed from previously estimated gene trees (e.g.,
Liu et al. 2010; Mirarab et al. 2014).

We have recently proposed a polymorphism-aware phy-
logenetic model (PoMo, De Maio et al. 2015; Schrempf et al.
2016) for estimating species trees from genome-wide data for
up to dozens of species with multiple individuals each, which
bypasses the computational burden of estimating gene trees.
PoMo can be viewed as an extension of classical substitution
models which additionally considers polymorphisms. Present
as well as ancestral polymorphisms are described along a
species tree by separating mutation and genetic drift in a
population genetic framework that we have termed multi-
variate boundary mutation model (Vogl and Clemente 2012;
Schrempf and Hobolth 2017). The substitution model (e.g.,
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HKY model, Hasegawa et al. 1985) extended by the multivar-
iate boundary mutation model is referred to as mutation
model, because frequency changes are considered separately.
PoMo improves estimation of mutation parameters and spe-
cies trees compared with established methods such as con-
catenation when ILS has blurred the phylogenetic signal.
Extensive evaluations showed good performance of PoMo
against other methods (De Maio et al. 2015; Schrempf et al.
2016). Here, we extend our implementation into the maxi-
mum likelihood software IQ-TREE (Nguyen et al. 2015), re-
ferred to as IQ-TREE-PoMo, which includes several new
features as detailed in the next section.

New Approaches

Big Data
In contrast to the multispecies coalescent model, PoMo scales
much better with the number of analyzed species. The per-
formance of IQ-TREE PoMo was tested by applying it to
simulated multiple sequence alignments (MSA) of a length
of up to 1 million nucleotides, and 100 species with ten sam-
pled individuals each corresponding to gene trees with 1,000
leaves (see Materials and Methods).

Simulator
We developed and released a software package to generate
sequences evolved under various boundary mutation models
(bmms), in particular PoMos, called bmm-simulate
(https://github.com/pomo-dev/bmm-simulate; last accessed
March 11, 2019). Given a species tree, the simulator directly
generates polymorphic sequences using the discrete multi-
variate boundary mutation model with mutation rate het-
erogeneity (see below). bmm-simulate enables exact
assessment of IQ-TREE-PoMo because the same model is
used for simulation and inference, and complements existing
simulators based on the multispecies coalescent model,
which we have used in this and in previous studies.
Furthermore, inference methods based on the multispecies
coalescent model could be validated against data simulated
with bmm-simulate.

Advanced Models
Heterogeneity of rates across sites is a consequence of varying
mutation and fixation rates. If rate heterogeneity is not taken
into account, sequence distance is underestimated and phy-
logenetic analyses may suffer from long branch attraction
artifacts (Yang 2006, p.19).

Therefore, we developed new theory for PoMo to incor-
porate C distributed mutation rate heterogeneity across sites
(Yang 1994). The new theory is necessary as only the muta-
tion rates are heterogeneous across sites, whereas drift rates
stay constant for our model (see Materials and Methods). A
simulation study with bmm-simulate showed high accu-
racy when estimating the C shape parameter and other
parameters on trees with twelve species.

Furthermore, species tree search can be performed with
fixed parameters. Manual specification of parameters is useful
when detailed knowledge is available or when likelihoods are

compared between different analyses. In practice, we often do
not have total control over the number of individuals in the
population that are sampled and sequenced (e.g., sequences
are retrieved from existing databases, resequencing runs failed
or are simply too costly even for as few as ten individuals). We
therefore present two strategies, called weighted binomial
and weighted hypergeometric sampling, to initialize the like-
lihoods of the PoMo states at the leaves of the trees, and to
account for this missing data problem.

ModelFinder
Model selection, which includes finding the best-fit mutation
model as well as a model of mutation rate heterogeneity
across sites, is crucial when performing molecular phyloge-
netic analyses. The improved implementation of PoMo allows
for highly flexible polymorphism-aware phylogenetic analyses
in that the most suitable evolutionary model for the data at
hand can be automatically determined using statistical model
search with ModelFinder (Kalyaanamoorthy et al. 2017).
ModelFinder is a model selection framework in IQ-TREE which
has now been made available for IQ-TREE-PoMo. The Bayesian
(Schwarz 1978) or the Akaike (Akaike 1973) information
criterion are employed to determine the best-fit model.

Bootstrapping
IQ-TREE-PoMo is fast enough to allow for bootstrapping
(Efron 1979; Felsenstein 1985) on large data sets. Evaluation
of branch support values using the branch-wise approximate
likelihood ratio test (SH-aLRT, Guindon et al. 2010) as well as
standard nonparametric bootstrap (Efron 1979) and ultrafast
bootstrap (UFBoot2, Hoang et al. 2018) is now possible. The
ability of bootstrapping was tested on a data set of great ape
genomes (see Materials and Methods, Prado-Martinez et al.
2013).

Results

Big Data
The phylogenetic analysis of the simulated MSAs of 100 spe-
cies with ten sampled individuals each shows that consider-
ation of heterozygosity improves estimates considerably
compared with the standard concatenation approach.
Branch score distance (fig. 1; Kuhner and Felsenstein 1994),
as well as Robinson–Foulds distance (supplementary fig. S1,
Supplementary Material online; Robinson and Foulds 1981)
strongly decrease, especially when sufficient data are available.
Remarkably, IQ-TREE-PoMo already outperforms concatena-
tion for as little as ten genes (10,000 sites) and exhibits branch
score distances around ten times more accurate when 1,000
genes (one million sites) are available. Further, the progression
of branch score distance for the concatenation method with
increasing amount of data is not monotonically decreasing.
The average run time (wall-clock time) of IQ-TREE-PoMo for
1,000 genes which corresponds to a sequence length of one
million sites is 12.3 6 0.7 h on a 2.6 GHz processor with 16
physical cores (Intel Xeon CPU E5-2650 v2 @ 2.60 GHz). The
concatenation method is approximately six times faster
(260:25 h).
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Advanced Models
We assess the accuracy of estimating rate heterogeneity by
focusing on the shape parameter a of the C distribution. The
relative error (difference between true and estimated value in
percent) of the shape parameter a for ten replicate analyses is
usually within two percent (see fig. 2 for a ¼ 0:3, 1.0, and 5.0,
respectively) but can be higher for more extreme a values
(�20 and�400 percent for a ¼ 0:1, and 10, respectively; cf.
supplementary figs. S2–S4, Supplementary Material online
which also show the relative error of the variance of the as-
sociated C distributions). The relative errors in terms of
branch score distance and the transition to transversion ratio
parameter of the HKY mutation model j are mostly below
0.5 and one percent, respectively.

The heterozygosity h determines the level of polymor-
phism present in the species. We tested the accuracy of
PoMo with increasing heterozygosity because for high values
of h the model assumption of having boundary mutations
only is violated. We observe low errors in branch score dis-
tance for heterozygosity values up to h ¼ 0:1 in analyses of
species trees with twelve species with ten individuals each
and a tree height of 3Ne (fig. 3).

For the case of uneven sampling of individuals of the
populations, we tested two different strategies to account
for the missing data in the poorly sampled populations. We
found that weighted binomial sampling outperforms
weighted hypergeometric sampling (see Materials and
Methods).

ModelFinder and Bootstrapping
Model selection and bootstrapping were tested on data of 12
great ape species (see Materials and Methods). For PoMo, the
GTR (Tavar�e 1986) mutation model with C rate heterogene-
ity was determined to be the best fitting model. The inferred
C shape parameter is 1.26. The estimated phylogeny (fig. 4)
confirms previous results (Schrempf et al. 2016). UFBoot2 and
SH-aLRT both report 100 percent support for all branches.

Discussion
The analysis of data from 100 species underlines that IQ-
TREE-PoMo is fast and scales well with increasing number
of species. The chosen species tree exhibits a significant
amount of ILS, and hence, it is expected that our method
which accounts for polymorphisms has higher accuracy than
concatenation. In contrast to the concatenation method,
which exhibits statistical inconsistency (fig. 1) as previously
reported by Degnan and Rosenberg (2009) and Degnan
(2013), the branch score distance of IQ-TREE-PoMo contin-
uously decreases when more data are analyzed (fig. 1).

Further, it is now possible to infer parameters of more
advanced sequence evolution models with IQ-TREE-PoMo.
When modeling mutation rate heterogeneity, the shape pa-
rameter a of the C distribution is recovered with relative
errors below two percent for 0:3 � a � 5:0. The inferred
value of a ¼ 1:26 for the great ape data set lies well in this
range. We observe a slight overestimation of the shape pa-
rameter, when a significant amount of sites evolves extremely
slowly and is nearly invariant (a � 0:1, supplementary fig. S2,
Supplementary Material online). Similarly and as expected,
when the mutation rate distribution is homogeneous
(a � 10:0), the variability of estimated shape parameters is
higher (supplementary fig. S4, Supplementary Material
online).

We decided against implementing the invariant sites
model. The reason is that polymorphisms are the conse-
quence of strictly positive mutation rates. When mutation
rates are zero, polymorphic states have a stationary frequency
of zero. This means that observed polymorphic sites cannot
be meaningfully assigned to any model state. Note that this is
conceptually different from observing a variable site pattern
when using a classical substitution model with invariant sites,
because then each character has a nonzero stationary fre-
quency, only the variable site pattern has a likelihood of
zero. The identity matrix could also be used as transition
probability matrix for invariant sites with PoMo, but this
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FIG. 2. Relative errors of the transition to transversion ratio Dj, the heterozygosity Dh, and the shape parameter of the C distributed mutation rate
heterogeneity Da. The true shape parameter is a ¼ 0:3 (A), a ¼ 1:0 (B), and a ¼ 5:0 (C), respectively.

FIG. 1. Branch score distance of concatenation approach and IQ-
TREE-PoMo with N¼ 10 and weighted binomial sampling for Yule
trees with 100 species and ten individuals each. The tree height mea-
sured in coalescent units is 6Ne, where Ne is the effective population
size. The HKY model was used for both inference methods. The het-
erozygosity is hW ¼ 0:005 per site. Each gene spans 1,000 sites. The
error bars are standard deviations of ten replicate analyses.
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would mean that two boundary states with different alleles
have the same “distance” as two neighboring states in the
PoMo state space. Besides, we strongly believe that, if the data
exhibit nearly invariant sites, those are sufficiently covered by
C distributed mutation rate heterogeneity with low shape
parameters.

As Mallo (2017) reported increased errors of the estimates
of PoMo for high heterozygosity values up to h ¼ 0:05, we
tested the robustness of our approach in this respect. We find
that the accuracy of IQ-TREE-PoMo with respect to branch
score distance increases with heterozygosity values up to
h ¼ 0:1, which is well above the observed value in primates
(h � 0:001, Prado-Martinez et al. 2013) and most other
organisms (except, Lynch et al. 2016).

With respect to sampling strategies (see Materials and
Methods), weighted binomial sampling has been repeatedly
observed to be the most accurate (e.g., fig. 3) and is used by
default. However, weighted binomial sampling has a minor
disadvantage as heterozygosity is overestimated compared
with the data. When observing polymorphic sites, the likeli-
hood of monomorphic states is initialized to zero. But when
observing monomorphic sites, the likelihood of polymorphic
states is initialized to nonzero values leading to an increased
level of heterozygosity. Weighted hypergeometric sampling
reduces the overestimation of heterozygosity (and exactly
retains the level of heterozygosity when the number of sam-
ples is equal to the number of PoMo frequency bins) but has
other disadvantages such as undefined behavior when the
number of samples at a single site and leaf is larger than
the number of PoMo frequency bins.

Further, as more advanced mutation models are now avail-
able, the choice of the statistically most adequate mutation
model is of major importance. ModelFinder does not require
user input and is fast. The likelihood improvement when
accounting for mutation rate heterogeneity is also tested
for and, consequently, the most appropriate mutation rate
heterogeneity model is reported and automatically used.

For the great ape data set, the best-fit model for PoMo
coincides with results from concatenation methods and from
the phylogenetic analysis in the original paper (Prado-
Martinez et al. 2013). In the latter case, not only the model

choice coincides, but also the topology, which is a further
confirmation of the validity of PoMo.

Additionally, assessment of branch support values is now
possible with normal bootstrap, UFBoot2 and likelihood ratio
based tests (SH-aLRT). Branch support values for the primate
data are high because 2.8 million sites are considered. This is
not surprising and emphasizes the high confidence of the
results, but not necessarily low systematic error—a general
problem of bootstrap analyses on large data sets. However,
especially for smaller data sets, assessment of branch support
values will be highly useful. In the future, we will investigate
the utility of the jackknifing options already available in IQ-
TREE in the context of PoMo species tree estimation from
very large data sets.

Overall, we provide important extensions to further estab-
lish the use of polymorphism-aware models in phylogenetics.
Although we observe that PoMo is robust with respect to
higher levels of heterozygosity, an additional sensitivity anal-
ysis under balancing selection may be useful. In the future, we
would also like to implement probability distribution free rate
category models (Kalyaanamoorthy et al. 2017). Furthermore,
by enabling nonreversible mutation models consistent with
heterogeneous mutation rates (Lie–Markov models,
Woodhams et al. 2015), we envisage the possibility of quan-
tifying the deviations of the evolutionary process from revers-
ibility when assuming stationarity.

IQ-TREE offers an extensive set of mutation models, allows
usage of new model selection methods such as ModelFinder,

FIG. 3. Branch score distance of weighted binomial and weighted
hypergeometric sampling for Yule trees of height 3Ne with twelve
species and ten individuals each. Heterozygosity varies between 0.01
and 0.1.

FIG. 4. Phylogeny inferred from primate data (Prado-Martinez et al.
2013). Both, UFBoot2 (Hoang et al. 2018) and SH-aLRT (Guindon
et al.2010) branch support tests evaluated to hundred percent sup-
port values.
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and comes with other benefits such as the ability to resume
analyses (checkpointing), or carefully designed parallelization
techniques. In conclusion, PoMo has evolved to be a mature,
well-tested and flexible method to perform phylogenetic in-
ference with population data.

Materials and Methods

PoMo
A detailed description of PoMo and the discrete multivariate
boundary mutation model can be found in Schrempf et al.
(2016) and Schrempf and Hobolth (2017), respectively. PoMo
is a time-continuous Markov process modeling sequence evo-
lution along a species tree. Sites are assumed to be indepen-
dent (composite likelihood, free recombination). At each site,
not only evolution of a single character a 2 A (e.g.,
A ¼ fA; C;G; Tg, jAj ¼ 4) of the reference genome is con-
sidered but rather the evolution of the collective characters of
a population of genomes.

Actual populations are big in size and direct treatment is
not feasible. For neutral evolution, effective population size is
confined with mutation rates. It is possible to scale down the
effective population size to a small value while scaling up
mutation rates such that the overall dynamics remain
unchanged. We take advantage of this property by choosing
a rather small number of collected characters N of the mul-
tivariate boundary mutation model. Consequently, the pa-
rameter N should be interpreted as a discretization parameter
(not to be confused with effective population size) describing
the number of bins that allele frequencies can fall into.

The rates of frequency shifts are determined using the
time-continuous Moran process (Moran 1958). PoMo
assumes that drift removes variation fast, and mutations
are disallowed when more than one allele is present in the
population. Hence, the population can either be
monomorphic for an allele a 2 A or polymorphic for two
alleles a; b 2 A with counts i and ðN� iÞ, respectively. The
monomorphic and polymorphic states of the multivariate
boundary mutation model are denoted by {a} and
fiajðN� iÞbg; a 6¼ b, respectively. Disallowing mutations
when the population is polymorphic is a good approximation
as long as the heterozygosity is below a value of 0.1, a require-
ment that is readily satisfied in most cases.

The transition rate matrix

Q ¼ QM þ QD; (1)

of dimension jAj þ jAj
2

� �
ðN� 1Þ is composed by muta-

tion (M) and genetic drift (D). The only off-diagonal, nonzero
entries of QM are mutations away from monomorphic states

ðQMÞfag!fðN�1Þaj1bg ¼ qab; (2)

where the qab are mutation rates defined by an underlying
mutation model such as the HKY mutation model (Hasegawa
et al. 1985), or the GTR mutation model (Tavar�e 1986). Drift
rates are nonzero for neighboring states only
(1 � i � N� 1)

ðQDÞfiajðN�iÞbg!fði61ÞajðN�i71Þbg ¼
iðN� iÞ

N
: (3)

Diagonal elements of QM and QD are set such that all row
sums are zero.

Big Data
For the simulation of large data sets, we employed a pipe-
line that follows (Schrempf et al. 2016). First, ten species
trees with 100 leaves were randomly generated under the
Yule birth model (Yule 1925). Each of the ten species trees
is referred to as one of ten replicates. The height of the
species trees measured in number of generations was 6
times the effective population size which is assumed con-
stant. The Yule birth rate was set such that the expected
number of species for the given height is 100. Second, for
each replicate, 1,000 gene trees were simulated under the
multispecies coalescent model. SimPhy (Mallo et al. 2016)
was used for these steps. Finally, for each gene tree, DNA
sequences with 1,000 sites were generated with Seq-Gen
(Rambaut and Grassly 1997) under the HKY mutation
model (Hasegawa et al. 1985). The transition to transver-
sion ratio was j ¼ 6:25, the stationary nucleotide fre-
quencies were pA ¼ 0:3; pC ¼ 0:2; pG ¼ 0:2, and
pT ¼ 0:3. The simulated sequences had a heterozygosity
of 0.005 which is approximately four times the value ob-
served in primates (e.g., Prado-Martinez et al. 2013).

Estimation of the original species trees with 100 leaves
was performed with IQ-TREE using either PoMo or a stan-
dard concatenation method. The HKY model was used for
both methods. The discretization parameter of the mul-
tivariate boundary mutation model was N¼ 10 and
weighted binomial sampling was used. Command lines
for simulation and analysis are in supplementary
Section S1, Supplementary Material online. The accuracy
of the inferences was measured by comparing the esti-
mated to the original species trees. Trees were normalized
to a tree height of 1.0. The branch score distance and the
Robinson–Foulds distance were used.

High Heterozygosity
For the assessment of the accuracy of tree inference for dif-
ferent heterozygosity levels (fig. 3) the same simulation pipe-
line was used. In contrast to above, the height of the species
trees was 3 times the effective population size, the number of
taxa was twelve, and the heterozygosity values were 0.01, 0.05,
and 0.1, respectively.

Simulator
Although the above pipeline corresponds to the way how
methods based on the multispecies coalescent model per-
form inference, estimates of PoMo are accurate (fig. 3 and
Schrempf et al. 2016). When considering mutation rate het-
erogeneity, we have to keep in mind that the mutation rates
of the multivariate boundary mutation model are not inde-
pendent of the effective population size. A mutational event
fag ! fðN� 1Þaj1bg; a; b 2 A; a 6¼ b, corresponds to a
mutation in the real population with subsequent frequency
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shift to a value of 1=N. Of course, the probability of such an
event depends on the effective population size of the real
population. As a result, higher mutation rates in the multi-
variate boundary mutation model, associated with a higher
probability to be in a polymorphic state when species split,
lead to a higher probability of ILS.

In contrast, the probability of ILS derived by the multi-
species coalescent model does not explicitly depend on the
mutation rate. For example, a rooted, three-taxon tree has a
probability of ILS proportional to e�cDt=Ne (e.g., Nei 1987),
where c is a constant, Dt is the branch length of the internal
branch measured in number of generations, and Ne is the
effective population size. These considerations urged us to
develop a multivariate boundary mutation model simulator
for direct assessment of the accuracy of mutation rate het-
erogeneity inference.

Advanced Models
Heterogeneity in evolutionary rates across sites may be
modeled with a parametric distribution such as the C
distribution (Yang 1994). For the multivariate boundary
mutation model, complications arise because the transi-
tion rate matrix contains contributions from mutations
QM as well as frequency shifts due to random genetic drift
QD. A general scaling of the transition rate matrix, like it is
usually done when using C rate heterogeneity with sub-
stitution models, would erroneously (de)accelerate both
processes. This difficulty was overcome by employing the
concept of mixture models.

In brief, K mutation rate categories with rate modifiers rk

and corresponding probabilities 1=K of a site belonging to a
category are defined. The total likelihood of a mutation model
accounting for mutation rate heterogeneity Mh and species
tree T given data D is

LðMh; TjDÞ ¼ PrðDjMh; TÞ ¼
XK

k¼1

1

K
PrðDjQk; TÞ; (4)

where

Qk ¼ rkQM þ QD: (5)

Hereby, the mutation rates modifiers rk are the means of the
mutation rate categories. The latter is similar to the classical
treatment using C rate heterogeneity, however, this setup
allows modeling of mutation rate heterogeneity with any
free mutation rate categories. We chose to use a
parameterized C distribution because it is most used.
Naturally, the usual efficiency of C rate heterogeneous models
is not retained, because the transition matrices for different
mutation rate categories are intrinsically different. That is, an
analysis with k categories requires eigendecomposition of k
transition rate matrices.

The accuracy in estimating the shape parameter of the C
distributed mutation rate heterogeneity was assayed using
bmm-simulate. Species trees were randomly sampled
from a Yule process. The tree height measured in average
number of substitutions per site was h¼ 0.01. The speciation

rate k was set such that n¼ 12 species are present on average.
That is (e.g., Kendall 1949)

k ¼ 1

h

Xn

i¼1

1

i
� 1

 !
: (6)

For each sampled species tree, sequences were simulated un-
der the discrete multivariate boundary mutation model. The
discretization parameter N was set to 10, and the heterozy-
gosity to 0.0025. Similar to the big data analysis above, the
HKY mutation model was used with j ¼ 6:25 and stationary
nucleotide frequencies pA ¼ 0:3; pC ¼ 0:2; pG ¼ 0:2, and
pT ¼ 0:3. Four C mutation rate categories were used and
one million sites were simulated. Ten replicate analyses with
different, randomly sampled species trees were performed.
The shape parameter a of the C distributed mutation rate
heterogeneity was set to 0.1, 0.3, 0.5, 1.0, 5.0, and 10.0.
Command lines for simulation and analysis with rate hetero-
geneity are in supplementary Section S2, Supplementary
Material online.

Sampling
Interpretation of data is mostly predetermined when using
phylogenetic substitution models, because at the leaves of the
tree, an observed character C can directly be mapped to a
character of the alphabet A of the used substitution model.
For example, the likelihoodL of a character a 2 A at this site
and leaf is

LðajCÞ ¼
1:0 if a¼C;

0 otherwise:

(
(7)

Special handling is required when encountering an unknown
character N (not to be confused with the discretization pa-
rameter). Then, the likelihood is

LðajNÞ ¼ 1:0 8a 2 A; (8)

because all characters have the same probability of leading to
the observed character N.

Equivalently, we designed various strategies to initialize the
likelihoods of all multivariate boundary model states at the
leaves of the tree. The simplest strategy is to binomially sam-
ple N alleles from the observed data and initialize the leaf
likelihood to

LðajCÞ ¼
1:0 if a¼ sampled state ;

0 otherwise;

(
(9)

similar to equation (7). We refer to this strategy as
sampled.

We can also initialize the leaf likelihoods to the probabil-
ities of leading to the observed data, similar to handling un-
known sites with substitution models in equation (8).
Assuming binomial sampling, and when observing M alleles
at the considered site and leaf (0 � i � N; 0 � j � M;
a; b; c; d 2 A) the likelihood is

Polymorphism-Aware Phylogenetic Models . doi:10.1093/molbev/msz043 MBE

1299

Deleted Text: boundary mutation model
Deleted Text: boundary mutation model
Deleted Text: boundary mutation model
Deleted Text: -
Deleted Text: parametrized
Deleted Text: bmm-simulate
Deleted Text: boundary mutation model
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz043#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz043#supplementary-data


LðfiajðN� iÞbgjfjcjðM� jÞdgÞ

¼
M
j

� �
i

N

� �j N� i

N

� �M�j

if a¼c and b¼d;

0 otherwise:

8>><
>>:

(10)

We have termed this way of initializing likelihoods weighted
binomial sampling. In the same manner, the likelihood with
weighted hypergeometric sampling is initialized as

LðfiajðN� iÞbgjfjcjðM� jÞdgÞ

¼
i
j

� �
N� i
M� j

� �
= N

M

� �
if a¼c and b¼d;

0 otherwise:

8>><
>>:

(11)

More details on the sampling strategies are given in supple-
mentary Section S3, Supplementary Material online.

Bootstrapping Using Real Data
We revisited the great ape data set of six species subdivided
into 12 populations with up to 23 individuals each (Prado-
Martinez et al. 2013). The exome-wide data set includes
roughly 2.8 million, 4-fold degenerate sites. Data preparation
is described in De Maio et al. (2015), the counts file is available
on https://github.com/pomo-dev/data, last accessed March
11, 2019.

For the analysis, we used ModelFinder and assessed branch
support with 1,000 bootstraps. We tested estimations with
and without C mutation rate heterogeneity with four discrete
categories combined with UFBoot2 and SH-aLRT. The discre-
tization parameter was N¼ 9. The command used was
iqtree -s hg18-all.cf -alrt 1000 -bb 1000.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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