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Abstract: Demethoxycurcumin (DMC), a derivate of curcumin, has been shown to induce apoptotic
cell death in human glioblastoma multiforme GBM 8401 cells via cell cycle arrest and induction
of cell apoptosis. However, there is no report showing DMC suppresses glioblastoma multiforme
cells in vivo. In the present study, we investigated the effects of DMC on GBM8401 cells in vivo. At
first, we established a luciferase-expressing stable clone named GBM 8401 /Iuc2. Second, mice were
inoculated subcutaneously with GBM 8401/luc? cells to generate a xenograft tumor mice model.
After inoculation, tumor volume reached 100-120 mm?, and all mice were randomly divided into
three groups: Group I was treated with 110 puL phosphate-buffered solution (PBS) containing 0.1%
dimethyl sulfoxide, Group II with 30 mg/kg of DMC, and Group III with 60 mg/kg of DMC. Mice
from each group were given the oral treatment of DMC by gavage for 21 days. The body weight and
tumor volume were recorded every 3 days. DMC significantly decreased the tumor volumes, and
60 mg/kg treatment showed a higher decrease in tumor volumes than that of 30 mg/kg, However,
DMC did not affect the body weights. The photons emitted from mice tumors were detected with
Xenogen IVIS imaging system, DMC at both doses decreased the total photon flux and 60 mg/kg
treatment of DMC has low total photon flux than that of 30 mg/kg. The tumor volumes and weights
in 60 mg/kg treatment of DMC were lower than that of 30 mg/kg. Immunohistochemical analysis
was used to measure protein expression of tumors and results showed that DMC treatment led to
lightly staining with anti-Bcl-2 and -XIAP and 60 mg/kg treatment of DMC has lighter staining with
anti-Bcl-2 and -XIAP than that of 30 mg/kg. The higher dose (60 mg/kg) of DMC has higher signals
of cleaved-caspase-3 than that of the lower dose (30 mg/kg). Furthermore, the hematoxylin and
eosin (H&E) staining of liver tissues showed no significant difference between DMC-treated and
control-groups. Overall, these observations showed that DMC suppressed tumor properties in vivo
and DMC may be used against human glioblastoma multiforme in the future.
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1. Introduction

Gliomas, which originate in the parenchyma of the central nervous system (CNS), are
the most common type of adult primary brain tumors. Gliomas are also the most common
CNS neoplasms, which are characterized by aggressive growth, high malignant degree,
and poor prognosis. There are three subtypes of human gliomas, such as astrocytomas,
oligodendrogliomas, and ependymomas. Glioblastoma resides within the category of
astrocytoma [1]. The World Health Organization (WHO) divides gliomas into Grade I
pilocytic astrocytoma, Grade II diffuse astrocytoma, Grade III anaplastic astrocytoma, and
Grade IV glioblastoma [2,3]. Grades III and IV represent the majority of brain tumors [4].
The glioblastoma (GBM) shows a poor prognosis.

Curcuminoids, polyphenol pigment compounds, are the turmeric’s main active ingre-
dients, which are extracted from the Curcuma longa rhizome. Curcuminoids contain three
major bioactive ingredients, including curcumin (CUR), demethoxycurcumin (DMC), and
bisdemethoxycurcumin (BDMC), which are in a ratio of 77:17:3 [5]. CUR has biological
activities such as anti-inflammatory, antioxidant, and anti-cancer [6-9], anti-arthritic and
lipid-modifying [10], and analgesic and immune-regulatory [11]. Still, its poor solubility in
water and easy degradation in vitro and in vivo limit its applications [12]. DMC has similar
biological properties to CUR, but it is chemically stable [13]. DMC showed the most potent
inhibition of excision repair cross-complementation 1 (ERCC1), which plays a significant
role in the incision at the 5’ site of damaged DNA from cisplatin treatment when compared
to other curcuminoids [14].

Numerous studies have shown that DMC inhibited cell proliferation in many human
cancer cells. DMC induced cell apoptosis in human prostate cancer cells, brain malignant
glioma GBM 8401 cells, and skin cancer cells [15-17]. Besides, it induced DNA damage
and apoptosis in human lung cancer NCI-H460 cells and oral cancer SCC-4 cells [18-20].
Moreover, DMC was more efficient than TMZ on anti-gliomas and glioma stem cells
(GSCs) [21-23].

Although DMC has been shown to retard the growth of GBM 8401 cells and induced
cell apoptosis in vitro [16]. However, there is no available information to show DMC affects
GBM 8401 cells in vivo. Thus, the current study aims to investigate the effects of DMC on
the GBM 8401 cell xenograft mice model in vivo and results indicated DMC significantly
reduced tumor growth in vivo.

2. Results
2.1. DMC Markedly Inhibited Glioblastoma Tumor Growth

To examine the anti-tumor effects of DMC, we established human glioblastoma (GBM
8401 cells) bearing animal models. The animal experiment flow chart was displayed in
Figure 1A DMC was used to treated glioblastoma mice for 21 days and mouse tumor size
was measured by caliper every three days. At the end of treatment, mice were sacrificed
and tumors were removed. After treatment of DMC, mouse tumor growth was effectively
suppressed and a significant difference was found from day 6 at high dose (60 mg/kg)
of DMC treatment (Figure 1B). In Figure 1C,D, tumors were excised, photographed, and
weighed on day 21, and the low (30 mg/kg) and high dose (60 mg/kg) of DMC both can
reduce the size and weight of tumors.

2.2. DMC Markedly Reduced the Signal Intensity of Luc2 from Glioblastoma-Bearing Mice

Luc2 signal of the tumor, which represents tumor growth, was collected by BLI every
week. Figure 2A shows bioluminescent images of mice from each group on days 0, 7, 14,
and 21. Luc2 signal intensity from the control group was increased almost 150 times more
as compared to day 0 in the control group (Figure 2B). The low dosage (30 mg/kg) of
DMC and high dosage (60 mg/kg) both effectively delayed the luc2 intensity growth in
glioblastoma tumors. As compared to the low dosage of DMC, the high dosage of DMC
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showed superior tumor inhibition capacity, showing weak luc2 signals. Furthermore, these
results were consistent with the tumor size data.
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Figure 1. Tumor growth was inhibited by DMC treatment. (A) An animal experiment flow chart was displayed. (B) Tumor
volume was measured by caliper every three days and quantified. (C) Tumors were isolated and photographed from each
group of mice on day 21. (D) Tumor weight was also measured and quantified. (a! p < 0.05 and a? p < 0.01 vs. control;
b! p < 0.05 and b? p < 0.01 vs. DMC 30 mg/kg).
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Figure 2. Luc2 signals from living tumor cells were suppressed by DMC treatment. (A) The representative BLI results from
each group at different time points. (B) Quantification results of luc2 signal intensity of tumors. (a2 < 0.01 vs. control;
bl p <0.05 and b? p < 0.01 vs. DMC 30 mg/kg).
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2.3. DMC Suppressed Anti-Apoptosis and Induced Apoptosis Factors in
Glioblastoma-Bearing Mice

Mice were sacrificed on day 21 and then their tumors were isolated for further valida-
tion. Here, we performed IHC staining to investigate the alteration of apoptosis-related
markers after DMC treatment. First, we investigated the expression of Bcl-2 and XIAP, both
of them were recognized as anti-apoptosis markers, which suppressed the tumor apoptosis
effect. After DMC treatment, the protein levels of Bcl-2 and XIAP were decreased around
50-80% as compared to control (Figure 3A,B), indicating DMC decreased anti-apoptosis
markers. Besides, we also validated whether apoptosis-related factors were induced at the
same time. In Figure 3C,D, the levels of cleaved caspase-3 and BAX were increased two to
three times more by DMC as compared to control. The evidence suggested that DMC may
suppress tumor growth via regulating apoptosis signaling of glioblastoma.
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Figure 3. Apoptosis-related proteins were modulated by DMC treatment. (A) The IHC staining images of Bcl-2 and XIAP
were observed by microscope with 100 times magnification. (B) Quantification results of Bcl-2 and XIAP protein levels
as compared to control. (C) The IHC staining images of cleaved caspase-3 and BAX were observed by microscope with
100 times magnification. (D) Quantification results of cleaved caspase-3 and BAX protein levels as compared to control.
(a% < 0.01 vs. control; b! p < 0.05 vs. DMC 30 mg/kg).

2.4. DMC Treatment Did Not Induce Acute or Delayed Toxicity of Glioblastoma-Bearing Mice

H&E staining of mice liver was performed in order to identify whether the dosage
of DMC used in this study may trigger any toxicity in mice. As shown in Figure 4A, no
differences in liver tissues were found in the three groups. Additionally, body weight was
also used to monitor general toxicity during the treatment period. In Figure 4B, mouse
body weight did not change more than 20% at every time point, indicating no signs of
acute or delayed toxicity.
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Figure 4. No acute or delayed toxicity was found in DMC-treated glioblastoma-bearing mice. (A) Liver pathology

photograph from the microscope with 100 times magnification. (B) Mouse body weight was measured and recorded every

three days.

3. Discussion

Cancer is still a severe health problem worldwide and it continues to be a leading
cause of death in the human population. So far, many plant-derived compounds such
as taxol [24], vinblastine [25], and topotecan [26] have been used as anti-cancer drugs for
cancer therapy. Around 75% of the clinically used anti-cancer drugs are derived from
natural plants, animals, and microorganisms [27], and especially the phytochemicals were
used for promising cancer preventative agents and attract research interest [28-30]. Nu-
merous studies have shown that DMC induced cell apoptosis in many human cancer cells
in vitro [15-20], including human brain malignant glioma GBM 8401 cells [16]. However,
DMC’s anti-tumor activity on the human malignant glioma xenograft mouse model had
no available information. Therefore, we used athymic nude mice inoculated with GBM
8401/luc? cells for investigating the inhibitory effects of DMC on the growth of GBM 8401
cell xenograft tumor for further clinical use in the future. The whole overall outline of these
experiments is shown in Figure 1A.

During the treatment, individual tumor size from each treatment (0, 30, and 60 mg/kg
of DMC) was measured by caliper every three days and luc2 signal of the tumor was
acquired from BLI every week for treatment of DMC on glioblastoma mice up to 21 days.
Results indicated that DMC at both doses significantly reduced tumor volume compared
to control and the group at the higher dose of DMC showed higher inhibition of tumor
volume than that of the lower (Figure 1B). At the end of treatment, all mice were sacrificed
and the tumors were isolated, photographed, and weighted from each mouse of each group
and the results are shown in Figure 1C,D. Results indicated that a low dose (30 mg/kg)
and a high dose (60 mg/kg) of DMC both could reduce the size and weight of tumors
when compared to control (Figure 1C,D). These results indicated that DMC at both doses
significantly reduced tumor weights in mice. For the orthotopic glioblastoma xenograft
mode, the anti-tumor effects of DMC are not better than temozolomide (the first-line clinical
drug for the treatment of brain cancer) [31]. Thus, we will develop nanoparticles loaded
with DMC for penetrating the blood-brain barrier.

Twelve mice were inoculated subcutaneously with GBM 8401/ uc2 cells and randomly
separated into three groups (control, 30 mg/kg and 60 mg/kg of DMC groups) and fol-
lowed by Xenogen IVIS imaging system 200 to detect the photons emitted from mice tumor.
The Xenogen IVIS imaging system is suitable for examining the effects of test chemicals on
inhibiting tumor growth in xenograft animal models [32]. The represented bioluminescent
imaging of mice from each group on days 0, 7, 14, and 21 was displayed using the Xenogen
IVIS imaging system (Figure 2A). Luc2 signal intensity from the control group increased
almost 150 times more than day 0 (Figure 2B). Both doses of DMC effectively delay the Luc2
intensity growth in glioblastoma tumors. The higher dose (60 mg/kg) of DMC has higher
inhibition of luc2 signal than the lower dose (30 mg/kg). Furthermore, this result was
consistent with tumor size data. These observations indicated DMC inhibited the tumor
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growth in vivo, moreover, DMC significantly reduced tumor volumes and weights (Figure

1B-D) and a higher dose of DMC has a higher inhibition of tumor growth in vivo. It was
reported that DMC played a major role against heavy metal-induced neurotoxicity and has
neuroprotective properties [33]. Herein, results clearly indicated that the administration of
DMC (30 and 60 mg/kg) delayed brain tumor development in xenograft animal models.
DMC was superior to TMZ in its ability to inhibit cell proliferation and induce apoptosis of
GSCs in vitro and in vivo [34]. Therefore, we may suggest that DMC may have the potential
to develop against brain tumors in the future.

In order to further investigate regarding DMC reduced the growth of GBM 8401 /Iuc2
cell xenograft tumor in nude mice, after treatment, all tumors were collected, stained, and
conducted by immunohistochemical analysis. We selected the expressions of anti-apoptotic
proteins such as Bcl-2 and X-linked inhibitor of apoptosis (XIAP) and pro-apoptotic proteins
such as caspase-3 and Bax for evaluating the DMC’s apoptosis effects. The procaspase
levels decreased via the formation of cleaved-caspases during the activation of caspases [35]
and apoptosis is regulated by BAX and Bcl-2 (apoptosis-related protein), known as Bcl-2
family members [36]. Results indicated that DMC significantly inhibited the expressions of
Bcl-2 and XIAP (Figure 3A,B). Bcl-2 is well documented that is an anti-apoptotic protein and
its level decreased will lead to apoptosis. XIAP protein mediates chemotherapy resistance
and apoptosis resistance [37] and it is a potent inhibitor of cell death that involved the
inhibition of specific caspases [27]. Herein, our findings also showed that XIAP might
be one of the mechanisms for reduced tumor volumes and weight in the GBM 8401 cell
xenograft tumor mice model.

Herein, we showed the effects of oral administration of DMC (0, 30, and 60 mg/kg) on
the tumor growth of GBM 8401 /luc2 cell xenograft animals and results showed that DMC
did not significantly affect the body weights (Figure 4A,B). Furthermore, we examined the
liver samples with or without DMC treatment and results indicated no cytotoxicity in liver
tissues on all tested animals. Based on these observations, DMC is a suitable and potential
compound for further investigation related to anti-glioma in vivo.

In summary, overall results showed reduced growth of the GBM 8401 cell xenograft
tumor, including the reduction of the tumor volumes and weights by DMC through the
induction of apoptosis, based on markedly decreased Bcl-2 and XIAP but significantly
increased the cleaved caspase-3 and BAX in tumor tissues from the immunohistochemistry
of tumor sections in the DMC treatment groups. Our findings could contribute to a better
understanding of human glioblastoma’s molecular mechanisms after exposure to DMC.
Thus, it may provide additional targets for developing the new target therapies associated
with GBM patient outcomes in the future.

4. Materials and Methods
4.1. Chemicals and Reagents

Demethoxycurcumin (DMC) was bought from ChemFaces (Wuhan, China) and pre-
pared as 150 mg/mL stock by dimethyl sulfoxide (DMSO) (Sigma Chemical Co., St. Louis,
MO, USA). Hygromycin B was obtained from Santa Cruz Biotechnology, Inc. (Dallas,
TX, USA).

4.2. Cell Culture of Human Glioblastoma GBM8401 Cells

The human glioblastoma cell line (GBM 8401 cells, successfully established from
Chinese female with brain glioblastoma multiforme) [38] was obtained from the Food
Industry Research and Development Institute (Hsinchu, Taiwan). GBM 8401 cells were
maintained in RPMI-1640 (Life Technologies, Carlsbad, CA, USA) containing 10% heat-
inactivated fetal bovine serum (FBS) (Hyclone Laboratories, Logan, UT, USA), 2 mM
L-glutamine, and antibiotics (100 U/mL penicillin and 100 pg/mL streptomycin) in a 10-cm
culture dish in a humidified atmosphere of 5% CO;, incubator at 37 °C [39].
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4.3. Cell Transfection and Stable Clone Selection

Before transfection, confluency of at least 80% of GBM 8401 cells was reached before
the transfection procedure. JetPEI™ transfection reagents and pGL4.50 luciferase reporter
(pGL4.50 [Iuc2/CMV]) vector were obtained from Polyplus Transfection (Illkirch, Bas-Rhin,
France) and Promega (Madison, WI, USA), respectively. According to the manufacture
protocol, the detailed transfection and stable clone selection methods were described in
our previous studies [40,41]. After transfection, hygromycin B (200 pg/mL) was used to
screen and maintain luc2 expression in GBM 8401 cells. GBM 8401 cells with luc2 signals
were selected by IVIS 200 Imaging System (Xenogen, Alameda, CA, USA) and identified as
GBM 8401 /Iuc2 cells.

4.4. Xenograft GBM 8401 Bearing Animal Model

Twelve male athymic CAnN.Cg-Foxnlnu/CrlNarl (NUDE), 6-8 weeks old, were
purchased from the National Laboratory Animal Center (Taipei, Taiwan). The animals
were maintained in standard cages in a filtered airflow at 25 °C. China Medical University
had approved the study (CMU 2019-204). Animals were allowed to acclimate for 7 days,
then GBM 8401/ luc2 cells (1 x 107 cells/mouse) were subcutaneously injected into each
mouse’s right flank to form a glioblastoma animal model [40,41].

4.5. Treatment and Physical Tumor Growth Validation

The tumor size of each animal was measured every three days using calipers. After
the tumor grew for 14 days and its size reached an average of 100 mm?, twelve mice were
randomly separated into three groups: Control (0.1% DMSO), 30 or 60 mg/kg of DMC
groups. The animal study was schematized in Figure 1. Treatment drugs were diluted in
100 puL PBS containing 0.1% DMSO and administered by gavage daily. Tumor volume was
measured by digital caliper and calculated by the equation: V =L x W? x 0.523 (where V
is the volume, L is the length, and W is the width) [40,41]. Tumors from each mouse were
removed, photographed, and weighed after 21 days’ treatment.

4.6. In Vivo Bioluminescent Imaging (BLI)

Mice from each group were intraperitoneally injected with 150 mg/kg D luciferin
(Promega, Madison, WI, USA), 15 min before being anesthetized using 1-3% isoflurane
for BLI scanning. Image acquisition was performed by IVIS 200 Imaging System and luc2
signal intensity was quantified by Living Image software (Version 2.20, Xenogen, Alameda,
CA, USA) [41].

4.7. Liver Pathology and Tumor Immunohistochemistry Staining

The liver and tumor tissue isolated from mice were fixed with 10% neutral buffered
formalin and embedded by paraffin. The liver tissue section stained with hematoxylin and
eosin (H&E) was used as an anatomical pathology diagnosis to compare untreated and
DMC-treated mice [42]. Tumor immunohistochemistry staining of Bcl-2, XIAP, cleaved
caspase-3, and BAX was performed as previously described [41].In brief, tumor sections
from the individual group of mice were incubated with primary monoclonal anti-Bcl-2
(1:300 dilution; Cell Signaling, MA, USA), anti-XIAP (1:300 dilution; Elabscience Biotechnol-
ogy Inc., Houston, TX, USA), anti-cleaved caspase-3 (1:300 dilution; Cell signaling, Danvers,
MA, USA), and anti-BAX antibodies (1:300 dilution; Rosemont, IL, USA) at 4 °C overnight.
Then, followed with secondary antibodies staining for 1 hr and wash twice by rinse buffer
before Horseradish Peroxidase Streptavidin (HRP Streptavidin) inoculation. Finally, slides
were dehydrated, stabilized with mounting medium, and scanned by Nikon ECLIPSE Ti-U
microscope (x 100 magnification, Nikon Instruments Inc., Melville, NY, USA). A total of five
view images was quantified by Image ] and used to represent the protein level alteration
(version 1.50, National Institutes of Health, Bethesda, MD, USA) [43]. Image was quantified
by Image ] IHC tool box developed. The procedure of analysis was followed by the proto-
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col described on the website (https://imagej.nih.gov/ij/plugins/ihc-toolbox/index.html,
since 2014, accessed on 1 January 2021) [44].

4.8. Statistical Analysis

Data are all expressed as mean =+ standard error. Comparison between two groups
was performed using one-way ANOVA by GraphPad prism 7 software (San Diego, CA,
USA). The p value of less than 0.05 was considered to indicate statistical significance.
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