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Globally, cardiovascular diseases are the leading cause of death. Research

has focused on the metabolism of carbohydrates, fatty acids, and amino

acids to improve the prognosis of cardiovascular diseases. There are three

types of branched-chain amino acids (BCAAs; valine, leucine, and isoleucine)

required for protein homeostasis, energy balance, and signaling pathways.

Increasing evidence has implicated BCAAs in the pathogenesis of multiple

cardiovascular diseases. This review summarizes the biological origin, signal

transduction pathways and function of BCAAs as well as their significance

in cardiovascular diseases, including myocardial hypertrophy, heart failure,

coronary artery disease, diabetic cardiomyopathy, dilated cardiomyopathy,

arrhythmia and hypertension.
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Introduction

Approximately 17.9 million people die from cardiovascular diseases, representing
32% of global deaths (1). More attention should be given to elucidating the pathogenesis
of the disease. As a high energy consuming organ, the heart is more sensitive to nutrient
metabolism (2). Therefore, a metabolic defect can have a significant impact on cardiac
health and disease development. Traditionally, fatty acids and glucose are the two main
metabolic substrates of the heart (3). Recent studies also found that heart failure is
associated with ketone body utilization, which functions as a compensatory mechanism
in maintaining cardiac energy homeostasis (4, 5). Are there other nutrient ingredients
involved in the pathogenesis of heart failure, such as amino acids? Branched-chain
amino acids (BCAAs) are the most plentiful amino acids in proteins. They belong
to the group of essential amino acids, which in animals are only present in small
amounts. Aberrant BCAA homeostasis has been observed in a number of disorders,
such as type 2 diabetes, liver cirrhosis, renal failure, and cancer (6–9). They present
diverse biological functions in the pathogenesis of these diseases. BCAA metabolism has
been shown to be effective in preventing or treating hepatic encephalopathy, reducing
fatigue during exercise, promoting healing, and stimulating insulin production (10–12).
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Recently, the development of cardiovascular diseases has also
been linked to elevated levels of BCAAs (13–15).

Branched-chain amino acid
synthesis, metabolism and
catabolites

Although BCAAs are essential amino acids that cannot
be synthesized by animals, their synthesis occurs in bacteria,
fungi, and plants (16). In these species, BCAAs are derived
from the transamino precursor of valine, α-ketoisovaleric
acid, which is synthesized by the same enzymes as valine and
isoleucine (16). Pyruvate is the source of carbon in valine
and leucine, while the carbon in isoleucine is derived from
threonine. Unlike most amino acids, the first step of BCAA
catabolism does not occur in the liver because branched-
chain aminotransferases (BCATs) are the first enzymes in
the BCAA catabolic pathway, which have low activity in the
liver. In humans, BCAAs are primitively transaminated to
form branched-chain α-keto acids (BCKAs) by BCATs (17).
There are two genes that encode BCATs: BCAT1 and BCAT2.
BCAT1 encodes a cytoplasmic protein and is mainly expressed
in the brain, while BCAT2 encodes a mitochondrial protein
(18, 19). The second catabolic enzyme of BCAAs, branched-
chain α-ketoacid dehydrogenase (BCKDH), is a multienzyme
complex located on the inner surface of the mitochondrial
inner membrane that shares many of the same properties as the
pyruvate dehydrogenase complex. Similar to the PDH complex,
BCKDH catalyzes oxidative decarboxylation, releases carbon
dioxide (CO2), and adds a coenzyme a (CoA) moiety to the
oxidized BCKA product. Branched acyl-CoA ester is generated
through irreversible decarboxylation of BCKA. BCKDH is
regulated by phosphorylation and dephosphorylation. Specific
kinase-mediated phosphorylation leads to inactivation, and
specific phosphatase-mediated dephosphorylation activates
the enzyme (20–22). A mitochondrial-targeted type 2c
serine/threonine protein phosphatase, PP2Cm, has been
identified as a key phosphatase of BCKDH and plays a critical
role in regulating BCAA catabolism and homeostasis. BCKDH
kinase is allosterically inhibited by BCKAs, whose maximal
affinity is for α-ketoisocaproic acid (α-KIC), allowing the
elevation of BCKAs to promote their own oxidation (23).
Eventually, the carbons of BCAAs are either lost as carbon
dioxide or enter the tricarboxylic acid cycle (Figure 1).

Albeit that BCAAs are catabolized in mitochondria, the
catabolic intermediates in this process are not trapped in the
mitochondrial matrix. For example, 3-hydroxyisobutyric acid
(3-HIB), which is part of the valine catabolic pathway, is
secreted from muscle cells into plasma, activates endothelial
fatty acid transport, stimulates muscle fatty acid uptake in vivo
and promotes lipid accumulation in muscle, leading to insulin
resistance in mice (24). Meanwhile, one of the leucine oxidation

FIGURE 1

Catabolism of branched-chain amino acids. TCA, Tricarboxylic
acid cycle.

products, acetoacetate, can be detached from the matrix prior
to ketone oxidation. Before being oxidized by BCKDH, the
α-carbon of α-keto acids can be reduced to generate branched
α-hydroxy keto acids, while a small fraction of α-KIC can
also be converted to beta-hydroxy-beta-methylbutyrate (HMB)
by cytoplasmic dioxygenases (25, 26). BCAAs also facilitate
the synthesis of several distinctive lipids, ranging from n-acyl
amino acids to branched-chain fatty acids and odd-chain fatty
acids (27).

Branched-chain amino
acid-regulated signaling pathways

mTOR

In addition to serving as energy substrates, BCAAs and
their metabolites play a critical role in the body in metabolic
regulation and signal transduction. The regulation of leucine
on the targets of the mTOR pathway is the most intensively
studied area (28–30). Leucine activates mTORC1, a key
growth regulator, and controls a number of cellular processes,
including protein synthesis and cell growth (31–33). mTORC1 is
signaled by amino acids through Rag guanosine triphosphatases
(GTPases). GATOR1 and GATOR2 regulate Rags, and sestrin2
(a GATOR2-interacting protein) inhibits mTORC1 signaling
(33). Therefore, leucine activation of mTORC1 in cells requires
Sestrin2, which suggests that Sestrin2 is a leucine sensor of the
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FIGURE 2

BCAA-regulated signaling pathways. GDH, glutamate dehydrogenase; RAG, RAS-related GTP-binding proteins; ROS, reactive oxygen species.

mTORC1 signaling pathway (33, 34). Notably, a small GTPase
called SAR1B was recently found to bind to leucine and activate
mTORC1 through conformational changes (35). Meanwhile,
both glutamate dehydrogenase and valine metabolites are
involved in several signaling pathways (24, 36, 37). BCAAs
activate mTOR in various metabolic responses. For example,
mTOR activation also triggers metabolic changes in tissues,
such as muscle and liver, by altering insulin sensitivity (38–42).
BCAAs and BCKAs can also inhibit pyruvate and fatty acids in
transport and utilization (39, 43).

Glutamate dehydrogenase

Leucine is a poor substrate for glutamate dehydrogenase
(GDH) and is a metabolic activator of the enzyme. A dual
mechanism for GDH flux regulation of autophagy was
identified, both by delivering cellular amino acid availability to
MTORC1 and by generating reduced equivalents that interfere
with reactive oxygen species (ROS) accumulation (Figure 2)
(44). Meanwhile, in low-glucose states, leucine and α-KIC are
strong insulin secretagogues. In contrast, leucine stimulates
insulin release by activating glutamate dehydrogenase,
and α-KG is formed by the oxidative deamination of
glutamate by GDH (45). Protein meal-induced hypoglycemia,
hyperinsulinemia and hyperammonia are symptoms caused
by GDH mutations resulting in leucine hyperactivation
(by reducing GTP inhibition) (46). Additionally, α-KIC
functions as a strong insulin secretagogue, in part through its
transamination, which generates both leucine to activate GDH
and α-KG to enter the TCA cycle (47).

Branched-chain amino acids in
risk factors related to
cardiovascular diseases

Inflammation

Chronic inflammation has a pivotal role in cardiovascular
diseases, and it is both a marker before the onset of heart
failure with preserved ejection fraction (HFpEF) and a factor
in the death of HFpEF (48, 49). Obesity, also a cardiovascular
risk factor, can lead to systemic inflammation in the body
and then promote macrophage release of proinflammatory
cytokines to infiltrate adipose tissue (50, 51). The role of
BCAA catabolism in adipogenesis and resistance to adipocyte
inflammation has been elucidated; however, the role of BCAA
catabolism in macrophage function is unclear (52, 53). In
a recent article, it was mentioned that increased uptake of
leucine was found after stimulation of the RAW264.7 mouse
macrophage cell line using lipopolysaccharide under normal
oxygen supply and hypoxic conditions, suggesting that LPS
stimulation of macrophages leads to an increase in BCAAs
as alternative carbon sources for glucose and glutamine
(54). Another article showed significant anti-inflammatory
effects of both acute and chronic BCAA supplementation and
highlighted the potential role of isoleucine, one of the BCAAs,
in modulating the immune profile of macrophages prior to
LPS stimulation (55). Macrophage BCAT1, which interferes
with metabolic reprogramming, has also been suggested as an
attractive therapeutic target for chronic inflammatory diseases
(56). All these results demonstrate that although the exact
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mechanism is unknown, BCAA metabolites and enzymes
in their metabolic pathways may be involved in systemic
inflammatory cardiovascular diseases such as HFpEF by causing
chronic inflammation in non-cardiac cells such as adipocytes
and immune cells.

Aging

The incidence of cardiovascular diseases increases
significantly with aging. Downregulation of BCAT1 was
found to be a highly significant feature in aged mice (57).
A recent clinical trial also suggests that continuous BCAA
supplementation may be associated with improved poor
nutritional status in elderly patients and that specific BCAA
supplementation may also enhance cognitive performance
as mitochondrial function improves (58). Meanwhile, several
studies have shown that weakness produced by aging is
associated with low blood BCAA levels and changes in other
amino acids (59, 60). In one study, BCAA consumption was
positively correlated with leukocyte telomere length in middle
age but negatively correlated with frailty in old age (61). It
has been shown that long-term dietary BCAA manipulation
impacts lifespan in mice by regulating food intake in a way that
involves interactions with other amino acids, such as tryptophan
and threonine (30). Although BCAAs have been shown to be
associated with aging in many articles and clinical trials, the
specific mechanisms involved in aging and the pharmacological
targets for exerting interventions are still unclear, and further
studies are needed.

Obesity

Obese patients with disorders of glucolipid metabolism have
also been found to have atrial and ventricular remodeling (62–
64). People with obesity have larger left ventricle dimensions,
partly due to both an increased intravascular volume and altered
LV filling properties (65). A metabolomic analysis of plasma
from obese and lean populations showed abnormal BCAA
catabolism and increased plasma BCAA levels in obese people,
and this phenomenon is associated with insulin resistance due
to obesity (29). Studies have shown that BCAAs are closely
associated with abnormalities in glucose and lipid metabolism,
but the underlying mechanisms are poorly understood (15,
66, 67). Meanwhile, in brown adipose tissue (BAT), cold
stimuli enhance mitochondrial BCAA uptake and oxidation,
which leads to enhanced BCAA clearance in the circulation,
and in turn, defective BCAA catabolism in BAT results in
defective BCAA clearance and thermogenesis, leading to the
development of diet-induced obesity and glucose intolerance
(68, 69). It was suggested that impaired BAT activity reduced
systemic BCAA clearance in the presence of obesity or diabetes,
while active BAT served as an important metabolic filter for

circulating BCAAs, protecting the body from obesity and
insulin resistance (70). However, the specific pathways between
abnormal BCAA metabolism and obesity and their possible
targets of intervention need further study.

Diabetes mellitus

Diabetes is one of the major risk factors for cardiovascular
diseases, and its cause of heart disease is the leading cause
of death in diabetic patients. A series of observational studies
have shown that elevated levels of circulating BCAAs in vivo
are significantly associated with poor metabolism (71–75). It
has long been documented that leucine seems to have direct
effects on hypothalamic and brainstem processes involved in
satiety (76). Several articles have also reported that BCAAs
regulate the release of hormones such as leptin, GLP1 and
gastrin, which may influence food intake and glucagon levels
(77–79). Supplementation of BCAAs to cultured muscle cells
resulted in activation of mTOR, impaired insulin-stimulated
Akt/protein kinase B phosphorylation and reduced insulin-
stimulated glucose uptake (74, 80). In clinical studies, elevated
blood levels of BCAAs were positively correlated with insulin
resistance and HbA1c levels (81, 82). Several longitudinal
studies in different cohorts reported that elevated blood levels
of BCAAs predicted future insulin resistance or type 2 diabetes
mellitus (T2DM) (73, 83). Meanwhile, genetic analysis suggests
that elevated plasma levels of BCAAs are associated with
an increased risk of developing T2DM (84, 85). This raises
another point that elevated BCAAs may be the result of
insulin resistance, but it is also possible that elevated BCAAs
may in turn cause diabetes through insulin resistance (85).
As with diabetes, almost all cardiovascular diseases, such as
heart failure and coronary heart diseases, have varying degrees
of metabolic disorders, and the role of insulin resistance in
cardiovascular diseases has long been reported (86, 87). It is
certain that BCAA metabolic abnormalities do exist in obese
patients, but whether BCAAs are involved in the altered vascular
structure and metabolic disorders present in obese patients
needs further elucidation.

Branched-chain amino acids in
cardiovascular diseases

Heart failure

As one of the most common cardiovascular diseases, heart
failure is a threat to human health. According to the reduction
of ejection fraction, heart failure can be divided into heart
failure with reduced ejection fraction (HFrEF) and heart failure
with preserved ejection fraction (HFpEF). The development of
heart failure is associated with major changes in myocardial
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metabolism. Overexpression of Kruppel-like factor 15 in heart
failure inhibits BCAA catabolism and leads to accumulation
of BCKAs in the myocardium, which can directly impact
mitochondrial function and cellular viability (13). The early
stages of heart failure are characterized by compensatory
ventricular hypertrophy in response to increased hemodynamic
stress, which is also associated with increased circulating BCAAs
and BCKAs in humans and animal models (13, 88, 89). Prior
diversion of BCKA to the reamination pathway may contribute
to the constitutively high rate of protein synthesis, leading
to myocardial hypertrophy and poor structural remodeling
(21). Investigation of changes in the cardiac phosphorylation
proteome after exposure to elevated BCKAs showed that
chronic increases in BCKA could lead to the development
of pathologic cardiac hypertrophy and impaired cardiac
contractility (21). Meanwhile, the gene expression of PP2Cm, a
key regulator of BCAA catabolism, is reduced in hypertrophic
hearts and further reduced in failing hearts (87). Mouse
models carrying the genetically inactivated PP2Cm-encoding
gene ppm1k (PP2Cm-KO) show a further decline in cardiac
function with increasing age when compared to wild-type mice
(90). At the same time, eight weeks after transverse aortic
constriction (TAC), PP2CM-KO mice showed a significant
reduction in left ventricular ejection fraction, ventricular
dilatation, and elevated wet lung weight (90). Abnormal BCAA
metabolism can lead to myocardial hypertrophy through insulin
resistance, and ventricular remodeling due to myocardial
hypertrophy can induce heart failure (91). After upregulation
of BCKDH activity with the branched-chain α-keto acid
dehydrogenase kinase inhibitor BT2, a reduction in systolic
dysfunction and myocardial insulin resistance present in
HFrEF was observed along with enhanced BCAA oxidation
and reduced accumulation of BCAAs and BCAAs in the
heart (13, 92). The role of BCAAs in the pathogenesis
of HFpEF, for which no definitive treatment is available,
has not been elucidated. However, it is worth noting the
metabolism of non-cardiomyocytes, such as macrophages, in
recent studies showing that macrophages cause fibrosis and
diastolic dysfunction in HFpEF (93–95). Meanwhile, the enzyme
BCAT, which initiates BCAA catabolism, regulates macrophage
metabolic reprogramming, and the mitochondrial oxidative
stress generated by inhibition of BCAA activity may lead to
downregulation of metabolites between citrate and succinate in
the tricarboxylic acid cycle (56, 96). The role of myocardial and
non-myocardial BCAA metabolic pathways in the pathogenesis
of heart failure deserves further investigation.

Coronary artery disease

Coronary artery disease (CAD) is the most common
cardiovascular disease (97). Although glucose and fatty acid
metabolism have been recognized as core CAD mechanisms
(98), scientists have demonstrated an independent relationship

between elevated BCAA levels and the risk of CAD, regardless
of the nature of the observed mechanism behind the elevated
BCAA levels. The association between BCAAs and the risk
of coronary heart disease remained significant after adjusting
for traditional risk factors for coronary heart disease (99–
101). The metabolism of the heart is dominated by fatty acid
and glucose metabolism, and the heart consumes much less
BCAA than other organs, so it is unlikely that a decrease
in cardiac BCAA catabolism alone leads to an increase in
plasma BCAAs (102–104). However, inhibition of systemic
BCAA catabolism by knocking down the PP2Cm gene leads
to elevated circulating and cardiac BCAA levels, which can
compete with and inhibit gluconeogenesis in the heart via
a non-transcriptional mechanism and exacerbate the cardiac
response to ischemia/reperfusion (I/R) injury (13, 14). A recent
discovery showed that BCAA/BCKA enhanced cardiac fatty
acid oxidation levels by transcriptionally upregulating PPAR-α
expression, thereby exacerbating lipid peroxidation toxicity and
cardiac vulnerability to I/R injury (15). In the postinfarct heart,
cardiac BCAA catabolism is impaired, resulting in myocardial
BCAA accumulation; then, BCAAs activate myocardial mTOR
signaling and subsequently contribute to cardiac dysfunction
and remodeling following myocardial infarction (MI) (105).
The metabolites of valine, one of the BCAAs, α-ketoisovaleric
acid and propionyl-CoA show stronger effects on platelet
activation than other BCAA metabolites, and propionyl-
CoA is a key mediator of the BCAA metabolic pathway
that mediates platelet activation. Excessive platelet activation
can lead to microthrombosis, which can cause myocardial
ischemia and infarction (106, 107). Additionally, dietary BCAA
supplementation can not only facilitate platelet activation and
increase thrombosis risk but also worsen contractility and
increase infarct size following myocardial infarction (105, 106).
These results reveal that abnormal branched-chain amino acid
catabolism plays a crucial role in CAD (both MI and I/R),
and the major signaling pathway mTOR and some of its
intermediate metabolites are involved in myocardial metabolic
reprogramming, leading to ventricular remodeling.

Diabetic cardiomyopathy

Diabetic cardiomyopathy is a disease of the heart muscle
that cannot be explained by hypertension, coronary artery
atherosclerotic heart disease, or other heart diseases. A report
found decreased BCAA metabolizing enzyme activity in
myocardial tissue of mice with diabetic cardiomyopathy,
suggesting abnormal BCAA catabolism (108). More
importantly, cardiac ischemia–reperfusion injury with
enhanced fatty acid oxidation was ameliorated after silencing of
the PPARα pathway in mice with impaired BCAA metabolism,
suggesting that PPARα may be a downstream pathway of
BCAA metabolism leading to diabetic cardiomyopathy (15).
A series of studies have suggested significant activation
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of the leucine-directed mTOR pathway in type 2 diabetic
cardiomyopathy, and activation of the pathway also leads to
further myocardial injury by inducing cellular autophagy and
apoptosis (109, 110). However, autophagy is enhanced in type
1 diabetes but inhibited in type 2 diabetes, implying that the
involvement of BCAA catabolism in diabetic cardiomyopathy
cannot be simply generalized.

Dilated cardiomyopathy

Dilated cardiomyopathy (DCM) is a primary myocardial
disease of undetermined cause. It is characterized by left
or right ventricular or bilateral ventricular enlargement with
reduced ventricular contraction (111). A recent article analyzing
specimens from patients with DCM found that inhibition of the
lysosomal autophagy pathway was associated with the mTOR
pathway, while metabolic analysis revealed a significant increase
in valine and leucine in DCM hearts and a significant decrease
in the levels of the protein phosphatase PP2Cm (112). An article
suggests that embryonic mice lacking the mTOR pathway have
significant developmental defects in the myocardium and can
rapidly lead to dilated cardiomyopathy (113). However, the
specific mechanism of BCAA metabolism involved in DCM
is still unclear.

Arrhythmia

A recent article reveals that the mechanisms by which
plasma BCAAs content increased in mice contribute to the pro-
arrhythmic state are associated not only with genetic BCAT2
deficiency, but also with acquired metabolic disorders such as
diabetes, obesity and heart failure in which BCAA metabolism is
impaired (114). In addition, when cardiomyocytes derived from
human pluripotent stem cells were exposed to a high BCAAs
environment, they also developed calcium dysregulation and
arrhythmias similar to those in mice (114). A metabolic analysis
of plasma samples from patients with cardiovascular disease and
a prospective cohort study suggest that a significant correlation
between elevated plasma BCAA levels and the occurrence
of arrhythmias and strokes (115, 116). However, the specific
pathways and genes involved in BCAA metabolic abnormalities
leading to arrhythmias have not yet been identified, and
more clinical evidence is warranted to validate this BCAA-
associated phenotype.

Hypertension

Hypertension is one of the most important risk factors for
cardiovascular diseases and a key factor in the damage to blood
vessels. Several cohort studies have shown that higher BCAA

FIGURE 3

BCAAs and cardiovascular diseases. Impaired BCAA metabolism
leads to less BCAA translocation into the TCA, activating mTOR
and GDH pathways and accumulating BCKAs and further leads
to metabolic reprogramming, mitochondrial damage and
cellular autophagy. These processes are also involved in cellular
inflammation, aging, obesity and diabetes mellitus, and further
contribute to cardiovascular disease.

intake, in particular valine intake, is associated with a higher risk
of incident hypertension (117–120). However, due to the diverse
pathogenesis of hypertension, the exact mechanism of BCAAs
in the development and progression of hypertension has not yet
been elucidated, and further investigation is needed to unravel
the complexity behind the circulating concentrations of BCAAs.

Conclusion and perspective

Branched-chain amino acids (BCAAs) and their metabolites
can affect a variety of cellular processes, such as cell growth,
protein synthesis, glucose metabolism and lipid metabolism.
When BCAA catabolism is impaired, the oxidation of BCAA
produces less acetyl coenzyme A and succinyl coenzyme A
into the tricarboxylic acid cycle, while the mTOR complex
and GDH are continuously activated, which, together with
the accumulation of intermediate metabolites BCKAs, can
further lead to metabolic reprogramming and reactive oxygen
species production, resulting in mitochondrial damage and
cellular autophagy. The above processes can not only be
directly involved in cardiovascular diseases but also indirectly
contribute to cardiovascular diseases by exacerbating systemic
chronic inflammation, obesity, aging, diabetes and other
cardiovascular disease risk factors (Figure 3). BCAAs have
therapeutic potential, yet many controversies remain in the
clinical application of BCAAs, and careful studies are needed
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to elucidate the effectiveness of BCAAs in most indications.
Future goals include clarifying the specific mechanisms and
therapeutic targets of BCAA involvement in cardiovascular
disease and individualizing treatment based on specific patient
characteristics.
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