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Dilations and degeneracy 
in network controllability
Liam Chung1, Derek Ruths1 & Justin Ruths2*

Network controllability asserts a perspective that the structure—the location of edges that connect 
nodes—of the network contains important information about fundamental characteristics of our 
ability to change the behavior that evolves on these networks. It can be used, for example, to 
determine the parts of the system that when influenced by outside controlling signals, can ultimately 
steer the behavior of the entire network. One of the challenges in utilizing the ideas from network 
controllability on real systems is that there is typically more than one potential solution (often 
many) suggested by the topology of the graph that perform equally well. Picking a single candidate 
from this degenerate solution set over others should be properly motivated, however, to-date 
our understanding of how these different options are related has been limited. In this work, we 
operationalize the existing notion of a dilation into a framework that provides clarity on the source of 
this control degeneracy and further elucidates many of the existing results surrounding degeneracy in 
the literature.

Since the field of network controllability was stoked back into existence in 20111, there has been a surge in interest 
to apply techniques from structural control on real systems2–11. These efforts have been frustrated by the fact that 
many degenerate—seemingly equally good—options exist for achieving control over the dynamics of a network. 
In particular, network controllability enables finding a smallest set of nodes that must be influenced by external 
inputs in order to steer the state of each node in the network to any arbitrary desired value. The degeneracy of this 
problem is the fact that there are many different sets of externally controlled nodes that have the same cardinal-
ity. Because work to-date has largely taken this node perspective, sampling or iteration-based approaches have 
been used to probe and understand the landscape of control degeneracy4,9,12. This perspective effectively works 
backwards, seeking to summarize and distill insight from the combinatorial explosion of options that compose 
control degeneracy. These tools are informative and can ultimately produce the degenerate sets of controlled 
nodes. However, they fail to deliver a comprehensive understanding of the causal source of this degeneracy, 
especially at a practical level that helps to choose between equivalent control strategies.

In this paper, we advance a framework based on the study of dilations to provide a unifying perspective 
on degeneracy. Roughly, dilations are the expansion points in the network that create the need for controlling 
inputs. While the concept of dilations in structural control was made clear at the outset in 197413, it has not been 
leveraged to identify the origin of equivalent control sets. Here we show that many of the recent observations 
about network controllability, especially with regard to degeneracy, can be elegantly described through this new 
framework.

Our dilation-based framework permits the ability to clearly understand which nodes are alternate choices 
and how these alternate choices are interrelated across the entire network. A dilation-based approach also ena-
bles analyzing the controllability of networks under perturbation (e.g., edge removal), by clarifying the role that 
edges play in granting controllability.

We review the context of the problem, introduce several new definitions and discuss their consequences. 
Ultimately, we show that this dilation-based framework provides the ability to not only reproduce many of the 
existing results in the literature but also enhanced insight into the underlying causal mechanisms that give rise 
to various network control properties.

Network controllability
The time evolution of a process on a directed network N = (V ,E) , with vertex set V and edge set E, can be 
modeled by a state x(t) = [x1(t), x2(t), . . . , xn(t)]

T that captures the value of the process at each of the n nodes 
at the time step t. The update of this state over time can be modeled with linear, time-invariant (LTI) dynamics

(1)x(t + 1) = Ax(t),
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where the n× n matrix A models the connectivity between nodes (the transpose of the adjacency matrix, Aij is 
the weight of the edge from node xj to node xi ). While such a LTI model is often a significant simplification of the 
actual behavior, it allows for analysis of first-order effects, such as the impact of external control on the system. 
Before more sophisticated models are studied, the properties of linear systems must first be well understood. 
Here the process evolves freely from an initial condition and the dynamics is characterized completely by the 
matrix A, i.e., N = (V ,E) = G(A) , where V = X = {x1, . . . , xn} and E = EA = {(i, j) : Aji �= 0} . When we seek to 
control the process behavior, we do so through the application of external inputs u(t) = [u1(t), u2(t), . . . , um(t)]

T

where the n×m matrix B models the connections between the m inputs to the states ( Bij is the weight of the 
edge from the input uj to the node xi ). Now the process is driven by these inputs, which can be considered as a 
special type of node, which has a node value but is not influenced by other nodes. This interpretation gives rise 
to an augmented network whose dynamics is characterized by both A and B, i.e., N = (V ,E) = G(A,B) , where 
V = X ∪ U  and E = EA ∪ EB with U = {u1, . . . , um} and EB = {(i, j) : Bji �= 0} . We call the selection of input-
to-state connections of the control augmented graph a control configuration.

One of the most fundamental control properties is controllability, which addresses whether it is possible, 
through direct manipulation of the input vector u(t) over some finite period of time, to drive x(t) to reach any 
arbitrary vector value in Rn . A controllable control configuration is able to change the current network state from 
any arbitrary initial value x0 = x(0) to any arbitrary final value xT = x(T) through the application of exogenous 
inputs u(t) over the time horizon t = 0, . . . ,T . Controllabilty captures the intertwining of the original network 
A and the inputs B, so this assessment is for a specific control augmented graph, and for the same network the 
outcome can change if the control configuration is changed. A control configuration G(A, B) is controllable if 
and only if the matrix C = [B,AB,A2B, . . . ,An−1B] , called the controllability matrix, is of full rank n14. The rank 
operation is sensitive to the structure of A and B but also to the numeric values of the edge weights. Edge weights 
are often unknown (or can fluctuate) and for large graphs computing the rank becomes a numerical challenge.

Structural Control is a tool to analyze the control properties of linear time invariant systems using only struc-
tural connectivity, the architecture of edges connecting nodes. It assumes structured matrices A and B, which 
only captures knowledge of the absence of edges, i.e., fixed zero values of the matrices13. This abstraction allows 
structural control to study systems generically, which studies which topologies have good properties, ignoring 
pathological cases where edge weight symmetries cause a problem. Structural controllability can be determined 
by whether the generic rank of the controllability matrix is equal to the number of states, n13,15. Another distinc-
tive benefit of structural control is that properties can be assessed directly using network algorithms.

Because systems modeled as networks are often composed of actors (nodes) of the same type (e.g., humans in 
social networks, proteins in biochemical networks) and because these systems were not engineered by humans, 
the problem of finding a good control configuration often arises in the network context. The control configura-
tion design problem aims to identify the number and the location of external inputs (i.e., choose the matrix B) 
to confer desirable control properties, like controllability. Here, we aim to find the smallest, or minimal, control 
configuration with the fewest inputs m that guarantees (structural) controllability. While the minimum number 
of controls is a unique integer that is computed from the network structure G(A), there are typically more than 
one minimal control configuration that employs the minimum number of inputs16. Although this degeneracy 
provides a great deal of flexibility to the control configuration design problem, it greatly confuses the imple-
mentation of controlling a network, since there are many ways to connect inputs to the network. In this work, 
we provide a framework to not only capture, but also explain, the underlying equivalences between groups of 
nodes that govern the generation of the degenerate controllable control configurations.

Dilations.  Dilations in networks are defined as sets of nodes that have fewer nodes pointing in to them (in-
neighbors) than there are nodes in the set. Intuitively it suggests that since fewer nodes point into the set, there is 
insufficient information coming into the set to individually distinguish the nodes in the set from one another. In 
the control context, we look for deficient subsets of the state nodes. Given a set of state nodes S, we denote T(S) 
as the set of in-neighbors, the nodes which have an outgoing edge ending at a node in S.

Definition 1  In a network N = (X ∪ U ,E) = G(A,B) , we define the in-neighbors of a set of nodes S ⊆ X to be 
the set T(S) := {v ∈ V : (v, x) ∈ E, ∀x ∈ S}.

Remark 1  It is a direct consequence of the special definition and role of the input nodes U, that we do not look 
for dilations in the input nodes of a control augmented graph. The set S ⊆ X is a set drawn only from the state 
nodes, however, the in-neighbor set is drawn from both state and input sets, i.e., T(S) ⊆ V  , V = X ∪ U .

Definition 2  A dilation in a network N = (X ∪ U ,E) = G(A,B) is a set of nodes D ⊆ X such that |T(D)| < |D|.

Remark 2  Note that the in-neighbors, T(D), and the set, D, are not necessarily disjoint. A node in D with an edge 
pointing to another node in D would be considered an element of T(D).

Figure 1a provides a schematic for a simple dilation that shows their characteristic expansion. Looking at 
the “Y” structure, it is intuitive that the in-neighbor T(D) = {x1} to the set D = {x2, x3, x4} will not be able to 
differentiate the states of the nodes in D. Although the edge weights from the in-neighbor to the nodes in the set 
are unknown and may be different, the state values will, for example, all increase or decrease together (assuming 

(2)x(t + 1) = Ax(t)+ Bu(t),
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all edge weights are the same sign). It is impossible to make the value of node x2 increase and node x3 decrease 
using only the one in-neighbor (see Supplementary Section S1 for a clear example). Dilations are a fundamental 
tool for studying controllability from a graphical perspective and is confirmed in Proposition 1 below, which 
states that (assuming every state node can be reached from at least one input node) a control configuration is 
controllable if and only if the control configuration has no dilations13,15. While this connection between control-
lability and dilations explains the origin of the need for controls in a network, it is difficult to operationalize for 
testing controllability or for control configuration design.

Cacti.  If a dilation denotes the inability to control nodes in a network, a cactus captures the portions of the 
graph that can be controlled. In addition, the concept of a cactus opens the door to graphical algorithms for 
determining controllability and for facilitating control configuration design. A cactus is a subgraph that is com-
posed of a stem and buds, which we define below.

Recall a path of length ℓ is a sequence of nodes v1, v2, . . . , vℓ such that (vi , vi+1) ∈ E , for i = 1, 2, . . . , ℓ . A cycle 
of length ℓ+ 1 is a path of nodes v1, v2, . . . , vℓ with the additional edge (vℓ, v1) ∈ E.

Definition 3  Given a network N = (X ∪ U ,EA ∪ EB) , we define: 
1.	 A stem is a U-rooted path—a path whose first node is an input node, v1 ∈ U .
2.	 A bud is a cycle which has a distinguished edge that connects from one of the following to a node in the 

cycle: a stem, an input node, another bud.

Definition 4  A single cactus subgraph is a stem with any number of connected buds. Multiple vertex-disjoint 
cactus subgraphs together are called cacti.

Remark 3  A cactus is a subgraph of the original graph, which means that there are, in general, additional edges 
of the graph that are not used to build the cactus, but are still involved in the dynamics of the network.

The definition of stem and cactus (and that multiple cacti are disjoint) indicates that each input node can 
only be involved in one cactus. Because all nodes must also be reachable by an input node, every bud must be 
connected (directly or indirectly) to a stem, even if the stem is composed of only an input node. Figure 1b shows 
an example of a cactus. The following result connects the property of structural controllability to both dilations 
and cacti.

Proposition 1  For a network and given control configuration G(A, B), the following statements are equivalent:

•	 G(A, B) is structurally controllable.
•	 G(A, B) contains no inaccessible nodes and no dilations13,15.
•	 G(A, B) is spanned by cacti13,17,18.

While this result provides a way to determine the structural controllability of a given control configuration, 
it indirectly suggests how to find a control configuration that achieves complete structural controllability. Later 
work showed that the cacti, based on a collection of disjoint path and cycle families, can be constructed from a 
maximum (directed) matching of the original graph G(A)1,16,19,20. Recall that a (directed) matching is a set of edges 
without common vertices at their sources or targets (each vertex can have at most one in and one out edge in the 
matching), and that a maximum matching is the largest possible matching, given the network structure. Nodes 
with an inbound edge in the matching are called matched nodes, otherwise unmatched. A control configuration 
is designed by adding and connecting a new input to each unmatched node, making it a so-called driver node. 
Subsequently, additional edges can be added from the input nodes to cycles to create buds as needed (note that 
the nodes in a cycle are already matched hence not considered driver nodes). Although the number of edges 
in a maximum matching is unique for a given network, there is, in general, multiple different sets of edges that 

Figure 1.   (a) Characteristic expansion of a dilation and (b) an example of a cactus. The red edges (namely from 
x1 to x5 , x3 to x10 , and x7 to x8 ) are the distinguished edges of their respective buds.
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may attain a maximum matching. Thus, there are also multiple degenerate cacti and, therefore, multiple control 
configurations that achieve structural controllability of the network. We call this control degeneracy.

If a control configuration G(A, B) is specified, then a weighted maximum matching can be used to ensure that 
all input nodes are included in the cacti (or, equivalently, to identify which nodes are controllable and which are 
not)8,17,19,20. Matched nodes from a weighted maximum matching are controllable by the given control configura-
tion; unmatched nodes are not. However, there again is degeneracy in the matching and, therefore, degenerate 
choices in the nodes that can be controlled by the control configuration (although the number of controllable 
nodes is fixed). In either control configuration design or evaluation of a given control configuration, it is this 
degeneracy that has caused a large amount of ambiguity in implementing ideas related to controllability of net-
works. Both sampling-based and enumeration-based approaches have been developed to study the matching 
directly21–23 as well as applying these ideas to network controllability4,12. Unfortunately, these approaches do not 
help to explain the causal structure behind the degeneracy.

If we consider the non-controlled graph G(A) in Fig. 1a (the subgraph of only state nodes), there are three 
maximum matchings, each of cardinality one: M1 = {(x1, x2)} , M2 = {(x1, x3)} , M3 = {(x1, x4)} . Since the 
number of nodes is four and in each matching only one node has an incoming matched edge, three controls 
are required. The fact that there are three degenerate matchings indicates that there are three different control 
configurations to confer structural controllability. In the given control configuration selected in Fig. 1a, there are 
three weighted maximum matchings each of cardinality two: M1 = {(u1, x1), (x1, x2)} , M2 = {(u1, x1), (x1, x3)} , 
M3 = {(u1, x1), (x1, x4)} . In each degenerate matching, x1 is matched by the incoming edge from u1 and the three 
matchings selecting x2 , x3 , and x4 as matched, respectively. This means that x1 is always controllable and that 
either x2 , x3 , or x4 can also be controlled by this control configuration, but the number of controllable nodes is 
always two, which is the number of nodes (4) minus the number of unmatched nodes (2). The difference between 
controlling x2 versus x3 or x4 is how the actual input sequence u(t) is designed (see Supplementary Section S2).

A concise and accurate, albeit seemingly non-technical, way to understand control in a network is to consider 
that each node can “control” only one of its outbound neighbors. Cycles self-regulate, so that a single node can 
control one outbound neighbor and any number of cycles it has an edge to. One can visualize then, the influence 
of a control being propagated down the stems of the cacti. When a propagated control reaches a dilation there is 
a choice as to which node in the dilation it will “choose” to control. The others, for full structural controllability, 
will need to be controlled by other inputs. While this language of describing the influence of a control omits 
many of the details mentioned above, it is intuitive and accurate and we will use this throughout the paper with 
the knowledge that its precise meaning is grounded in the technical details of this section.

Control degeneracy from the perspective of dilations
We described how the degeneracy caused by multiple equally good maximum matchings creates the possibility 
of having multiple different minimal control configurations that enable full structural controllability.

Definition 5  The control degeneracy χN of a network N is the number (cardinality of the set) of all possible 
minimal control configurations of N.

Although the connections between dilations, the cacti, and structural controllability are made clear in Propo-
sition 1, to-date the discussion surrounding control degeneracy has been led by observing the degeneracy in the 
cacti and control configurations by way of the maximum matching. The challenge is that this does not help iden-
tify the network structures that lead to this degeneracy. This paper asserts that this degeneracy and much of the 
work surrounding control degeneracy can be explained elegantly and concisely through the lens of dilations. In 
order to achieve this aim, we need to select dilations carefully so they are independent and functionally relevant.

Quantifying the role of a dilation.  Dilations identify locations in the network where additional inputs 
need to be added to make the network structurally controllable. However, not all dilations are equivalent—they 
vary not only in cardinality of the set D, but also the cardinality of the in-neighbor set T(D). For example, 
Fig. 2a,b both have dilation sets (circled in red) with |D| = 3 , however, the in-neighbor set |T(D)| = 1 in Fig. 2a 
and |T(D)| = 2 in Fig. 2b. Given our prior discussion, this indicates that these sets require two addition inputs 
and one additional input, respectively (these are the inputs needed due to the circled dilations; fully controlling 
these networks would require adding inputs for the other dilations, namely the dilation {x1} in Fig. 2a and {x1} 
and {x2} in Fig. 2b). We define the dilation delta, or �D , for some dilation D to capture this discrepancy between 
dilation sets.

Figure 2.   Dilation examples which illustrate the need for updated definitions including Dilation Delta, Minimal 
Dilation, and Dilation Choice Set. Important dilations are circled sets of nodes.
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Definition 6  For some dilation D, the dilation delta �D is denoted as |D| − |T(D)|.

Remark 4  Note that for any set of nodes S, �S can be measured. However, S is a dilation if and only if �S > 0.

The utility of the dilation delta is that it represents how many controls will be added to the network for some 
dilation.

Identifying minimal dilations.  Ideally, we would like the sum of dilation deltas over the whole network 
to give the minimum number of controls. However, the definition of dilations does not prohibit dilation sets 
from being combined arbitrarily or overlapping and this could lead to double counting. This motivates us to 
distill dilations into their most fundamental parts. Consider, for example, Fig. 2c. The sets {x3, x4} and {x2} are 
both dilations; however the union {x2, x3, x4} is also a dilation. In using dilations as a way to identify locations in 
the network that require additional inputs, it is misleading to combine these sets because the inputs required to 
control {x2} are not functionally related to those required by {x3, x4} . To partially alleviate this issue, we can cut 
a little closer to the core of the network topology with the definition of a minimal dilation (see a similar defini-
tion in24).

Definition 7  A minimal dilation D is a dilation such that no proper subset is also a dilation.

Theorem 1  The dilation delta of any minimal dilation D is �D = 1.

(Proofs are provided in the Supplementary Section S7).

Remark 5  Given a network, the set of minimal dilations is unique.

One of the crucial properties of minimal dilations is that they are modular pieces that can be combined with 
other dilations (minimal or non-minimal) to yield other dilations. This property is not in general true for any 
two non-minimal dilations (see Supplementary Section S3).

Theorem 2  Given a network with dilation D and minimal dilation D̃ , then D ∪ D̃ is a dilation.

Identifying independent dilations.  Minimal dilations were born out of the idea that some dilations 
should not be combined. However, there are some that should be. For example, looking again at Fig. 2a, the sets 
D1 = {x1} , D2 = {x2, x3} , D3 = {x3, x4} , and D4 = {x2, x4} are all minimal dilations. Summing up the dilation 
deltas yields 4 for the entire network even though only 3 inputs are required to control this network. This dis-
crepancy is caused by the fact that adding inputs to compensate for these dilations must be considered in a par-
ticular order and are interrelated. Although selecting inputs for D2 , D3 , and D4 is contingent on the input selected 
for D1 , there is no ambiguity that an input must be added to x1 . Once this input is added, there is degeneracy in 
where the remaining two inputs should be added. This choice between the set {x2, x3, x4} is what gives rise for the 
need to aggregate minimal dilations in a meaningful way.

Having a single common in-neighbor is not the only way to cause this level of interdependency. In Fig. 2b, 
with more of a “W” structure instead of a “Y” structure, the sets D1 = {x3, x4} and D2 = {x4, x5} also lead to 
similar ambiguity. Notice that once minimal dilations are found, capturing these sets with choices comes down 
to identifying overlap in the minimal dilations. Thus, we introduce the following definition, and the core concept 
of this paper: the Dilation Choice Set.

Definition 8  Denote the minimal dilations of a network as D1,D2, . . . ,Dk . A single Dilation Choice Set (DCS) 
is the maximal union of minimal dilations that overlap with at least one other minimal dilation in the union, i.e.,

such that for each i ∈ {i1, i2, . . . , iq} there exists a j ∈ {i1, i2, . . . , iq} , j  = i , with Di ∩ Dj �= ∅ ; and q is as large as 
possible. Completing all possible maximal unions over the minimal dilations provides the complete collection 
of dilation choice sets (see Supplementary Section S4 for a rigorous definition).

Remark 6  All dilation choice sets are dilations. This follows from the fact that the union of a dilation with a 
minimal dilation is a dilation. We refer to any dilation, minimal dilation, or dilation choice set that contains 
only one node as trivial.

Remark 7  By definition, any two dilation choice sets in a network are disjoint.

Remark 8  Given a network, the collection of dilation choice sets is unique.

DCSs are built using minimal dilations that overlap, and represent the set of all choices their in-neighbors have 
for propagating control and choices possible for adding additional inputs to the network. A natural consequence 

Di1 ∪ Di2 ∪ · · · ∪ Diq
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of the definition of the DCS is that all directly controlled nodes, in any minimal control configuration for the 
network, are in a DCS (since DCSs are composed from dilations).

The DCS captures the degeneracy caused by network structures. Because minimal dilations are small, local 
structures it may be intuitive to consider DCSs as small, however, Fig. 3 readily  demonstrates that the size of the 
largest DCS in a network can range from small to quite large (see Supplementary Section S5). The majority of 
the remaining (non-largest) DCSs are typically small. Despite potentially being large, the DCS offers a modular 
way to select the directly controlled nodes in that the selections made in one DCS can be made independent 
of the selections made in other DCSs. These choices of directly controlled nodes taken together always lead to 
the same number of total network controls; different control configurations but all of the same size. Ultimately, 
it facilitates the discussion of control degeneracy by identifying its fundamental root cause, grounded in the 
network topology.

Consequences
In this discussion, we will show ways in which the DCS framework provides an alternate—and possibly more 
expressive—perspective to understand key attributes of controlling networks. We do this in part by demon-
strating how the notion of a DCS can contribute to a unified understanding of the degeneracy by relating and 
re-explaining as well as extending existing results in the literature.

Role of nodes and edges in network controllability.  When generating a minimum control configura-
tion, it is the maximum matching that dictates the unmatched nodes that receive direct input at the base of the 
stems of the corresponding cacti (these nodes have often been called “drivers”). Alternative minimum control 
configurations can be generated by sampling or enumerating alternative maximum matchings4,5,12 or by using 
the notion of the input graph to find alternatives9. Because this has largely been an approach based on sift-
ing through the degeneracy, a number of studies have quantified the role that certain nodes and edges play in 
controlling the network. The DCS concept concisely explains these categories because DCSs are by definition 
mutually disjoint.

Past work has labeled nodes as critical (always a driver), intermittent (sometimes a driver), and redundant 
(never a driver)4. A DCS framework makes these roles quite clear: a DCS composed of a single node identifies a 
node that is always a driver; a DCS containing multiple nodes identifies nodes that are sometimes drivers; and 
nodes not in any DCS are never a driver. Going further, for intermittently controlled nodes, researchers have 
defined a term “control capacity” as the probability that a node is involved in any given control configuration 
using a sampling approach5. Using our framework, the number of nodes contained within the same DCS can 
explain the fraction of all minimum control configurations in which an intermittent node participates as a driver 
(see the discussion on computing degeneracy below for more detail on this).

Theorem 3  A node is intermittent if and only if it is an element of a nontrivial dilation choice set and critical if and 
only if it is an element of a trivial dilation choice set. Otherwise the node is redundant.

Edges have similarly been categorized as critical (the number of minimum controls increases after removing 
an edge), redundant (the same set of minimum controls can be used after removing an edge), or ordinary (all 
other edges)1. This takes a node-centric view of categorizing edges by considering how edge removal effects the set 
of driver nodes. While useful, we show that taking an edge-centric view preserves more information and creates 
more natural division in the roles of edges and their effect on controlling a network. This alternate definition of 
edge classifications considers the degeneracy directly in terms of the matching and cacti.

In the spirit of the node-centric view of node classifications, edges should be categorized based on the match-
ing degeneracy: edges are critical (always in the matching), intermittent (sometimes in the matching), or redun-
dant (never in the matching). From this perspective critical edges identify parts of the cacti that coincide across 
all degenerate matchings. Because the maximum matching aims to include as many edges as possible, redundant 
edges are those that provide “shortcuts” in the graph and are not part of any cacti.

We use the simple example in Fig. 4a to illustrate the differences in the original node-centric categoriza-
tion and our new edge-centric categorization. In this example, there is only one minimal control configuration 
(controlling x1 and x2 ), but two possible matchings (cacti): either (x1, x3) or (x2, x3) in which x3 is controlled 
indirectly via x1 or x2 , respectively. Removal of either edge eliminates one of the matchings, however, the control 

Figure 3.   Survey of the dilation choice sets of 17 real networks from various applications and of various sizes. 
In each network the size of the largest DCS ranged from 1 to 91% of the network size, while the remaining (non-
largest) DCSs tended to be small (maximum 12%, average 0.1% of the network size).
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configuration is still structurally controllable. By the current (first) categorization, these edges would be labeled 
“redundant”, however, they are clearly functional in a different way than the “redundant” edge (x3, x2) in Fig. 4b, 
which is never used in a matching.

To merge both the node- and edge-centric categorizations, we propose a more refined definition in which 
critical edges appear in the same way, but is more precise in the definitions of redundant and ordinary edges.

Definition 9  Consider a network N = (X,EA) = G(A) with n nodes with m minimum number of controls 
required to achieve structural controllability. Let MN ,m be the set of all (maximum) matchings of N with m 
unmatched nodes and BN ,m be the set of corresponding input matrices such that G(A, B) is structurally con-
trollable for all B ∈ BN ,m . Suppose we remove an edge e = (i, j) ∈ EA and categorize the edge according to the 
following, letting Ñ = (X,EA \ {e}) = G(Ã) be the network N with edge e removed: 

1.	 An edge e is redundant if the following (equivalent) statements hold. 
(a)	 Edge e is not in any of the degenerate maximum matchings: e  ∈ M, for all M ∈ MN ,m.
(b)	 The maximum matchings of N and Ñ are the same: MÑ ,m = MN ,m.
(c)	 After removing edge e, all original control configurations still achieve structural controllability: 

BÑ ,m = BN ,m.

2.	 An edge e is intermittent if the following (equivalent) statements hold. 
(a)	 Edge e is in some, but not all of the degenerate maximum matchings: there exist M1,M2 ∈ MN ,m 

such that e ∈ M1 and e  ∈ M2.
(b)	 The maximum matchings of Ñ are a proper subset of those of N: MÑ ,m � MN ,m.

3.	 An intermittent edge e is matching-disrupting if after removing the intermittent edge e, all original control 
configurations still achieve structural controllability: BÑ ,m = BN ,m.

4.	 An intermittent edge e is driver-disrupting if after removing intermittent edge e, some, but not all original 
control configurations still achieve structural controllability: BÑ ,m � BN ,m.

5.	 An edge e is critical if the following (equivalent) statements hold. 
(a)	 Edge e is in all of the degenerate maximum matchings: e ∈ M, for all M ∈ MN ,m.
(b)	 There are no maximum matchings of Ñ of cardinality m: MÑ ,m = ∅.
(c)	 After removing edge e, there are no structurally controllable control configurations with m inputs: 

BÑ ,m = ∅.

In effect, these new definitions have separated the original redundant class of edges into two categories: redun-
dant and matching-disrupting intermittent. The original ordinary edges are now labeled as driver-disrupting. 
Notice that control degeneracy arises solely from both types of intermittent edges since critical and redundant 
edges are in all or none of the degenerate matchings, respectively. With this in mind, we see that the DCS frame-
work provides deeper clarity on the role of these edges.

Theorem 4  An edge terminating in a dilation choice set is always intermittent.

The simple example in Fig. 4a already demonstrated that (matching–disrupting) intermittent edges do not 
necessarily terminate in a DCS. The definition of driver-disrupting intermittent edges, however, allows us to 
make this more precise (Supplementary Section S6 provides an example of why the following result is not an 
exact condition).

Theorem 5  A driver-disrupting intermittent edge always terminates in a dilation choice set.

These two theorems clearly show that all critical and redundant edges exist outside of DCSs, in the determinis-
tic parts of the network, meaning intermittent edges capture all of the degeneracy. Moreover, because of the tight 
connection between intermittent edges and the DCS, we can now visualize control degeneracy as relatively local 
regions of degeneracy interconnected by connectivity that does not change across the matchings and cacti. We 
introduce the distinction between matching- and driver-disrupting intermittent edges to distinguish between 
degeneracy of the cacti and degeneracy of the minimal control configuration. These edge classifications and their 

Figure 4.   Current categorization of edges takes a node-centric view, however, a new edge categorization from 
an edge-centric perspective clarifies the roles that edges play in controlling a network.
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locations in the network relative to the DCSs help to provide substantiation for the in- and out-degree correla-
tions observed with the number of controls required for structural controllability3.

Global degeneracy from DCS degeneracy.  Nodes within a DCS are alternative choices for the driv-
ers of network control. These choices across all DCSs combine to reveal the true source of the degeneracy that 
appears in the maximum matching. DCSs decompose the network into sets of control-related nodes which can 
be used to determine how they contribute to the overall degeneracy due to their mutually disjoint nature.

Global degeneracy is the degeneracy χ of the whole network. The minimality and disjointness properties of 
DCSs allows for the calculation of global degeneracy to be straightforward. It is the product of the DCS degen-
eracy of every DCS in the network. We then conclude that χ = χD1

χD2
· · ·χDk

 , where D1,D2, . . . ,Dk are the 
DCSs of the network, and χD1

,χD2
, . . . ,χDk

 are their local degeneracies.
The DCS degeneracy is the degeneracy χDi of just one DCS within the context of a larger network. In the 

simple case where a DCS has one in-neighbor the DCS degeneracy is the number of nodes in the DCS, because 
the in-neighbor can control one node in the DCS and the rest must be directly controlled. However, when there 
are more in-neighbors it becomes more intricate. If the all in-neighbors (say ρ in-neighbors) pointed to all nodes 

in the DCS (say r nodes in the DCS), then the DCS degeneracy can be computed as 
(

ρ

r

)

 . However, in the more 

general case not all in-neighbors can reach all nodes in the DCS and 
(

ρ

r

)

 serves as an upper bound on the DCS 

degeneracy. The more general case can be handled through a recursive descent through the in-neighbors and 
we provide a simple algorithm in the Supplementary Information (Supplementary Section S7) to illustrate how 
this calculation could proceed.

As discussed earlier, control capacity was introduced as the “probability a node will be a driver”, under the 
assumption that all degenerate control configurations are equally likely5. A similar notion of control backbone 
was also used to quantify the role of nodes as drivers in the context of degeneracy7. The calculation of a node’s 
probability to be a driver is effectively a calculation of the fraction of all minimal control configurations in which 
the node is a driver. Past work has calculated this number through a sampling approach, however, the independ-
ence and disjoint nature of DCSs make this calculation quite simple. A result is that the control capacity, using 
DCSs, enables it to be a modular computation. To make this concrete, let v be a node in a DCS Di , χv be the 
number of minimal control configurations which contain v as a driver, and χDi ,v be the number of ways v can be 
selected as a driver within Di . Then the control capacity of node v is

which reduces the global definition on χv and χ to a calculation on χDi ,v and χDi , both of which can be calculated 
from the discussion above.

Deficient (uncontrollable) control configurations and robustness.  A control configuration is not 
fully controllable if there are too few inputs connected to the network (or connected in poorly chosen ways). 
Graphically this can either be due to nodes not being reachable from the inputs at all (e.g., a completely discon-
nected node or separate component) or multiple nodes being driven by too few inputs (e.g., the classic “Y” 
dilation in Fig. 2). In this latter case, the node values will always be related to each other, and thus the network 
cannot be fully controllable (see Supplementary Section S1). Past work aimed to quantify the nodes that are 
controllable by a given node or node set using the notion of control range25 and structural reachability by way 
of a weighted maximum matching algorithm8,26. The DCS framework, again leveraging their independent and 
disjoint nature, clarifies the scope of dependent state values in uncontrollable control configurations. If a node is 
an element of a DCS, its state value is algebraically related to that of any other uncontrolled nodes in the DCS (if 
it is the only node in a DCS, then it receives no control).

One of the ways in which a network can become uncontrollable is through changes in the graph. Adding 
edges never causes issues for structural controllability, but edge removal can. A number of studies have aimed 
to identify the properties of edges that, when removed, cause control configurations to become uncontrollable 
or require an increase in the number of control inputs, thus quantifying the robustness of the network control 
configuration. Such attempts have included categorizing edges based on their effect on the number of controls 
after removal1; quantifying the increase in number of controls required to maintain controllability as edges are 
removed in various random and targeted ways27–29; and quantifying the decrease in reachability of a network 
under edge percolation8,26. As already alluded to before, the DCS-motivated edge classification we presented 
earlier helps to clearly elucidate the roles of edges based on their impact to not only the control configurations, 
but also the matching.

Input graph.  The input graph of a directed network is defined as an undirected graph with the same nodes 
and whose edges encode alternative driver nodes that make the directed network structurally controllable9. It 
is built by connecting two nodes xi and xj in the input graph if there exists a node xk which has an edge (in the 
original network) to both xi and xj , where one node is matched and the other is not. Doing so requires effectively 
enumerating through the alternative matchings. The utility of this construction is that it identifies interchange-
able driver nodes and with an extension identifies nodes that are never selected as driver nodes across all possible 
maximum matchings.

cv =
χv

χ
=

χD1
χD2

. . . χDi−1
χDi ,vχDi+1

. . . χDk

χD1
χD2

. . . χDk

=
χDi ,v

χDi

,
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The difficulty in using the input graph for deeper understanding of network controllability, is that it is dis-
tilled from the degeneracy of the matching rather than built from the source of the degeneracy: dilations. This is 
underscored in the description of the input graph as capturing “correlation of [minimum input sets] and nodes 
in control”9; whereas here the DCS offers a causal explanation for the nodes involved in network control. There-
fore, despite some very direct parallels between the dilation choice sets and the input graph (in fact DCSs can be 
found from the input graph), a DCS perspective offers additional insight. Because the input graph was devised 
from the top-down instead of from the bottom-up, it stops short in making the same connections we are able to 
extract from a dilation-based approach. Most notably, the input graph omits the topology of the dilation in how 
in-neighbors of the dilation are connected to the nodes in the dilation. This topology is crucial in understanding, 
for example, the prevalence of how often a node appears as a driver. Ultimately, the input graph is a node-centric 
point of view, while as we showed earlier, the DCS is an edge-centric point of view.

Conclusion
In this paper, we have described a view of structural controllability of networks that focuses on dilations, spe-
cifically addressing the theoretical and practical challenge of control degeneracy. By beginning with dilations, 
we provide a framework that explains many of the existing observations made in the literature and also moti-
vates several new definitions and observations. Critically, because we start at the source of the degeneracy, our 
definition of dilation choice sets offers a modular and disjoint way of constructing and understanding control 
degeneracy. We show that the combinatorial explosion of options we deal with is actually the interaction of fewer 
independent and spatially distinct centers of alternatives.

Received: 10 December 2020; Accepted: 22 March 2021

References
	 1.	 Liu, Y.-Y., Slotine, J.-J. & Barabási, A.-L. Controllability of complex networks. Nature 473, 167 (2011).
	 2.	 Liu, Y.-Y., Slotine, J.-J. & Barabási, A.-L. Control centrality and hierarchical structure in complex networks. PLoS One 7, e44459 

(2012).
	 3.	 Posfai, M., Liu, Y.-Y., Slotine, J.-J. & Barabási, A.-L. Effect of correlations on network controllability. Sci. Rep. 3, 1–7 (2013).
	 4.	 Jia, T. et al. Emergence of bimodality in controlling complex networks. Nat. Commun. 4, 1–6 (2013).
	 5.	 Jia, T. & Barabási, A.-L. Control capacity and a random sampling method in exploring controllability of complex networks. Sci. 

Rep. 3, 2354 (2013).
	 6.	 Ruths, J. & Ruths, D. Control profiles of complex networks. Science 343, 1373–1376 (2014).
	 7.	 Ding, J. & Lu, Y.-Z. Control backbone: An index for quantifying a node’s importance for the network controllability. Neurocomput-

ing 153, 309–318 (2015).
	 8.	 Thomas, J., Ghosh, S., Parek, D., Ruths, D. & Ruths, J. Robustness of network controllability to degree-based edge attacks. In 

International Workshop on Complex Networks and their Applications, 525–537 (Springer, 2016).
	 9.	 Zhang, X., Lv, T. & Pu, Y. Input graph: The hidden geometry in controlling complex networks. Sci. Rep. 6, 38209 (2016).
	10.	 Campbell, C. et al. Correlations in the degeneracy of structurally controllable topologies for networks. Sci. Rep. 7, 46251 (2017).
	11.	 Zhang, Y., Garas, A. & Schweitzer, F. Control contribution identifies top driver nodes in complex networks. Advances in Complex 

Systems 22, 1950014 (2019).
	12.	 Zhang, X., Han, J. & Zhang, W. An efficient algorithm for finding all possible input nodes for controlling complex networks. Sci. 

Rep. 7, 1–8 (2017).
	13.	 Lin, C.-T. Structural controllability. IEEE Trans. Autom. Control 19, 201–208 (1974).
	14.	 Brockett, R. W. Finite Dimensional Linear Systems, Vol. 74 (SIAM, 2015).
	15.	 Shields, R. W. & Pearson, J. B. Structural controllability of multi-input linear systems. IEEE Trans. Autom. Control 21, 203–212 

(1976).
	16.	 Commault, C., Dion, J.-M. & van der Woude, J. W. Characterization of generic properties of linear structured systems for efficient 

computations. Kybernetika 38, 503–520 (2002).
	17.	 Hosoe, S. Determination of Generic Dimensions of Controllable Subspaces and Its Application. IEEE Trans. Autom. 

Control 25, 1192–1196 (1980).
	18.	 Mayeda, H. On structural controllability theorem. IEEE Trans. Autom. Control 26, 795–798 (1981).
	19.	 Poljak, S. On the generic dimension of controllable subspaces. IEEE Trans. Autom. Control 35, 367–369 (1990).
	20.	 Murota, K. & Poljak, S. Note on a graph-theoretic criterion for structural output controllability. IEEE Trans. Autom. Control 35, 

939–942 (1990).
	21.	 Uno, T. Algorithms for enumerating all perfect, maximum and maximal matchings in bipartite graphs. In International Symposium 

on Algorithms and Computation, 92–101 (Springer, 1997).
	22.	 Uno, T. A fast algorithm for enumerating bipartite perfect matchings. In International Symposium on Algorithms and Computation, 

367–379 (Springer, 2001).
	23.	 Tassa, T. Finding all maximally-matchable edges in a bipartite graph. Theor. Comput. Sci. 423, 50–58 (2012).
	24.	 Ghosh, S. & Ruths, J. Structural control of single-input rank one bilinear systems. Automatica 64, 8–17 (2016).
	25.	 Wang, B., Gao, L. & Gao, Y. Control range: A controllability-based index for node significance in directed networks. J. Stat. Mech. 

Theory Exp. 2012, P04011 (2012).
	26.	 Parekh, D., Ruths, D. & Ruths, J. Reachability-based robustness of network controllability under node and edge attacks. In 2014 

Tenth International Conference on Signal-Image Technology and Internet-Based Systems, 424–431 (IEEE, 2014).
	27.	 Pu, C.-L., Pei, W.-J. & Michaelson, A. Robustness analysis of network controllability. Phys. A Stat. Mech. Appl. 391, 4420–4425 

(2012).
	28.	 Nie, S., Wang, X., Zhang, H., Li, Q. & Wang, B. Robustness of controllability for networks based on edge-attack. PLoS One 9, e89066 

(2014).
	29.	 Mengiste, S. A., Aertsen, A. & Kumar, A. Effect of edge pruning on structural controllability and observability of complex networks. 

Sci. Rep. 5, 18145 (2015).



10

Vol:.(1234567890)

Scientific Reports |         (2021) 11:9568  | https://doi.org/10.1038/s41598-021-88529-5

www.nature.com/scientificreports/

Author contributions
All authors planned the research, analyzed the results, and wrote the manuscript. L.C. contributed the majority 
of the proofs.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​021-​88529-5.

Correspondence and requests for materials should be addressed to J.R.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

https://doi.org/10.1038/s41598-021-88529-5
https://doi.org/10.1038/s41598-021-88529-5
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Dilations and degeneracy in network controllability
	Network controllability
	Dilations. 
	Cacti. 

	Control degeneracy from the perspective of dilations
	Quantifying the role of a dilation. 
	Identifying minimal dilations. 
	Identifying independent dilations. 

	Consequences
	Role of nodes and edges in network controllability. 
	Global degeneracy from DCS degeneracy. 
	Deficient (uncontrollable) control configurations and robustness. 
	Input graph. 

	Conclusion
	References


