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Simple Summary: Forensic anthropologists are commonly asked to determine whether bones are
of human origin and, if not, to which species they belong. Current practice usually relies on visual
assessments rather than quantitative analyses. This study aimed to test the utility of basic bone
metrics in discriminating human from nonhuman elements and assigning faunal species. A database
of more than 50,000 skeletal measurements was compiled from humans and 27 nonhuman species.
Equations and classification trees were developed that can differentiate human from nonhuman
species with upwards of 90% accuracy, even when the bone type is not first identified. Classification
trees return accuracy rates greater than 98% for the human sample. These quantitative models
provide statistical support to visual assessments and can be used for preliminary assessment of a
bone’s forensic significance at a scene. The statistical models, however, could not classify species at
acceptable rates. For species identification, a freely available web tool (OsteoID) was created from
the study data, where users can filter photographs of potential bones/species using a few basic
measurements and access 3D scans and additional resources to facilitate identification. OsteoID
provides an important resource for forensic anthropologists lacking access to large comparative
skeletal collections, as well as other disciplines where comparative osteological training is necessary.

Abstract: Although nonhuman remains constitute a significant portion of forensic anthropological
casework, the potential use of bone metrics to assess the human origin and to classify species of
skeletal remains has not been thoroughly investigated. This study aimed to assess the utility of
quantitative methods in distinguishing human from nonhuman remains and present additional
resources for species identification. Over 50,000 measurements were compiled from humans and
27 nonhuman (mostly North American) species. Decision trees developed from the long bone data
can differentiate human from nonhuman remains with over 90% accuracy (>98% accuracy for the
human sample), even if all long bones are pooled. Stepwise discriminant function results were
slightly lower (>87.4% overall accuracy). The quantitative models can be used to support visual
identifications or preliminarily assess forensic significance at scenes. For species classification, bone-
specific discriminant functions returned accuracies between 77.7% and 89.1%, but classification
results varied highly across species. From the study data, we developed a web tool, OsteoID, for
users who can input measurements and be shown photographs of potential bones/species to aid
in visual identification. OsteoID also includes supplementary images (e.g., 3D scans), creating an
additional resource for forensic anthropologists and others involved in skeletal species identification
and comparative osteology.

Keywords: forensic anthropology; medicolegal death investigation; forensic significance; compara-
tive osteology; human osteology; skeletal morphology; nonhuman
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1. Introduction

Forensic anthropologists are commonly approached by law enforcement, coroners, and
medical examiners with an unknown skeletal element and faced with a simple question: is
this human [1,2] Well-trained forensic anthropologists know the human skeletal system in
meticulous detail, and unless the skeletal element has been highly modified (e.g., extreme
fragmentation, burning, etc.), they can usually differentiate human from nonhuman remains
without hesitation [3]. Forensic anthropologists visually assess the bone, determining the
element type (e.g., humerus, femur, tibia, etc.) and whether it is consistent with human
anatomy based on its size (given its developmental state), shape, and bony features [3].
This macroscopic assessment is usually concluded without metric analyses.

If the bone is human, it is of forensic significance and will be subjected to a com-
prehensive osteological analysis. If the bone is nonhuman, a forensic anthropologist is
faced with an inevitable follow-up question: what is it? This question is more than mere
curiosity because it provides verifiable evidence to support the forensic anthropologist’s
nonhuman designation [3]. An incorrect faunal species identification can affect the forensic
anthropologist’s credibility, even if it is not of forensic importance. Similarly, responding
to the inquiry by stating that it is not important or that you do not know does not instill
confidence or foster positive relationships with agencies. In some cases, the animal species
may provide investigators additional evidence or context regarding the circumstances of
death. For example, if the remains of a cat are found intermixed with human remains, it
may suggest that a suspect disposed of a house pet along with the decedent in an attempt
to conceal the human remains.

Faunal species identification, however, can be challenging for practitioners given
the number of bones in a skeleton, variety of potential species, and similar morphology
amongst related species [4]. While forensic anthropologists are required to be experts on the
human skeleton, zooarchaeological training, while ideal, is not a requirement, and expertise
in comparative osteology can vary greatly amongst practitioners. When determining the
nonhuman species of skeletal remains, practitioners are fortunate if they have access to
comparative osteological collections to assist with identifications. Such collections take
time and resources to build or require proximity and unrestricted accessibility to an already-
established collection. Various comparative osteology texts are available [5–13], each
with their own advantages and limitations; they vary in cost, comprehensiveness, species
included, photographic quality, and target audience. Texts are also most useful if the user
knows the element type in advance and/or already suspects a certain species. Reliable and
easily accessible online resources are limited, and internet searches for images of specific
faunal elements can return mixed results.

The primary goal of this project was to develop additional, freely-available resources
to support forensic anthropologists and medicolegal personnel in skeletal species identifi-
cation based on simple measurements. Saulsman et al. [14] report discriminant functions
derived from eight traditional long bone metrics that can differentiate human from five
Australian nonhuman species with accuracy rates at or above 95%. Their sample sizes were
limited to 50 human and 50 nonhuman individuals (ten per species). Given their promising
results, this study aimed to test the utility of similar bone metrics in differentiating much
larger samples of human and nonhuman specimens and classifying species, with a focus on
species commonly encountered in North America. Although a handful of measurements
cannot capture specific distinguishing bony features, traditional morphometric analyses can
capture overall bone size and shape (i.e., form), which are variables considered subjectively
during visual assessments of species.

In addition to the morphometric analyses, this study also aimed to develop a freely
available searchable online database that uses basic metrics and visual aids (i.e., pho-
tographs and 3D scans) to help forensic anthropologists and medicolegal personnel (amongst
others) determine species from skeletal elements. These resources would benefit practition-
ers without access to extensive comparative collections and would be accessible in the field
via the use of a smart phone or other device. Beyond the scope of forensic anthropology,
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this skeletal species identification tool may be useful to students, archaeologists, wildlife
forensic specialists, biologists, veterinarians, and others, including the general public who
may wish to learn more about bones they encounter through various activities.

2. Materials and Methods

The study sample included skeletal data from humans and 27 faunal species fre-
quently found in North America (20 mammals, 5 birds, 2 turtles—see Table 1), which
included species that approximate human sizes (e.g., deer, horse, elk, moose, cow, pig,
domestic dog, and black and brown bears). The species included are also commonly
presented in comparative osteology texts used by forensic anthropologists [5–9] and
encountered in forensic anthropological analyses [1]. To facilitate database searching,
analogous measurements needed to be obtainable from each specimen included, regard-
less of species or element type. Thus, long bones were chosen as the main focus for this
study (humerus, radius, ulna, radio-ulna, femur, tibia, fibula, and fused metapodials).
For birds, the tibiotarsus was included with the tibia data, and the carpometacarpus and
tarsometatarsus were included with the fused metapodials. The scapula, sacrum and
os coxae were also included given the ability to take maximum lengths and breadths
and their diagnostic morphologies. The original measurement list consisted of max-
imum lengths, proximal and distal maximum breadths (medio-lateral) and depths
(antero-posterior), midshaft minimum and maximum diameters, and a few unique
measurements for certain elements (e.g., femoral head diameter, acetabular diameter).
Von den Driesch [15] was used as a guide when establishing the measurements.

These measurement data were collected from skeletal remains curated at the following
institutions: Smithsonian National Museum of Natural History, Washington, DC; American
Museum of Natural History, New York City, NY; Mercyhurst University, Erie, PA; Washburn
University, Topeka, KS; University of California, Davis, CA; and Des Moines University,
Des Moines, IA. Additional data were included from published papers and available
datasets [16–34]. In some cases, published data of specimens outside of North America were
included in the study to increase sample sizes if the species was the same as that commonly
encountered in North America (e.g., domestic dogs and cats). Inclusion in the study
required specimens to be of skeletal maturity; specimens in advanced stages of epiphyseal
fusion were included to increase faunal sample sizes where necessary. This original dataset
consisted of 59,442 measurements from 18,867 bones from 5207 individuals/animals).
Species averages, standard deviations, and minimum/maximum ranges were calculated
for each measurement. Photographs of exemplar specimens were taken from multiple
standard views (e.g., six views for long bones) for incorporation into the web tool.

A subset of the data (47,688 measurements collected from 16,315 long bone elements)
was subjected to linear discriminant function (DFA) and decision tree analyses to evaluate
potential methods of human versus nonhuman and species classifications (Table 1). This
subset included maximum length (MaxL), maximum mediolateral width of the proximal
epiphysis (MaxPW), maximum mediolateral width of the distal epiphysis (MaxDW), maxi-
mum anteroposterior depth of the distal epiphysis (MaxDD), maximum diameter of the
midshaft (MaxMidD), and minimum diameter of the midshaft (MinMidD) collected from
humeri, radii, ulnae, femora, and tibiae. Element-specific measurements (e.g., femoral
head diameter) were excluded to permit pooled analyses across element types. Maxi-
mum proximal depth was excluded due to measurement difficulty in certain elements
(e.g., tibia depending on tuberosity location, ulna, and radio-ulna). Step-wise DFA us-
ing Wilk’s lambda and a leave-one-out cross-validation were performed on the human
versus pooled nonhuman samples of all long bones (replicating a situation where the
element type is unknown), and then separately for each bone. DFA was used to assess
human versus nonhuman classification for commonly collected univariate variables (MaxL,
MaxPW, and MaxDW) and variables grouped by bone region (e.g., distal measurements
and midshaft measurements) for application in cases when the unknown element is in-
complete/fragmented or taphonomic modifications preclude some measurements. Finally,
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stepwise discriminant functions were also run to assess potential ability to classify the
28 species using both pooled-bone and bone-specific samples. Variables input into the step-
wise analyses were chosen to maximize sample sizes and discriminatory power. Box’s M
was used to assess homogeneity in variance–covariance matrices, and Kolmogrov–Smirnov
tests were performed to evaluate data normality.

Table 1. List of species from which data and photos were collected and sample sizes by element.

Class Genus Species Common Name Humerus Femur Radius Tibia Ulna 1

Aves Anas platyrhynchos Mallard Duck 31 28 31 30 31
Aves Aquila chrysaetos Golden Eagle 21 23 20 19 23
Aves Branta canadensis Goose 34 34 32 31 34
Aves Gallus gallus Chicken 31 31 31 32 31
Aves Meleagris gallopavo Turkey 35 35 32 35 34

Mammalia Alces alces Moose 19 17 20 21 27
Mammalia Bos taurus Cow 15 16 13 17 12
Mammalia Canis familiaris Domestic Dog 84 147 75 147 76
Mammalia Canis latrans Coyote 64 65 57 65 58
Mammalia Canis lupus Wolf 44 45 38 45 38
Mammalia Capra hircus Goat 83 3 79 80 3
Mammalia Cervus canadensis Elk 34 33 31 32 31
Mammalia Didelphis virginiana Opossum 34 34 35 33 33
Mammalia Ovis/capra 2 aries/hircus Sheep/Goat 2 1 1 0 1
Mammalia Equus caballus Horse 31 33 33 30 33
Mammalia Felis catus Domestic Cat 40 39 39 39 38
Mammalia Homo sapiens Human 2714 2700 2672 2684 463
Mammalia Odocoileus hemionus Mule deer 31 32 34 32 38
Mammalia Odocoileus virginianus White-Tailed Deer 33 39 35 39 35
Mammalia Ovis aries Sheep 77 18 147 104 63
Mammalia Procyon lotor Racoon 36 37 36 39 37
Mammalia Sus scrofa Domestic Pig/Boar 20 17 7 17 8
Mammalia Sylviagus floridanus Eastern Cotton-Tail Rabbit 36 34 34 32 33
Mammalia Urocyon cinereoargenteus Gray Fox 39 42 39 40 42
Mammalia Ursus americanus American Black Bear 38 34 18 19 18
Mammalia Ursus arctos Brown Bear 48 46 18 22 19
Mammalia Vulpes vulpes Red Fox 43 41 41 42 40
Testudines Chelydra serpentina Snapping Turtle 30 30 30 30 30
Testudines Terrapene carolina Common Box Turtle 31 31 27 31 31

Totals 3778 3685 3705 3787 1360
1 For the human and nonhuman comparisons, individual measurements were taken from fused radio-ulna
elements and included as radius or ulna. For the development of the web tool, both the individual radius and
ulna measurements and combined maximum lengths/widths for the fused radio-ulna were included for search
purposes. 2 A few specimens were labeled as “Sheep/Goat” in the collection and thus entered this way for human
versus nonhuman analyses but were excluded from species analyses.

Decision trees were developed from the same data set and evaluated for classifying
human versus the pooled nonhuman samples and classifying species using both the pooled-
bone sample and bone-specific subsamples. The decision trees were created using a CRT
(Classification and Regression Trees) growth model with a Gini impurity measure splitting
criterion and a maximum tree depth of five levels. CRT uses stepwise variable selection
to create a decision tree where each node is split using the variable that best maximizes
the purity of the resulting nodes (i.e., homogeneity of the dependent variable) [35,36]. CRT
also uses surrogate variables (those that result in a similar outcome pattern) to replace
missing data, thereby maximizing sample sizes. The minimum number of cases for nodes
was set at 100 for parent nodes and 50 for child nodes. Equal prior probabilities were used
across groups. Tree pruning was implemented, set at one standard error in order to avoid
overfitting [35,36]. A split-sample validation was applied, with the model generated from a
training sample (70% of the data), which was then validated on the test sample (remaining
30% of the data). For the trees classifying human from nonhuman remains, human was set
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as a target variable and a misclassification cost of ten was assigned to misclassifications
of human bone as nonhuman. This reflects the more severe forensic implications in erro-
neously assigning a human bone as nonhuman as compared to misclassifying a nonhuman
bone as human.

The linear discriminant function analyses represent more traditional classification
approaches but have statistical assumptions such as multivariate normality and homogene-
ity of variance–covariance matrices [37–39]. Decision trees do not rely on these statistical
assumptions [40–42]. All statistical analyses were performed in SPSS v.28 (IBM Corpora-
tion, Armonk, NY, USA). We hypothesized that the multivariate DFA and decision trees
would be able to adequately differentiate human from nonhuman remains when single
elements were assessed, given that these morphometric parameters are used during visual
assessments of remains. The pooled-bone sample is expected to provide less accurate
results, given the compounded effects of variation within and between species and element
types. The results of the DFA and decision trees were used to make informed decisions
about the development of the skeletal species identification web tool, with the possibility
of integrating the methods into the tool depending on their performance.

3. Results
3.1. Descriptive Statistics

Sample sizes, minimum and maximum values, averages, standard deviations, and
the ranges between two negative and two positive standard deviations (~95% confidence
interval) were calculated per measurement and species (38 measurements collected across
28 species). Given the forensic aim to distinguish human from nonhuman remains, as well
as the extensive dataset, Table 2 presents only the human summary statistics. This table
may act as a general guide to assess whether a bone falls within the human size ranges;
note, however, that there is always a small possibility of a human bone falling outside these
values, given that samples may not represent the complete global variation of past and
present populations. Descriptive statistics for nonhuman measurements by species are
provided in the Supplementary Materials (Tables S1–S11).

3.2. Morphometric Human Versus Nonhuman Classification

When the human long bone measurements are compared to those of the pooled non-
human long bones, Box’s M indicates significant differences in the variance–covariance
matrices (p < 0.001 for all analyses). This is true for both the pooled-bone and bone-specific
samples. Kolmogrov–Smirnov results indicate that the nonhuman variables are not nor-
mally distributed, while the human data generally do not differ significantly from normality
(p > 0.05). These results are unsurprising given the unequal sample sizes and range of
nonhuman species being pooled (Table 1). DFA has been suggested to be robust against sta-
tistical violations [42]. For this reason and the exploratory nature of the analyses, the DFAs
were performed despite the violation of statistical assumptions to provide comparison to
the decision tree results and informed decisions about the web tool development.

The results of the human versus nonhuman DFA classification are summarized
in Table 3, including overall cross-validated accuracy, group-specific cross-validated
correct classifications, and sample sizes for each model. Note that DFA requires that
all measurements are present for each element in the analysis, resulting in significant
decreases in sample sizes for some models due to missing data. In each analysis, the
cross-validated results were the same or similar to the original classification results.
There are some classification biases, but in most cases, the human correct classification is
higher than the nonhuman. Of the univariate analyses, maximum lengths performed the
best with overall classification rates above 90% for all elements except for the ulna and
a 79.5% classification rate for the pooled-bone analysis. The human classification rates
using only maximum length were over 99% for all bones except the ulna (96.8%). The
DFAs assessing regional measurements (two midshaft variables or two distal variables)
provided results similar to or lower than the univariate maximum length results, with a
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few exceptions. The ulna midshaft had a 90.0% correct classification, outperforming the
length results, and the humerus midshaft accuracy was much lower than the length at
67.1% (vs. 94.1% for maximum length).

Table 2. Descriptive statistics from the human sample, including counts, minimums, maximums,
averages, standard deviations, and two standard deviation ranges per element and measurement.

Bone Meas 1 N Min Max Ave SD −2SD +2SD

Humerus

MaxL 2567 225 397 309 23 262 356
MaxPD 94 35 56 46 4 37 55
MaxPW 411 38 62 49 4 41 58
MaxDD 94 22 37 28 3 22 35
MaxDW 1867 42 77 59 6 47 70

MidMaxD 425 16 32 23 3 17 28
MidMinD 440 11 24 18 2 13 23

Radius

MaxL 2531 180 309 236 20 196 276
MaxPD 380 15 31 23 2 18 28
MaxPW 380 15 31 23 2 18 27
MaxDD 89 17 36 25 4 17 32
MaxDW 89 21 42 33 4 25 41

MidMaxD 454 10 21 16 2 12 19
MidMinD 454 8 74 12 3 5 19

Ulna

MaxL 406 211 334 263 20 222 303
MaxPW 257 14 35 26 3 19 32

MidMaxD 477 10 24 17 2 12 21
MidMinD 477 9 19 13 2 9 17

Femur

MaxL 2630 344 550 433 33 367 499
MaxPD 89 37 59 46 5 36 56
MaxPW 89 71 105 87 8 72 103
DiamH 1077 35 61 44 4 37 52
MaxDD 89 46 92 63 7 49 78
MaxDW 2563 58 98 77 6 64 90

MidMaxD 457 14 39 27 3 21 33
MidMinD 457 17 39 27 3 21 33

Tibia

MaxL 2589 159 472 357 32 294 421
MaxPW 1867 50 94 71 6 58 84
MaxDD 82 30 52 39 4 31 47
MaxDW 415 40 63 52 4 43 60

MidMaxD 420 19 44 33 4 25 42
MidMinD 82 15 28 21 3 16 26

Fibula MaxL 429 282 463 366 27 312 421

Os Coxae
MaxL 91 166 237 202 16 170 233

DiamA 1526 39 63 49 4 41 57

Sacrum
MaxL 90 89 157 114 13 88 141

MaxPW 90 90 138 111 9 93 129

Scapula MaxL 92 127 210 178 17 145 212
1 Measurement abbreviations: MaxL = maximum length, MaxPW = maximum proximal width (medio-lateral),
MaxDD = maximum distal depth (antero-posterior), MaxDW = maximum distal width (medio-lateral),
MidMaxD = maximum diameter at midshaft, MidMinD = minimum diameter at midshaft, DiamH = femoral
head diameter, DiamA = acetabulum diameter.

As expected, the pooled-bone DFAs did not perform as well as the bone-specific
analyses for morphometric human versus nonhuman classification. The pooled-bone
univariate analysis of maximum distal width performed the best (87.9%), which may
be because ulnae were excluded from this analysis (distal ulna measurements were not
collected) thereby removing one confounding element. Maximum length correctly classified
79.5% of the sample composed of 11,129 human bones and 5254 nonhuman bones.
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Table 3. Linear DFA accuracy results and sample sizes for human (Hum) and nonhuman (Non)
classifications summarized by element and variables. Overall accuracy is bolded. Var(s) = variable(s),
NHum = human sample size, NNon = nonhuman sample size.

Var(s) Pooled-Bone Humerus Femur Radius Tibia Ulna

MaxL

79.5%
Hum: 79.3%;
Non: 80.0%
NHum = 11,129;
NNon = 5254

94.1%
Hum: 99.9%;
Non: 78.0%
NHum = 2567;
NNon = 920

95.4%
Hum: 100.0%;
Non: 83.2%
NHum = 2630;
NNon = 981

95.4%
Hum: 99.8%;
Non: 79.3%
NHum = 2531;
NNon = 697

95.0%
Hum: 99.5%;
Non: 83.9%
NHum = 2589;
NNon = 1062

78.5%
Hum: 96.8%;
Non: 69.1%
NHum = 406;
NNon = 797

MaxPW

74.8%
Hum: 68.8%;
Non: 79.2%
NHum = 3383;
NNon = 4668

75.4%
Hum: 85.4%
Non: 69.8%
NHum = 410;
NNon = 733

85.4%
Hum: 100.0%;
Non: 83.8%
NHum = 89;
NNon = 822

46.1%
Hum: 61.8%;
Non: 39.7%
NHum = 380;
NNon = 946

93.4%
Hum: 99.7%;
Non: 78.8%
NHum: 1867;
NNon = 817

74.3%
Hum: 70.8%;
Non: 76.5%
NHum = 257;
NNon = 404

MaxDW

87.9%
Hum: 92.9%;
Non: 82.1%
NHum = 5021;
NNon = 4345

92.0%
Hum: 97.9%;
Non: 81.2%
NHum = 1868;
NNon = 1024

94.8%
Hum: 100.0%;
Non: 80.3%
NHum = 2560;
NNon = 908

69.7%
Hum: 83.1%
Non: 68.1%
NHum = 89;
NNon = 745

89.6%
Hum: 100.0%;
Non: 84.9%
NHum = 415;
NNon = 923

–

MaxDD &
MaxDW

78.9%
Hum: 64.3%;
Non: 80.0%
NHum = 230;
NHn = 3007

96.3%
Hum: 100.0%;
Non: 96.21%
NHum = 26;
NNon = 850

96.1%
Hum: 97.0%;
Non: 96.1%
NHum = 33;
NNon = 720

86.4%
Hum: 82.0%;
Non: 87.3%
NHum = 89;
NNon = 448

86.2%
Hum: 92.7%
Non: 85.4%
NHum = 82;
NNon = 735

–

MidMaxD &
MidMinD

64.4%
Hum: 49.0%;
Non: 73.1%
NHum = 1767;
NNon = 3089

67.1%
Hum: 62.0%;
Non: 69.9%
NHum = 347;
NNon = 714

90.2%
Hum: 86.4%;
Non: 92.7%
NHum = 457;
NNon = 711

87.9%
Hum: 88.3%;
Non: 87.6%
NHum = 436;
NNon = 443

87.2%
Hum: 84.8%
Non: 87.5%
NHum = 66;
NNon = 537

90.0%
Hum: 94.4%;
Non: 85.3%
NHum = 461;
NNon = 428

Stepwise 1

90.3%
Hum: 95.6%;
Non: 87.9%
NHum = 1408;
NNon = 3088
MaxL, MidMaxD,
MidMinD

96.7%
Hum: 99.6%;
Non: 90.7%
NHum = 1862;
NNon = 891
MaxL, MaxDW

98.1%
Hum: 99.9%;
Non: 93.0%
NHum = 2552
NNon = 906
MaxL, MaxDW

91.4%
Hum: 100.0%;
Non: 86.8%
NHum = 327;
NNon = 621
MaxL, MaxPW

89.4%
Hum: 92.2%;
Non: 83.4%
NHum = 1773
NNon = 807
MaxL, MaxPW

87.4%
Hum: 93.7%;
Non: 77.7%
NHum = 254;
NNon = 166
MaxL, MaxPW,
MidMaxD,
MidMinD

1 All variables were included in the stepwise DFA and those retained in the function are listed in each column
with the results.

The multivariate stepwise DFAs returned correct human versus nonhuman classification
rates above 90% for the humerus, femur, and radius and just below 90% for the tibia and
ulna (Table 3). Maximum length was utilized in all the stepwise functions and had the
highest weight. For the humerus (n = 2753) and femur (n = 3458), a function including
maximum length and maximum distal width returned accuracy rates of 96.7% and 98.1%,
respectively. Other functions for the humerus and femur returned higher classification rates
(99.5% for the humerus and 99.7% for the femur), but given the variables included in these
functions, sample sizes decreased to around 1100. Equations associated with the multivariate
discriminate functions are provided in the Supplementary Materials (Table S12).

The decision tree results outperformed the DFA results for human versus nonhuman
classification (Table 4) and were derived from larger samples in both the training and
test sets. With all bones pooled, decision trees that evaluated all measurements correctly
classified 90% or more of the training and test samples, except for the ulna test sample
(89.3%). The region-specific pooled-bone analyses had lower accuracy rates (ranging from
76 to 89% correct) but still outperformed the DFA. With the exception of the ulna test
sample, all training and test samples had correct human classification rates of 98% or higher.
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The ulna test sample correctly classified 94.5% of the human sample. Using four basic
measurements, the decision tree presented in Figure 1 results in an overall accuracy of
91% and human classification accuracy of 99.6%; this is for the pooled-bone sample (i.e.,
without first identifying which bone is present). Although the nonhuman classification
rate is lower (75%), this bias is expected given that we assigned higher misclassification
costs to the human sample. The terminal nodes of the decision tree (Figure 1) indicate the
number/percentage of human and nonhuman elements that fell within that node as well
as associated sample sizes. Note that the “total” row depicts the percentage of the original
input sample. The terminal nodes vary in their accuracy rates (75.2 to 99.8%), but only one
of five terminal nodes had accuracy rates below 90%. This node (node 7) consists of ~17%
of the total sample and represents those elements in which the multivariate sizes overlap
between human and nonhuman species. For example, a deer metatarsal may approximate
a human radius based on the measurements. Decision trees associated with the results in
Table 4 are presented in the Supplementary Materials (Figures S1–S9).

Table 4. Decision tree results and sample sizes for human (Hum) and nonhuman (Non) classifications
summarized by element and variables. Acc = accuracy, N = sample size. See Supplementary Materials
(Figures S1–S9) for the decision trees.

Bone Input
Training Sample Test Sample Tree Variables

Total
Acc

Hum
Acc Non Acc Hum N Non N Total

Acc
Hum
Acc Non Acc Hum N Non N

Pooled All 6 91.4% 99.6% 75.4% 8211 4253 91.0% 99.6% 75.0% 3487 1865
MaxL,

MidMaxD,
MaxDW &

MaxPW
Pooled Distal 83.3% 98.8% 64.8% 3650 3052 82.9% 98.9% 64.5% 1495 1300 MaxDD &

MaxDW
Pooled Mid 77.2% 99.7% 61.9% 1603 2356 75.7% 99.4% 59.6% 689 1016 MidMaxD &

MidMinD
Pooled Length 88.3% 99.9% 64.5% 7696 3763 88.7% 99.8% 63.2% 3433 1491 MaxL
Humerus ALL 6 99.1% 99.3% 98.4% 1914 741 97.9% 98.6% 96.3% 776 323 MaxL &

MidMinD
Femur ALL 6 96.7% 99.4% 89.5% 1853 694 96.4% 99.6% 86.9% 837 290 MaxL only
Radius ALL 6 95.1% 98.6% 86.2% 1894 734 94.9% 98.6% 85.2% 778 298 MaxL &

MidMaxD
Tibia ALL 6 94.9% 98.4% 86.5% 1854 776 94.0% 97.8% 84.4% 830 327 MaxDW &

MaxPW
Ulna ALL 4 92.5% 98.7% 89.2% 318 590 89.3% 94.5% 86.5% 145 267 MidMinD &

MaxPW

3.3. Morphometric Skeletal Species Identification

Correct species classification rates from the stepwise DFAs are summarized in Table 5.
The pooled-bone analysis had an overall 40.4% accuracy rate, which, although better than
the a priori classification rate (3.6%), can lead to numerus classification issues. For this
model, 20 species had correct classification rates below 50%, with only two species (eastern
cotton-tail rabbit and common box turtle) with classification rates above 75% (both above
90%). Bone-specific DFAs performed better, with overall accuracies ranging from 78 to
89%. The humerus DFA had the most accurate classifications with 18 species above 90%
and none below 50%. The humerus DFA performed the worst for brown bear (55.6%),
domestic dog (53.7%), and pig (50.0%). Domestic dog had classification issues across all
DFAs given the high degree of variation in dog sizes and morphologies. Species within
the same genus were commonly misclassified (e.g., domestic dogs and coyotes, brown
bears and black bears, etc.), given their similarity in morphology and substantial overlap
in body size. Human classification rates for the bone-specific DFAs ranged from 76.8%
(ulna) to 100.0% (humerus, femur, and radius). All stepwise DFAs retained all variables
in the final functions, and maximum length was consistently the most important variable.
Ultimately, while the overall species classification rates for the bone-specific DFAs are
acceptable, results varied greatly by taxa, suggesting that the DFAs should only be used as
a general guide and should not be relied on as final determinants of species identification.
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Figure 1. Decision tree developed to classify human (Hum) versus nonhuman (Non) elements from
a pooled-bone sample (i.e., all long bones pooled). Working from the top of the tree, the variable
listed at each level would be measured, and based on the provided sectioning point, the user would
move down the tree to the next level. This process would continue until arriving at a terminal node
where classification would be assigned. Terminal nodes are outlined in red. Group classification is
highlighted in yellow and bolded at each node. Percentages and counts of bones classified to each
group in the training and testing samples are presented, as well as the total percentage of the sample
represented in that node. Overall correct classification for the test sample is 91.0% (99.6% for human
and 75.0% for nonhuman elements). This decision tree corresponds with the first line in Table 4.

As might be expected, the decision tree results attempting to classify species were not
successful. While tree overall classification rates were over 70% for all analyses except the
ulna, none of the trees produced 28 terminal nodes to classify each species. To classify each
species would require too many levels and branches; thus, the trees opted for preserving
overall classification rates by focusing on those species with the highest counts.
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Table 5. Stepwise DFA species classification results. The right side of the table presents the number
of species that fell within each accuracy range (i.e., <50%, 50–75%, 75–90%, or >90%). Vars = variables
included in final function, Acc = Accuracy, Hum = human.

Bone N Vars Total Acc Hum Acc
Number of Species

<50% 50–75% 75–90% >90%

Pooled 2737 All 6 40.4% 68.9% 20 6 0 2
Humerus 735 All 6 89.1% 100.0% 0 6 4 18

Femur 744 All 6 79.3% 100.0% 1 4 14 8
Radius 462 All 6 83.9% 100.0% 4 5 8 10
Tibia 548 All 6 77.7% 92.9% 3 5 5 14
Ulna 420 All 4 79.2% 76.8% 4 2 6 7

3.4. Web Tool for Species Identification

Both the DFA and decision tree results suggest that a simple equation or tree cannot
be used to adequately identify skeletal species. When forensic anthropologists visually
evaluate skeletal remains, they mentally process the bone dimensions to consider
possible species, using the overall bone size and shape to narrow down potential
species. Ultimately, however, visual comparisons and specific bony features are used to
make final species identifications.

To facilitate this species identification process, we utilized the metric data and images
from our study sample to develop an online, freely available species identification tool:
OsteoID [43]. The home page asks users to first identify the bone, providing diverse exem-
plars for each element (humerus, femur, radius, radio-ulna, ulna, tibia, fibula, metapodials,
scapula, sacrum, and os coxae), demonstrating the common general morphology of specific
elements across most species. There is also an option to “Search All” if the user cannot
confidently determine bone type. Once an option is selected, the user is brought to a new
page where they can narrow the search by common name, scientific name, or by bone
length, proximal width, and distal width. At any point, the user can search additional fields
in the side bar.

Maximum length, proximal width and distal width were chosen as the web tool
filtering variables for several reasons. First, they were found to be the easiest to measure
reliably, even with little or no osteological experience. In addition, the DFA and decision
tree analyses revealed maximum length to be the most important variable in species
identification, followed commonly by maximum distal width; including distal depth did
not exclude many more species. Finally, the midshaft measurements are instrumentally
defined (i.e., users need to take the maximum length and divide it by two to determine
the correct location to take the midshaft maximum and minimum diameters) and require
calipers. These factors make application in the field difficult and limit utility to those with
osteological backgrounds.

To determine the searchable range for each species/bone measurement, the minimum,
maximum, and two standard deviations above and below the mean were calculated.
The smallest value (whether two standard deviations below the mean or the observed
minimum) was used as the lower search limit, while the largest value (either two standard
deviations above the mean or the observed maximum) was used as the upper search limit.
This created a conservative size range, which is important given that the dataset does not
likely encompass the full size range of each species. For elements in the database missing
one or more measurements, a range of 0–1000 mm was assigned so that it would not be
automatically eliminated during searches.

As possible bones/species are narrowed, thumbnails show multi-views of the bones
by species as well as a list of the possible measurement ranges. Clicking on the thumbnails
opens a larger image in a new window. By opening in a new window, multiple possible
matches can be opened and placed side-by-side if needed. Most figures have six views of
the exemplar element (anterior, posterior, medial, lateral, proximal, and distal) and include
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the maximum length range on the image, a scale bar, and, when possible, a penny was
added for more intuitive sizing. Genus, species, collection, bone, and side information is
also provided. Some images have been annotated to point out distinctive features. The user
ultimately makes their final species classification based on visual comparisons. This web
tool is also compatible for use on smartphones and thus is accessible in the field.

Informational tabs on the home screen describe the web tool and its development,
provide instructions on utilizing the web tool (including measurement images), and
answer frequently asked questions. Users are reminded that filtering the bones/species
by measurements only works for skeletally mature specimens and are instructed on
how to identify skeletal maturity. In numerus places, users are reminded that if a bone
has any possibility of being human, they need to contact the local law enforcement
agency immediately.

Finally, a tab also refers the user to additional resources [43]. This includes references
to other texts or websites as well as a link to a Dropbox folder where they can find additional
project resources. In this folder, users can find the images included in the web tool, as
well as images of other elements such as carpals and tarsals, which were not included
in the main web tool given that measurements were not collected from these elements.
Three-dimensional surface scans of many of the elements are also provided, which can be
downloaded by users to view for comparison or 3D print. These 3D prints may be used to
build or supplement comparative osteology collections. We are continuously expanding
these Supplementary Materials and uploading them to additional digital repositories
(e.g., [44]). Finally, the project data can also be accessed in this folder, as well as on
Dryad [45].

4. Discussion
4.1. Human Versus Nonhuman Determination

Nonhuman remains comprise a significant portion (25–30%) of total cases assessed by
forensic anthropologists [1–3] and can represent more than 90% of skeletal cases submitted
to medical examiner offices [1]. Although forensic anthropologists mentally assess bone size
and shape when determining skeletal species, only one other published study was found
that assessed the utility of basic long bone osteometrics in differentiating human from
nonhuman remains. Saulsman et al. [14] created discriminate functions from a sample of 50
human and 50 nonhuman specimens from five Australian species. Their study illustrated
the potential utility of such quantitative methods, with accuracy rates over 95%, but it was
limited by sample sizes and species inclusion.

Our results, where more than 16,000 long bones were assessed quantitatively to
develop predictive models, support their findings. From this extensive dataset, we provide
discriminant functions and decision trees that can be used to assist or support human
versus nonhuman determinations from long bones. Even when all elements are pooled,
the DFA and decision trees return over 90% accuracy, with correct classifications of human
remains over 95% (99.6% for the decision tree). Thus, high accuracy rates can be achieved
even without first distinguishing the specific bony element present. If the bone is first
identified and bone-specific methods are applied, accuracy increases further for all models
except the tibia-specific and ulna-specific discriminant functions, which were slightly lower.
The ulna performed the worst across most analyses, which may partly be due to the lack
of distal measurements collected for this element. Generally, the decision tree presented
slightly higher overall accuracy rates as compared to the DFAs.

When assessing the human versus nonhuman origin of skeletal remains, we recom-
mend the use of the decision trees presented in this paper and Supplementary Materials
compared to the discriminant functions, given (1) their higher accuracy rates, (2) their use
of more available data and split-validation, and (3) their lack of statistical assumptions [42].
The better performance of decision trees may also reflect the incorporation of multiple
sectioning points into the model (one at each node) as compared to a single sectioning
point with discriminant functions. In addition, decision trees provide classification rates
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at each of the nodes, providing a more realistic view of accuracy and confidence in the
classification for any specific set of measurements. For example, if a bone falls into the
node 7 in Figure 1, the results indicate about a 75% probability that the bone is human,
despite an overall model accuracy rate of 91%. Decision trees are intuitive, transparent,
and easy to apply [40,41,46]. While the concept of decision trees is not new to forensic
anthropology [39,40,47–50], the method remains underutilized in practice.

Another advantage to decision tree models is that they allow users to assign higher costs
to certain sets of misclassifications [36], in this case to the misclassification of human remains
as nonhuman. In forensic anthropology, misclassifying human remains as nonhuman could
prevent decedent identification, leaving family members without closure and impeding
possible criminal investigations. In contrast, the biggest cost of misclassifying a nonhuman
element as human is the unnecessary expenditure of time and resources spent in securing a
scene and contacting an expert for final determination. The decision trees presented here
assist in reducing the possibility of both of these scenarios. A death investigator called to a
scene with a bone could have the decision tree printed on a single sheet of paper (or access
it via the OsteoID website on their smartphone) and, using a tape measure, can easily follow
the branches of the tree for a preliminary assessment of human versus nonhuman. Because
of the integrated misclassification costs, the trees are more likely to incorrectly assign a
nonhuman bone as human than vice versa; thus, the result is conservative and anything
close to matching human form will be treated as if it is human and of forensic significance
until determined otherwise (ideally by a trained forensic anthropologist). At the same time,
resources are not wasted on scenes containing remains that are clearly not human. Thus, the
models presented here can act as a triaging tool.

While some may argue that all bones discovered should be assessed by a forensic
anthropologist, this is not realistic and does not represent current practice. Forensic anthro-
pologists typically receive elements that are believed to possibly be human. Those remains
that the finder, law enforcement agent, or those consulted by the law enforcement agent
(including physicians and veterinarians) deem as not human are frequently not referred
to medicolegal agencies or forensic anthropologists. If referred to medicolegal agencies,
their non-anthropological personnel may also determine that the remains received are
not human and not worth consulting with a forensic anthropologist. Resources, such as
the models and web tool presented here, can assist these individuals who are already
undertaking these triaging roles to make more informed decisions. If the decision trees,
discriminant functions, visual comparison with the web tool images and/or context of the
remains suggest that they may be of human origin, the medicolegal agency and forensic
anthropologist should be consulted for final determinations. The forensic anthropologist,
in turn, may find these resources useful in supporting their designations or confirming the
particular faunal species (discussed below).

Not surprisingly, the most accurate human versus nonhuman functions and decision
trees include measurements from multiple regions of the bone, which may not be possible
in cases involving fragmented remains. Consequently, the use of only specific bone regions
was tested as part of this study for application to larger bone fragments. Univariate analyses
were performed on maximum lengths to reflect cases in which erosion to the epiphyses
could affect proximal and distal elements. Models were created from only the distal
measurements (width and depth) and from only the midshaft measurements (maximum
and minimum diameters) for use in cases limited to these fragmented regions. The length
and distal epiphyseal region-specific analyses produced higher accuracy rates than the
midshaft measurements (except for the ulna). This is expected given that maximum length
and distal width were commonly the most important variables in the more inclusive
models. For the femoral decision tree, despite inputting all six variables, the tree output
only used maximum length and was able to correctly classify over 96% of the total sample
and over 99% of the human sample. The region-specific discriminate functions developed
per bone (Supplemental Table S12) produced accuracy rates above 85% for all functions
except the humeral midshaft (67.1%). These results are slightly higher than the region-
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specific DFA results presented by Saulsman et al. [14]. While the results suggest that these
models may be useful tools when assessing fragmented remains as human or nonhuman,
caution is still warranted given that classification rates are only moderately high, and
additional evidence (e.g., presence of morphological features, application of a second
method) should be provided to support the conclusion. Saulsman and colleagues [14] also
warn against estimating the midshaft location on humeral fragments because deviations
2 cm above or below the actual midshaft location significantly altered their classification
rates; results from femoral and tibial deviations were more robust. Application of the
models to burned fragments must also consider the possibility of bone shrinkage with the
thermal modification [51].

The most conservative approach for assessing the human origin of skeletal remains
using osteometrics would be to compare specimen measurements with the minimum,
maximum, and 95% confidence intervals for human remains presented in Table 2 and
at least preliminarily consider anything that falls within that range, or very close to that
range, as potentially human pending further analysis. OsteoID [43] will return images of
human bones if the input measurements fall anywhere within the min/max or standard
deviation ranges compiled from the sample of >2700 individuals. Practitioners must always
consider the small possibility that their unknown specimen can be an outlier, perhaps lying
at the extremes of the human distribution which may not have been captured in this study.
Pathological conditions that affect body size (e.g., dwarfism, gigantism, etc.), although rare,
could also affect results [52,53].

In highly fragmented or taphonomically-modified remains, morphometric and visual
assessments may not be applicable. Other evidence, such as cortical bone thickness and
trabecular bone density may be factored into the decision [4,54,55], although research
by Rerolle et al. [56] suggests that corticomedullary index may not be as distinctive in
humans as previously suggested. Several papers state that nutrient foramen location and
morphology can assist in human versus nonhuman distinctions [57,58]. Microscopic (his-
tomorphological) or molecular methods can also be utilized [59–63] to determine human
origin, but they require greater expertise and specialized equipment, are more time inten-
sive, and are destructive to the specimen [3]. Even histomorphological techniques cannot
provide 100% accuracy in distinguishing human from nonhuman species, with certain
faunal species (e.g., large mammals) and bone types (e.g., presence of only Haversian bone)
shown to be particularly problematic [60]. Publications also differ on opinions of the use of
osteon circularity in determining human origin of bone [62,63].

4.2. Species Identification

The quantitative methods of species identification were less successful than those
assessing human origin. While these results are likely impacted by uneven sample
sizes across the 28 species, they also reflect morphological and size similarity between
some species. For example, brown bear and black bear long bones are morphologically
similar [41,64–67], especially as represented by these few basic measurements; thus,
small brown bears and large black bears may be misidentified. Sheep and goat long
bones are also difficult to differentiate [29,68]. Domestic dogs pose many issues, not
just because of their similarity to other canids included in this study (e.g., coyotes and
wolves) [69,70] but also because of their high degree of variability in both morphology
and size [71,72]. The DFA species classification rates were significantly higher than
chance, but the probability of species misidentification remains relatively high. The
application of a discriminant function to classify an unknown specimen into one of
28 groups would also be impractical to do by hand, thereby requiring computer usage.
Ultimately, practitioners must rely on visual comparisons of more subtle morphological
differences in making the final faunal species designations.

In facing these challenges of species identification, the OsteoID website [43] is
particularly useful. Users can input basic measurements to narrow down the potential
species and are presented with photographic images of the possible identifications.
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Thus, the measurements are used as a filtering tool, but the final identification is still
based on visual comparison. With the use of visual comparisons, OsteoID can be
used for identifying fragmented elements. Supplemental resources provided on the
website can also be utilized in skeletal identifications, such as access to the metric
database, a link to this publication and associated Supplementary Materials, 3D scans
of numerous elements, and lists of other useful texts and websites. Photographs of
additional elements (e.g., carpals) not included in the web tool are provided and will be
continually updated. The web tool can easily be modified if future minimum/maximum
values need revision. There is also the possibility of expanding the database and web
tool to include additional species/specimens in the future.

As an online, searchable, comparative osteology collection that includes photographs,
data, and 3D scans, OsteoID [43] provides forensic anthropologists with a centralized
location for free resources to facilitate skeletal species identification. Practitioners with
less zooarchaeological training or lacking access to physical comparative collections will
benefit most from these resources when determining faunal species. The web tool and
online resources can be accessed from smart phones and other devices while at the scene.
With the download of free third-party applications, even the 3D bone models can be
viewed on smart phones. The 3D models also can be downloaded and 3D printed to create
comparative collections. Beyond forensic anthropologists, forensic pathologists, medical
examiners, coroners, crime scene and death investigators, and law enforcement personnel
may find OsteoID useful when making preliminary assessments. In situations where scene
personnel have reason to believe that remains are nonhuman and typically would have
dismissed the remains as not forensically significant, they can use the OsteoID resources
to visually confirm that the morphology is not consistent with a human and perhaps
find a faunal species match. In cases in which there is any possibility that remains are
human, expert opinions should still be obtained. Modified remains or those that are more
diagnostically difficult will require a forensic anthropologist’s expertise, but OsteoID can
reduce time and cost expenditures for diagnostically nonhuman remains. Bioarchaeologists,
zooarchaeologists, veterinarians, and biologists may also find the OsteoID web tool and
resources useful, and the general public may find interest in learning more about remains
encountered. Presently, there are multiple social media groups where individuals post their
skeletal finds and group participants provide species identifications. Given that OsteoID is
publicly available, it contains multiple disclaimers urging anyone with remains that could
potentially be human to leave them in situ and to contact local authorities. Finally, the
photographs and 3D scans made available via the website can be used to train students in
comparative osteology and the data may be used by researchers in other studies.

4.3. Limitations and Future Directions

Given that all forensic anthropologists rely partly on bone form (i.e., size and gen-
eral shape) when assessing human origin, using bone metrics to create a quantitative
classification method seems simple and logical. However, our study illustrates several
challenges to this work. Firstly, it is difficult to find measurements that can be collected
consistently across diverse species and bones. Limiting our measurements to maximum
lengths, breadths, and depths allowed us to increase the range of animals and skeletal
elements in our dataset for pooled analyses, but it excludes aspects of discrete morpho-
logical features used in visual assessments of species identification. While the general
morphometric variables were able to successfully differentiate human from nonhuman
remains (similar to the results of Saulsman et al. [14]), visual assessments that consider
specific bone features are necessary for accurate faunal species identification.

Because the methods developed here are dependent on size and epiphyseal breadths,
only skeletally mature specimens could be included in quantitative analyses (and re-
sultant functions and models are only applicable to skeletally mature specimens). At
least partial fusion of both the proximal and distal epiphyses should be observed prior
to utilizing the discriminant functions or decision trees. Skeletally mature specimens
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of certain species can be hard to locate, especially domesticated species which may be
butchered as juveniles [73]. The species curated at museums vary and again tend not
to focus on domesticated species or may not curate full skeletons, especially for larger
mammals where space becomes a challenge.

Unequal sample sizes from different species could have biased our classification results,
particularly with human versus nonhuman analyses. Although a high degree of faunal
variation is captured in the pooled nonhuman sample, there is a smaller representation of
some of the largest mammalian species. Given that humans also have relatively large body
sizes, this may be driving some of the classification bias, as the models may be more likely
to classify all large bones (human or nonhuman) as human given the large human sample
sizes. Indeed, larger animals such as moose, brown bear, horse, cow and elk were more
commonly misclassified as human, which could explain the relatively higher human and
lower nonhuman classification rates in the discriminant functions. Misclassifying some
of these species elements as human instead of nonhuman in preliminary forensic contexts
is less costly than erroneously classifying human elements as nonhuman; following the
preliminary human classification, a forensic anthropologist would then be consulted for a
more formal assessment that would identify the error.

The smaller sample sizes in some nonhuman species are also less likely to capture the
true population size variation and thus impact DFA species classifications. The human
sample size, however, which is of greatest forensic significance, is sufficiently large, and
the nonhuman sample sizes exceed those of previous publications [14]. Furthermore, not
all measurements were available for all specimens. Data obtained from the literature
frequently had some but not all the study measurements, meaning that in the DFAs, many
of those cases were excluded.

The species included in the metric database are not exhaustive, and it is unclear how
a specimen from an excluded species would classify. This study was limited to species
commonly encountered in North America that were accessible at collections but does not
include, for example, marine mammals. Further validation of the developed methods is
needed, and if more data can be collected from additional species and specimens, revised
models may be more appropriate. Future data collection for human versus nonhuman
determinations should focus on adding greater samples of larger-bodied mammals. While
increased samples of larger-bodied fauna may decrease model accuracy rates, it is possible
that the models may still be able to confidently differentiate human from nonhuman
specimens given the distinct functional anatomy of humans [3,74,75].

Preliminary analyses using a subsample of the humeral and femoral data suggest that
machine learning and random forest models may be able to further increase morphometric
classification rates for human versus nonhuman designations and species assignments [76].
Random forest models are a machine learning approach in which numerous decision trees
are created from random subsamples, and their predictions are combined through aver-
aging to produce a final classification [46–48]. This machine learning technique increases
classification stability and alleviates potential issues of overfitting [58]. The downside of
random forest models is their complexity. Because random forest model results are based
on the combined results of hundreds or thousands of trees, there is no final model/tree that
can be presented or applied to cases [46]. This ensemble approach is considered a “black
box” method [41] meaning that it is mathematically complex and difficult to understand
and explain in terms of application [77], which can be a disadvantage in court testimony.
Furthermore, for broad application, a software program would need to be created to run
the random forest models with new unknown specimens.

5. Conclusions

The tools presented in this study do not diminish the need for forensic anthropologists.
Caution must still be used given the high cost of misclassifying a human bone as nonhuman,
and forensic anthropologists or other experts should be consulted in situations where
there is any possibility that remains may be human. Still, the resources developed and
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provided here may be used to preliminarily assess whether remains are potentially human
and determine the number of resources to expend on a found bone (e.g., whether or
not a scene needs to be preserved, etc.). Forensic anthropologists or other medicolegal
personnel can use the resources to support classifications and faunal species identifications.
These resources may also be beneficial to other disciplines where skeletal remains are
encountered or training in comparative osteology is beneficial, including wildlife forensics,
bioarchaeology, zooarchaeology, veterinary medicine, and biology.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
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versus nonhuman decision tree derived from only midshaft measurements and a pooled-bone sample.
Figure S4: Human versus nonhuman decision tree derived from only maximum length measurements
using a pooled-bone sample. Figure S5: Human versus nonhuman decision tree for the humerus,
derived from all available measurements. Figure S6: Human versus nonhuman decision tree for
the femur, derived from all available measurements. Figure S7: Human versus nonhuman decision
tree for the radius, derived from all available measurements. Figure S8: Human versus nonhuman
decision tree for the tibia, derived from all available measurements. Figure S9: Human versus
nonhuman decision tree for the ulna, derived from all available measurements. Table S1: Descriptive
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by species. Table S4: Descriptive statistics for radio-ulnar measurements collected by species. Table S5:
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versus nonhuman classification.
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