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ABSTRACT: The signaling protein calmodulin (CaM)
undergoes a well-known change in secondary structure upon
binding Ca2+, but the structural plasticity of the Ca2+-free apo
state is linked to CaM functionality. Variable temperature
studies of apo-CaM indicate two structural transitions at 46
and 58 °C that are assigned to melting of the C- and N-
terminal domains, respectively, but the molecular mechanism
of domain unfolding is unknown. We report temperature-
jump time-resolved infrared (IR) spectroscopy experiments
designed to target the first steps in the C-terminal domain
melting transition of human apo-CaM. A comparison of the
nonequilibrium relaxation of apo-CaM with the more thermodynamically stable holo-CaM, with 4 equiv of Ca2+ bound, shows
that domain melting of apo-CaM begins on microsecond time scales with α-helix destabilization. These observations enable the
assignment of previously reported dynamics of CaM on hundreds of microsecond time scales to thermally activated melting,
producing a complete mechanism for thermal unfolding of CaM.

■ INTRODUCTION

The link between structure and function in biological molecules
is well-established and raises important questions given that
proteins are dynamic in the solution phase. This means that
having the ability to follow the mechanisms of structural change
in real time is imperative if we are to understand and modify
protein behavior in vivo. Observing protein structural transitions
is technologically challenging, however, due to the complexity of
the associated macromolecular potential energy surfaces, which
are multidimensional in terms of both degrees of structural
freedom and the range of time scales over which transitions
occur.
Temperature-jump (T-jump) initiation offers a powerful

approach to understanding biomolecular dynamics.1−4 T-jump
pump−probe methodology exploits infrared wavelength ex-
citation of water to create a fast rise in temperature in an aqueous
biomolecular system, followed by a time delayed probe of the
evolving system. The probe method employed to study proteins
or peptides includes fluorescence,5 circular dichroism,6 and
infrared spectroscopy.3 The latter is particularly attractive
because of the sensitivity of the amide I vibrational mode of
the peptide backbone link to protein secondary structure and
local molecular environment.

T-jump methods have been used to access time scales ranging
from the nanosecond pulse duration of the excitation laser to the
milliseconds required for the temperature-jump to dissi-
pate.1−4,6−16 An alternative strategy employed solvated dyes to
achieve a rapid temperature change,17 while jumps in pH have
also been used to study peptide structural transitions.18 An
advantage in using temperature or pH to perturb proteins is the
ability to explore their potential energy surface in the absence of
structural modifications or non-natural entities.19−22

In the case of protein or peptide systems, T-jump IR methods
have largely been applied to short chain peptides, where
unfolding time scales are on the order of a few microseconds for
typical α-helical and β-turn systems.1−3,23 More recently, T-
jumps combined with vibrational echo probing have been
applied to study processes involving larger proteins, including
ubiquitin unfolding and insulin dimer formation.8,11,13,24 It was
reported that protein unfolding occurs on two time scales.
Hundreds of microsecond dynamics were assigned to the
crossing of energetic barriers in response to the elevated
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temperature, but rapid unfolding processes taking just a few
microseconds were also observed and attributed to downhill

unfolding, constituting the first steps of the structural rearrange-
ment.11

Figure 1. Structures of (a) apo-CaM and (b) holo-CaM showing α-helices (red), β-strands (yellow), flexible central linker (orange and blue), and Ca2+

ions (gray). (c, d) IR absorption spectra of apo-CaM (c) and holo-CaM (d) as a function of temperature. (e, f) Difference IR absorption spectra of apo-
CaM (e) and holo-CaM (f) as a function of temperature relative to the spectrum obtained at 20 °C. The spectra are labeled using the convention of T0,
which indicates the starting temperature of the solution, and ΔT, which indicates the size of the temperature increase.

Figure 2.T-jump pump-IR probe spectra for apo-CaM (a−c) and holo-CaM (d−f). Data are shown for three representative values ofT0: 20, 40, and 60
°C in the left, center, and right columns, respectively. Gray spectra show IR absorption difference spectra corresponding to a rise in temperature of 9 °C
fromT0 for comparison. (g−i) Double difference spectra showing [Sapo− Sholo] T-jump data for each value ofT0 and T-jump pump-IR probe delay time
(τpp).
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We report the use of high pulse repetition rate T-jump pump-
IR probe spectroscopy25 to target the fastest steps in the
unfolding of the human calmodulin protein (CaM). CaM is a
multifunctional calcium-binding messenger protein found in
many eukaryotic cells. At room temperature in solution, the
CaM structure is largely conserved across a range of
organisms,26−29 consisting of α-helical sections organized into
two (C- and N-terminal) globular domains, each containing
helix−loop−helix E-F hand motifs (Figure 1a,b, red). Each
domain houses a pair of Ca2+ ion binding sites. In the absence of
Ca2+ the two domains are connected by a central linker, which
features two α-helices (Figure 1a, orange) joined by a short
random coil (Figure 1a, blue). Upon uptake of four Ca2+ ions,
the random coil element becomes helical leading to the fully
extended holo-CaM structure (Figure 1b).30,31 While the apo−
holo structural transition is well-understood,29,32−44 the
presence of significant structural plasticity in both
states31,35,45−48 is believed to contribute to CaM function in
vivo.49−53

The application of T-jump methods to CaM will shed
important new light on the stability of the structure and the
mechanism of unfolding. Recently, we demonstrated that
ultrafast IR spectroscopy provides a sensitive probe of the
structural changes occurring in CaM, using 2D-IR methods at a
range of temperatures to probe the equilibrium structures of
apo- and holo-CaM.54 Our work showed that CaM exhibits
temperature sensitive IR spectra in both apo and holo states and
that the thermodynamically more stable holo-CaM can be used
to provide a benchmark for changes in solvation of the protein
that accompany heating without a structural transition. By
contrast, the IR spectrum of apo-CaM contains contributions
from both changes in solvation and domain melting. These
results form the basis of this time-resolved study of CaM
unfolding in which a 9 °CT-jump was used to observe apo-CaM
domain melting, using holo-CaM as a reference. With a focus on
time scales shorter than 100 μs, our results develop upon the
single previous time-resolved study of CaM, which reported
two-state unfolding of the C-terminal domain on several
hundred microsecond time scales.35

■ RESULTS AND DISCUSSION
Infrared absorption spectra of apo- and holo-CaM show that the
amide I band of both proteins shifts to a higher wavenumber
upon heating (Figure 1c−f). Difference IR absorption spectra
relative to the spectrum at 20 °C are shown in Figure 1e,f. In
preparation for discussion of T-jump data below, these are
labeled using the convention of T0, to indicate the starting
temperature of the solution, and ΔT, to indicate the size of the
temperature increase. For T-jump measurements discussed
below, ΔT will remain constant at 9 °C, while T0 will vary.
The IR absorption difference spectra (Figure 1e) show that

the amide I band of apo-CaM undergoes a decrease in intensity
at 1636 cm−1 and a gain of intensity in a well-defined band
centered at 1671 cm−1 (blue arrows and gray dashed lines).54 In
the case of holo-CaM (Figure 1f), a loss of intensity near 1635
cm−1 was accompanied by a broad and rather featureless gain in
intensity peaking near 1658 cm−1 but extending toward 1700
cm−1. These results have been assigned previously, with the aid
of circular dichroism, differential scanning calorimetry (DSC),
and 2D-IR spectroscopy, to the effects of increased temperature
of the solvent combined, in the case of apo-CaM, with a helix-to-
coil transition consistent with C-terminal domain melting at 46
°C.54

Representative T-jump pump-IR probe spectroscopy results
are shown for apo-CaM (Figure 2a−c) and holo-CaM (Figure
2d−f) at T0 values of 20, 40, and 60 °C. The design and
implementation of the spectrometer were reported recently.25

The temporal profile of the T-jump was calibrated using the
asymmetric carboxylate stretching mode of trifluoroacetic acid
(TFA) solutions (see SI Figures S1−S3),25 revealing a 9 °C T-
jump within the 4 ns pulse duration of the pump laser that
relaxed in a manner well-described by a stretched exponential
function
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with a lifetime of τ1 ∼ 47 μs and β parameter of 0.54 (Figure 3,
black). In the equation, ΔA indicates the measured change in

absorbance, τpp the T-jump-probe delay time, and α the
amplitude of the signal. The stretched exponential character
originates largely from a heterogeneous temperature-jump
distribution across the sample cell caused by absorption of the
T-jump pulse by the OD stretching vibration.25

At T0 = 20 °C, the T-jump-IR spectrum of the apo-CaM
sample (Figure 2a) shows an instantaneous response consisting
of a negative peak, indicating a decrease in absorbance, near
1635 cm−1 (gray dashed line). This is present from the shortest
measured values of τpp (∼1 ns) (Figure 2, dark red) and is
superimposed upon a negative shift in the baseline of the
difference spectrum that masks a small, almost flat, positive
response to the high wavenumber side of the 1635 cm−1 peak.
Both the baseline shift and the negative peak relax to zero
intensity over a period of 1 ms (Figure 2, green) without any
significant evolution in shape.
The response of the apo-CaM sample atT0 = 20 °C is assigned

to the result of the T-jump-induced perturbation. This is
supported by comparison of the T-jump results with those from
IR absorption spectroscopy (solid gray line, Figure 2a).
Applying a ΔT of 9 °C to a sample with a T0 of 20 °C gave an
IR absorption difference profile that was almost identical in
shape to the T-jump data. Furthermore, the relaxation dynamics
of the T-jump spectral features in Figure 2a closely match those
of the TFA calibration sample (Figure 3, red).
For holo-CaM at T0 values of 20 °C, the response to the T-

jump (Figure 2d) is almost identical to that of apo-CaM (Figure
2a). Raising the starting temperature of the sample to 40 °C
leads to differences being observed between the apo- and holo-

Figure 3. Temporal response of the T-jump as calibrated using a
trifluoroacetic acid (TFA) solution (black), see text. This is compared
to the results obtained for apo-CaM with a T0 value of 20 °C (red).
Results of fitting the temporal dynamics of the TFA T-jump data to a
stretched exponential function (see text) are shown as a solid black line.
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CaM samples. While the holo-CaM data at T0 = 40 °C (Figure
2e) closely resembled that atT0 = 20 °C (Figure 2d), we observe
the growth of a new spectral feature in the T0 = 40 °C apo-CaM
spectrum (Figure 2b, black dashed oval). This positive peak is
most clearly visible in Figure 2b near 1670−1680 cm−1 at τpp
values of∼100 μs, before it relaxes to the baseline by τpp = 1 ms.
The results at a T0 value of 60 °C for apo-CaM were similar to

those at T0 = 40 °C. Once again, an additional positive feature
was present in the apo-CaM data (Figure 2c, black dashed oval),
though this was smaller than that observed atT0 = 40 °C, and the
peak extended to a slightly higher wavenumber. By contrast, the
T0 = 60 °C holo-CaM spectra (Figure 2f) showed little variation
from the T0 = 20 °C result (Figure 2d).
To analyze the T-jump data in more detail, double difference

spectra were created by subtracting the response of the holo-
CaM sample from that of the apo-CaM sample, [Sapo− Sholo], for
given values of T0 and τpp. This approach has twin benefits. First,
the response of the solvent is expected to be similar in both cases,
and so, its effect is removed from the T-jump data. Second, it has
been demonstrated previously that the holo-CaM sample does
not undergo a melting transition below 80 °C, and so the holo-
CaM sample acts as a convenient reference for the impact of
elevated solvent temperature on the protein amide I band.54

Thus, any differences in the resultant double difference
spectrum, [Sapo− Sholo], can be confidently assigned to additional
temperature-induced processes present in the former protein.
The results are shown in Figure 2g−i, where the [Sapo − Sholo]
spectra are shown as a function of τpp for T0 values of 20, 40, and
60 °C.
At T0 = 20 °C, the [Sapo − Sholo] spectrum shows that there is

little variation in the responses of apo- and holo-CaM (Figure
2g) as would be expected given that the first structural transition
occurs at 46 °C.54 However, at T0 = 40 °C (Figure 2h) it is clear

that apo-CaM responds differently to the T-jump than the holo-
CaM sample. The differences were characterized by fitting to
Gaussian line shape functions, revealing negative and positive
peaks at 1640 and 1671 cm−1, respectively. These are present
from early values of τpp (Figure 2h, dark red), indicating an
effectively instantaneous response of apo-CaM to the increase in
temperature of the solvent, but they subsequently grow in
amplitude, peaking at τpp of ∼10 μs (Figure 2h, orange) before
relaxing by τpp = 1 ms (Figure 2h, dark green). This is the same
feature described in Figure 2b,c, but the spectral positions and
temporal dependences are more clearly identified following the
[Sapo − Sholo] analysis.
Similar results were obtained at T0 = 60 °C (Figure 2i),

though the negative peak at 1640 cm−1 was smaller than that
observed at T0 = 40 °C, while the positive feature at 1675 cm−1

(black arrow) was broader with greater contributions at
frequencies near 1700 cm−1. Once again, the peak in the T-
jump double difference spectra [Sapo− Sholo] occurred at τpp∼10
μs, with all features relaxing to the baseline by τpp = 1 ms.
Prior studies of the temperature dependence of the CaM IR

spectrum have shown that melting of the C-terminal domain of
CaM is accompanied by spectral density loss at 1636 cm−1 and a
gain at 1671 cm−1.54 It is thus reasonable to conclude that the
differences between the apo- and holo-CaM T-jump responses
stem from domain melting in apo-CaM. This is further
supported by examination of the amplitude of the [Sapo −
Sholo] double difference feature as a function of T0. Figure 4a
shows the T-jump double difference spectra obtained at τpp =
100 μs at a range of T0 values. It can be seen that the spectral
form of the response does not change dramatically with T0, but
the amplitude shows a strong correlation with a previously
reported differential scanning calorimetry (DSC) temperature
profile of apo-CaM (Figure 4b).54 On this basis, the double

Figure 4. (a) Double difference [Sapo − Sholo] T-jump spectra at a range of T0 values for τpp = 100 μs. (b) Comparison of the amplitude of the T-jump
double difference response shown in part a (black) with the results of DSC data obtained for apo-CaM (red).54 The y-axis label “normalized response”
refers to the magnitude of the T-jump double difference [Sapo − Sholo] signal at 1640 cm−1 (as in part a) and Cp (μCal/°C) from DSC data. (c)
Temporal dependence of the T-jump double difference response [Sapo− Sholo] as a function of T0. (d) Results of fitting the data in part c to a stretched
biexponential function (see text).
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difference spectral feature is assigned to a helix-to-coil process
associated with melting of the C-terminal domain of apo-CaM
induced by the 9 °C T-jump.
For T0 = 54 and 60 °C, an increased amplitude was observed

at higher wavenumber (∼1700 cm−1) in the [Sapo − Sholo]
spectrum (Figure 4a) and is tentatively assigned to the
beginnings of the N-terminal domain melting process expected
at 58 °C leading to a more unstructured apo-CaM protein and
broader amide I signature.
Upon assignment of the T-jump spectra, it is instructive to

consider the dynamics observed for the process. The temporal
dependence of the [Sapo − Sholo] double difference feature is
shown in Figure 4c, which plots the magnitude of the α-helix
feature near 1640 cm−1; the results obtained for the peak-to-
peak (1640−1671 cm−1) magnitude were in close agreement. It
can be seen that the peak is present from early values of τpp,
reaches a maximum at around 10 μs, and relaxes by τpp = 1 ms.
Fitting these dynamics to a stretched biexponential function
(Figure S4) showed that the behavior is well-represented by a
rising component with a time scale of ∼5 μs and a decay of ∼40
μs (Table 1 and Figure 4d). These time scales were largely

constant with T0 (Figure 4d), though the longer time scale
observed at T0 = 60 °C was shorter, possibly due to the smaller
amplitude of the melting process at an elevated temperature.
The longer time scale is very similar to that obtained in the

TFA calibration experiments (47 μs) and is therefore assigned to
the effects of cooling of the sample following the T-jump. In the
current spectrometer configuration, the high T-jump pulse
repetition rate (0.5 kHz, Supporting Information) provides
more rapid data acquisition compared to lower repetition rate
experiments, but it also requires the sample to have cooled by τpp
= 2 ms in order to prevent gradual temperature buildup in the
sample.25 To avoid this, a short sample path length (6 μm) was
employed, although one impact of this is that the excess
temperature dissipates more rapidly than for longer path length
samples. The result is that the spectrometer is optimized to
observe the faster (<100 μs) melting dynamics, which
complements techniques able to extend the visible window to
tens of milliseconds.
The presence of a fast rising component in the [Sapo − Sholo]

signal shows that melting-related processes are occurring in the
apo-CaM sample on ∼5 μs time scales and that these are not
present in the holo-CaM data (see also Figure 2). The time scales
involved are comparable to previous observations of helical
peptide melting and hairpin unfolding.1−4 While such time
scales may seem too fast for domain melting, we stress that the
signals observed are small and the observations of these
experiments represent the very fastest steps in a domain melting
that does not go fully to completion. Justification for this can be
found in the much greater magnitude of the IR absorption
difference spectral signature, where equilibration at the new
elevated temperature is achieved, relative to the T-jump
difference spectra (Figures 1 and 2). Indeed, the time scales

observed in the T-jump melting experiments are comparable
with fast steps reported in the melting of ubiquitin, which were
assigned to initial “burst phase” or downhill melting of the
protein following T-jump perturbation of the potential energy
surface for some of the proteins.11 In those experiments, slower
time scale dynamics on hundreds of microsecond time scales
were assigned to activated barrier crossing caused by proteins re-
equilibrating to the new temperature. In our current study,
although the early processes are visible, sample cooling
competes with any activated barrier crossing such that the
results are dominated by the fast initial phase of the unfolding.
This is supported by the lack of a T0 dependence of the 5 μs
unfolding time scale in all except for the T0 = 20 °C data (where
unfolding is not detected).
It is interesting to note that apo-CaM unfolding appears to

begin with destabilization of α-helical components of the C-
terminal domain. In a previous study, the results of molecular
dynamics simulations were reported, which showed that the apo-
CaM protein is significantly more flexible than its holo
counterpart.54 Indeed, the most flexible residues were reported
to lie between positions 90 and 148 in the C-terminal domain.
Although these were largely located in the coil sections between
the helical parts of the C-terminal domain, it is reasonable to
suggest, on the basis of prior studies of short chain peptides, that
helix melting begins at the ends of the short helical sections,
which link to the random coil units. Thus, the concept of domain
unfolding beginning with fraying of the ends of helical sections
would be consistent with both our results and other studies.2,3

■ CONCLUDING REMARKS
Comparison with the only other T-jump study of CaM
unfolding shows a marked disparity in time scales.35 An
experiment using changes in the absorbance of tyrosine residues
in CaM to probe melting observed processes on hundreds of
microsecond time scales. As explained above, however, on the
basis of this new information these are most likely to be
assignable to the activated barrier crossing processes such as
those reported for ubiquitin.11 Thus, by probing the fastest steps
in CaM domain melting, our new results complement this prior
study to produce an overall picture of CaM domain melting.
Taken jointly, these two studies also reinforce the need to
observe protein dynamics over as wide a range of time scales as
possible to gain a complete molecular picture.
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