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A pilot study for the prediction 
of liver function related scores 
using breath biomarkers 
and machine learning
Rakesh Kumar Patnaik1, Yu‑Chen Lin1, Ashish Agarwal1, Ming‑Chih Ho2,3* & J. Andrew Yeh1*

Volatile organic compounds (VOCs) present in exhaled breath can help in analysing biochemical 
processes in the human body. Liver diseases can be traced using VOCs as biomarkers for physiological 
and pathophysiological conditions. In this work, we propose non‑invasive and quick breath monitoring 
approach for early detection and progress monitoring of liver diseases using Isoprene, Limonene, 
and Dimethyl sulphide (DMS) as potential biomarkers. A pilot study is performed to design a dataset 
that includes the biomarkers concentration analysed from the breath sample before and after study 
subjects performed an exercise. A machine learning approach is applied for the prediction of scores 
for liver function diagnosis. Four regression methods are performed to predict the clinical scores using 
breath biomarkers data as features set by the machine learning techniques. A significant difference 
was observed for isoprene concentration (p < 0.01) and for DMS concentration (p < 0.0001) between 
liver patients and healthy subject’s breath sample. The R‑square value between actual clinical score 
and predicted clinical score is found to be 0.78, 0.82, and 0.85 for CTP score, APRI score, and MELD 
score, respectively. Our results have shown a promising result with significant different breath profiles 
between liver patients and healthy volunteers. The use of machine learning for the prediction of scores 
is found very promising for use of breath biomarkers for liver function diagnosis.

The liver is the primary organ of the body, responsible for metabolism and protein absorption. Many diseases 
affect the liver, including hepatitis, fibrosis, and cirrhosis. Liver cirrhosis and liver cancer stand at 11th and 
16th rank as the most common causes of death globally, with yearly more than 1 million and 0.7 million deaths, 
 respectively1.

The gold standard method for identifying the fibrosis stage is liver biopsy, it is an invasive test procedure 
with around 6% of patients found post  complicacy2 and bleeding  issues3. Liver diagnosis is also done using liver 
function tests and imaging methods have been established to distinguish the degree of fibrosis; though the blood 
test needs standard laboratories and the imaging techniques need costlier equipment, operator expertise, and 
other contrast-related issues are inherently associated with this  technique4.

A liver function test is the first step in diagnosing various liver diseases by measuring certain proteins and 
liver enzymes in the blood sample. After getting the required data from the clinical parameters from the blood 
test, it is possible to calculate Child–Pugh (CTP), AST to PLT ratio (APRI), and Model for End-Stage Liver 
Disease (MELD) clinical scores that help doctors determine the severity of the disease progression and predict 
the survival rate after disease.

Thousands of VOCs were already identified in the exhaled  breath5. Many metabolic reasons regulate the VOC 
concentration or the VOCs  profile6,7. VOC biomarkers in the breath reflect an enormous number of sicknesses in 
many research  articles8,9. Breath is accessible in an adequately limitless stock, which gives more logical benefits 
than blood test procedures.

In comparison to the blood test, a breath test facilitates a non-invasive measurement where the concentration 
of target biomarkers reflects the change in body metabolism condition caused by sickness or infection. Breath 
VOCs concentration profile holds the information about body metabolism that is unique because VOCs in the 
bloodstream are transferred to the exhaled air and come out. Hence, breath empowers the entire body blood 
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inspection. Any sort of inflammation, infection, presence of tumor cells and oxidative stress cause a change in 
the concentration of certain compounds found in the exhaled breath 10–12.

Isoprene is a by-product of the glycolysis cycle which has been observed in an in-vitro  experiment13. Isoprene 
is assumed to be a typical derivative of cholesterol biosynthesis as an outcome of the non-enzymatic degrada-
tion of dimethylallyl-pyrophosphate14–16, a member of cholesterol and isoprenoids synthetic path-way17,18. Even 
previous studies have shown that the isoprene shows the highest area under the curve for discriminating fibrosis 
stages as compared to other  compounds19. One study reveals that the in healthy pupils aged 7 to 18 years range of 
isoprene is from 20 to 240  ppb20. The range of isoprene is broad and is overlapped between healthy and patients.

Another VOC that holds the potential to be a liver breath biomarker is DMS. Breath DMS level increases 
when a liver deteriorates and leads to cirrhosis  condition21–23. The liver regulates the synthesis and metabolism 
of hydrogen sulphide  (H2S). Methylation of  H2S produces  DMS24. There is no clear explanation for the altered 
regulation of  H2S metabolism. But studies show that hepatic dysfunction disturbs the process by affecting the 
enzymes responsible for  H2S absorption so part of the  H2S converted to  DMS25. Liver is responsible for pro-
ducing P450 metabolic enzymes. A cirrhotic liver got deprived of enough CYP2C19 compounds belongs to 
P450 enzyme that reduces the digestion of limonene and causes an increase in limonene levels in the  breath26. 
Limonene is common to find in a healthy person and liver patient breath because it is commonly found in food 
and beverages which give citrus fruit flavour, and this is hard to avoid in a regular  diet27. Limonene is obvious to 
appear in the exhaled breath of both the healthy and the patients’ group, but the concentration remains higher 
in the latter group.

There are previous studies that address multiple potential biomarkers related to liver disease. Some studies 
even emphasize on categorizing patients from healthy subjects using VOCs  concentration28,29. A diseased-liver 
alter the regulation of metabolism, so we hypothesized that there will be some makeable changes between these 
three biomarkers which can be detected by breath analysis. The objective of the study is to use the biomarkers 
concentration profile to predict the liver-related clinical scores. In this work, a panel of biomarkers is considered 
which includes isoprene, limonene, and DMS. The designed breath collection protocol includes a brief duration 
exercise which is a novel approach according to the best of our knowledge in the field of liver-related study. Par-
ticularly a previous study indicates isoprene concentration increases after performing an  exercise30. The change 
in the concentration profile of isoprene is included as an important parameter.

In the proposed work we not only observe biomarkers concentration but also try to predict scores using breath 
data and compare it with the real value of scores which are derived from blood test data. Different regression 
algorithms are employed to observe the predictions on a designed dataset that comprises the said VOC concen-
tration. Further the variation of the trend change in isoprene concentration is studied. Four different regression 
methods are applied in this work, that are Linear regression (LR), Support Vector Regression (SVR), Random 
Forest Regression (RFR), and Extra Tree Regression (ETR). The performance of regression analysis is evaluated 
based on mean absolute error (MAE) and root mean squared error (RMSE) metrics. The overall performance 
was also discussed using adjusted R-square value and AIC score.

Methods
Study subject selection and clinical parameters. The choice of the study population is designed to 
represent real-world population distribution. The healthy members are chosen based on a preliminary liver 
donors’ criterion. Based on their blood test result, age and BMI those individuals were considered in the study 
who have a perfect liver. In our recent work, it was described that ten years of a survey of 473 liver donors 
morbidity after liver  hepatectomy31. This study describes that the average age of liver donors is not more than 
30 years. For this reason, in this study, the healthy group members are younger than the liver patients.

Particularly aging has no significant effect on the chosen potential VOCs concentration if exists than at very 
old  age30,32. The literature describes there is no indication of significant change in isoprene concentration with 
gender and age. Some studies found that within the adult age group, there is little evidence on breath isoprene 
concentration varies with aging. The second biomarker, limonene is digested by liver P450 enzymes. Studies 
show that there is an effect of aging on the production of P450 metabolizing enzymes after 70 years and some 
coenzymes of P450 family production remain unchanged from 23 to 80  years33,34. Another in-vitro study shows 
that in rat liver, the decrease P450 enzymes shown in aged group of  samples35. The metabolizing P450 enzyme 
which is responsible for the digestion of limonene doesn’t vary with age and only liver disease is responsible for 
an increase in the concentration. The effect of aging on DMS concentration is not commonly found. But a study 
shows the effect of aging on rat liver and the regulation of sulfur compounds. This study concludes that there is 
a mixed trend observed in the production of sulfur compounds with  aging36.

The breath test protocol and research method ethics were approved by the Institutional Review Board of 
NTUH, Taipei, Taiwan (REC: 201912138RINB). All research was performed according to the ethics guidelines 
and a signed informed consent form was obtained from all study participants. The breath test was done in NTUH, 
Taiwan. In the inclusion criteria, the allowed age limit is 20–70 years. Study subjects need to agree to perform 
staircase walking for two minutes and their heart rate must reach a minimum of 100 bpm. All study subjects 
need to maintain a minimum of 8 h of fasting before the breath test. Study subjects need to avoid smoking and 
alcoholic drink for 24 h before the breath test. The exclusion criteria are that healthy subjects must not have past 
or present liver ailment issues and lungs disease. Patients are advised to withdraw if they feel any discomfort while 
following the breath protocol. Seventeen liver patients were enrolled in this study at NTUH, Taipei, Taiwan. Total 
seventeen patients that include eight Patients who had hepatic cellular carcinoma issues, six patients admitted 
for surgery, two patients joined for the treatment of cholangiocarcinoma and four out of the considered patient 
list came for transplant evaluation. Twenty-eight healthy volunteers were recruited as a healthy group and a liver 
function test is conducted to make sure no present symptoms or indication of the ill liver. Eight different common 
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protein and liver enzymes that are commonly monitored in liver patients admitted in NTUH, Taipei considered in 
our study. This includes albumin (ALB), total bilirubin (TBIL), Aspartate transaminase (AST), Alanine transami-
nase (ALT), platelet count (PLT), prothrombin time (PT), normalized prothrombin time (INR), and creatinine 
(CRE). Table 1 describes the mean and standard deviation of said liver-related protein and enzymes. Other than 
this information about hepatic encephalopathy (HE), ascites (ASC), serum sodium (Na), dialysis information 
(DLYS) was also retrieved. Three clinical scores formula and calculation methods are shown in supplementary 
documentation (Section 1: Clinical score calculation). The following table explains all the relevant information.

Breath collection protocol. Before beginning the breath collection one prepared questionnaire is 
answered by the study subjects. The questionnaire gives us information about their brushing teeth, fasting, and 
cigarette smoking. To avoid the collection of target VOCs which may pre-exist in the mouth, rinsing the mouth 
before collection is essential.

One liter gas sampling aluminum bag is used for breath collection. A commercial breath collection mask has 
not been used to avoid any kind of discomfort to the patients. All samples were collected in a new bag. Breath 
samples were collected in three different bags in different situations. For the first bag of breath collection, study 
subjects were asked to first slow down their breathing until their heart rate reach 60–80 bpm. After the heart 
rate remains stable for about one minute, subjects are asked to blow into the bag (bag 1). The second bag (bag 
2) is collected immediately after the subject performs staircase walking for a minimum of two minutes and the 
heart rate shoots up at least 100 bpm. The third bag is collected after 15 min of rest and after observing the heart 
rate is stable between 60 and 80 bpm (bag 3). After the breath is collected in the bag within one-hour sampling 
process starts. Bag 1 and bag 3 is collected at rest for that reason the heart rate is expected to be at normal read-
ing. The exercise section is systemized using 2 min of staircase walking after the heart rate increases to 100 bpm 
on the same facility.

Breath analysis. Breath samples are analysed using a GCMS-Clarus 680 instrument (PerkinElmer ®, USA). 
At first samples from the bags were sampled into the ‘Carbotrap’ desorption tubes using a pump (SKC®) and then 
an Automatic Thermal Desorption (ATD) unit (TurboMatrix 350 PerkinElmer®, USA) that desorb the sample 
from the tube into the GC column. ATD comes with an automatic sample tube handling unit. That selects one 
tube at a time and heats the tube. Then the sample was transferred into a Trap unit then transferred to the GC 
 column37. A conceptual experimental setup diagram is shown in Fig. 1.

The VOCs concentration was calculated utilizing a GCMS attached with a programmed desorption unit. The 
ATD has a desorption unit and a facility for the build-up of low-concentrate VOCs. The GC/MS station utilized 
helium gas of 99.9995% pure as the transporter gas. The GC section was an Elite 624 polar column (PerkinElmer, 
USA) with length, inside breadth, and film thickness is 60 m, 0.25 mm and 1.4 µm respectively. This GC has a 
single section. The temperature ramp-up of the profile has three stages. At first, it is 35-°C for 5 min. At that point 
at a pace of 7-°C/min, it expanded up to 90 °C and afterward, the rate expanded to 30-°C/min until it arrived at 
220-°C. The temperature needs to rise gradually so the peaks show up at some point and a moderate temperature 
ramp-up profile keeps up to focus for those mixes with less boiling point. Abrupt increment in column tempera-
ture cause short retention time and generally the peaks gets overlapped. The mass-to-charge proportion (m/z) 
was considered between the range of 20 and 300. VOCs were distinguished utilizing the mass information base 
designed by NIST provided by GC–MS software. Quantification is done by peak area comparison with reference 
to the calibration done using the standard compounds.

Regression analysis
Dataset. Three different datasets are prepared as CTP score, APRI score, and MELD score as output variable, 
respectively. There are seven breath parameters as input features kept constant in all three datasets. Those fea-
tures are isoprene concentration from three different bags, isoprene concentration difference from bag2 to bag1 
and bag2 to bag 3, mean limonene concentration, and mean DMS concentration. All features are numerical and 

Table 1.  Demographic and clinical parameters of study subjects (mean ± SD).

Parameters Healthy (n = 28) Liver patient (n = 17) Total (45)

Age (years) 24.78 ± 5.07 59.76 ± 7.31 38 ± 18.15

Height (cm) 168.03 ± 8.75 163.02 ± 7.6 166.14 ± 8.6

Weight (kg) 63.85 ± 9.87 69.18 ± 13.14 65.86 ± 11.38

Albumin (g/dL) 4.64 ± 0.36 4.1 ± 0.69 4.4 ± 0.57

T-bilirubin (mg/dL) 0.74 ± 0.29 1.25 ± 0.95 0.93 ± 0.66

AST (units/L) 18.85 ± 4.64 46.23 ± 20.04 29.2 ± 18.42

ALT (units/L) 15.64 ± 9.17 44.23 ± 28.73 26.44 ± 23.41

Platelet count 252.17 ± 57.51 156.41 ± 97.83 216 ± 87.83

Prothrombin time (PT) (sec.) 10.91 ± 0.48 11.3 ± 0.81 11.06 ± 0.64

Normalized PT 1.05 ± 0.04 1.07 ± 0.07 1.06 ± 0.06

Creatinine (mg/dL) 0.84 ± 0.17 0.81 ± 0.15 0.83 ± 0.16
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carry no missing value. The distribution plot for the three clinical scores is shown in supplementary Figs. S1–S3. 
The machine learning approach we adapted is not to distinguish between patients and healthy people using the 
dataset. Regression is a special application of classification rules which is used when the value of prediction is 
based on a dataset rather than mapping the data according to different labels or classes. The regression approach 
is commonly used to predict continuous quantity, but it can predict the discrete value but in the form of integer 
 quantity38. Based on the dataset and objective of the work regression method is chosen over multiclass classifica-
tion. Classification on this dataset will lead to value error because the least populated class in the target has less 
than two instances. Which may lead to an unacceptable classification and confusion matrix that will produce an 
improper F1 score and recall. For this reason, the approach made for prediction using the regression method.

Grid search and hyper‑parameter tuning. Four different regression methods applied in this work, are 
Linear regression (LR), Support Vector Regression (SVR), Random Forest Regression (RFR), and Extra Tree 
Regression (ETR). These methods are implemented using ‘Jupyter 6.0.1’ version for Python code development. 
The simple and the classic method is linear regression is as a baseline regressor. Support Vector Machine which 
is very popular in creating a hyperplane and forming a decision boundary. Ensembles learning method also 
applied to the dataset for score prediction.

In this work, grid search is run for SVR, RFR, and ETR algorithms for three different datasets. Each dataset 
is split into 70% as the training set and 30% as the test set. The test size was kept independent from the training 

Figure 1.  The layout of breath collection and analysis setup.
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data and unseen to the model. The parameters and their optimum value with scoring (negative mean absolute 
error) are shown in supplementary Table S2. Using the grid search function, the optimum value was found for 
hyperparameters of said methods for three different scores. For the SVR model, linear kernel with 0.01 regu-
larization factor for the CTP and MELD whereas for APRI it is 1. The major hyperparameter in the ensemble 
learning model (ETR and RFR) is the number of trees. For the ETR model the optimum number of trees for 
CTP is 10 and for APRI and MELD is 500. For the RFR model the optimum number of trees for MELD is 100 
and for APRI and MELD is 10.

Tenfold cross-validation is performed on the training dataset and the mean and standard deviation value of 
chosen error metrics are calculated. After the model is trained and cross-validated, the test dataset is used to pre-
dict the scores. The performance of regression analysis is evaluated based on mean absolute error (MAE) and root 
mean squared error (RMSE). The conceptual algorithm and flowchart (Fig. 2) describe the data analysis process.

Figure 2.  Flow chart of machine learning model.
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Conceptual algorithm for clinical score prediction:
1.Input = [IB1, IB2, IB3, IB2-1, IB2-3, ML, MD] # 7 independent variables 
2.Model = [LR, SVR, RFR, ETR] # Call the models
3.Output = [CTP, APRI, MELD] # 3 dependent variables
4. For Output_i
5. Split data to 70% training and 30% testing
6. For Model_j
7. Hyperparameters searching
8. Model fitting
9. Predict y_pred using X-test
10. j = j+1
11. end for
12. i = i+1
13. end for

Usually, the predicted score using different regression methods gives a floating number. The nomenclature of 
medical scores (CTP and MELD) is the whole number. APRI score is one digit after the decimal. For this reason, 
the predicted scores are rounded off to nearby whole numbers in the case of CTP and MELD. The predicted 
APRI score is rounded to one digit after the decimal.

In this work, any feature selection and feature importance techniques are not adapted. Still other than the 
common error metrics, adjusted  R2 value and Akaike information criterion (AIC) are also calculated for all 
the models. The adjusted  R2 value increases if the selection of independent variables improves the model. To 
choose the best feature combination AIC value was calculated. The minimum AIC represents the best model or 
predictors combination. The formulas used for the calculation of the adjusted  R2 and the AIC values are shown 
in Section 4 of the supplementary material.

Results
Figure 3 shows the mean and standard deviation (SD) plot of isoprene concentration from three different bags 
from the healthy and patient groups. As said earlier the range of isoprene is wider and overlap between the two 
groups. To observe the isoprene behavior in the said groups the trend change in the concentration profile is the 
priority of this work.

The concentration of isoprene difference before and after a workout is shown in Fig. 4. The mean limonene 
concentration for all subjects in bag1, bag2, and bag3 was found as 15 ppb, 14.92 ppb, and 13.53 ppb. As per the 
designed breath collection protocol, the concentration of limonene remains almost the same in the three bags, 
but the mean concentration of limonene is different in the patient group and the healthy group as shown in Fig. 5. 

Figure 3.  Isoprene concentration (ppb) from collected exhaled breath of patient and healthy group (Bag1: 
before physical activity, bag2: After physical activity, bag3: after 15 min of rest).
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Similarly, the mean DMS concentration in the three bags are 1.0, 1.05, and 0.69 ppb but the mean concentration 
of DMS in the patient group and the healthy group (Fig. 6) are 2.2 ppb and 0.2 ppb, respectively.

Statistical analysis. An independent one-tailed t-test conducted on the target VOCs concentration data 
collected from both the groups and a dependent one-tailed t-test performed on the isoprene concentration 
before and after performing physical activity on the total study subjects. To find the mean concentration of 
biomarkers either more or less between the groups is one-directional so a one-tailed t-test is  adapted39. An inde-
pendent t-test is performed to observe the existence of a significant difference between patients (n = 17) and the 
healthy group (n = 28) with a significance level = 0.01. The mean concentration of isoprene from each of the three 
bags is tested including the difference in isoprene concentration before and after performing a physical activity 
with mean limonene and mean DMS concentration between two groups. A dependent t-test is performed on 
the entire population between bag1 and bag2 that indicates the possibility of a significant difference in Isoprene 
concentration after physical activity. Similarly, another dependent t-test is performed on the entire population 
between bag2 and bag3 that indicates the possibility of a significant difference in isoprene concentration after 
rest.

Figure 4.  Isoprene concentration (ppb) difference from collected exhaled breath of patient and healthy group 
(Bag2-1: before physical activity and after physical activity, bag2-3: after physical activity and after 15 min of 
rest).

Figure 5.  Mean limonene concentration (ppb) difference from collected exhaled breath of patient and healthy 
group.
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Table 2 explains that the target VOCs shows significantly different concentration profile in both the groups and 
the isoprene compound which is a by-product of cholesterol synthesis shows a trend change in the concentration.

Regression result. Table  3 shows the error metrics for the test set and validation set of said regression 
analysis methods for the CTP, APRI, and MELD scores prediction.

Figure 6.  Mean DMS concentration (ppb) difference from collected exhaled breath of patient and healthy 
group.

Table 2.  Breath test parameters and t-test result.

Type of test Parameter t value p value

Independent t-test on patients (n = 17) and healthy group 
(n = 28)

Isoprene_bag1 2.691 0.005

Isoprene_bag2 3.042 0.002

Isoprene_bag3 3.287 0.001

Mean limonene − 1.165 0.125

Mean DMS − 6.857 0.00001

Dependent t-test on total study subjects (n = 45)

Isoprene concentration before and after workout (bag1 
and bag2) 9.239 0.00001

Isoprene concentration after workout and rest (bag2 and 
bag3) − 9.238 0.00001

Table 3.  Test and cross-validation results for the prediction of CTP, APRI, and MELD scores.

Validation result Test result

MAE (Mean and SD) RMSE (Mean and SD) MAE RMSE

CTP

ETR 0.143 ± 0.105 0.405 ± 0.357 0.071 0.267

RFR 0.275 ± 0.261 0.437 ± 0.435 0.285 0.534

SVR 0.368 ± 0.354 0.563 ± 0.616 0.285 0.654

LR 0.489 ± 0.326 0.681 ± 0.566 0.362 0.557

APRI

ETR 0.206 ± 0.114 0.418 ± 0.341 0.143 0.249

RFR 0.29 ± 0.186 0.407 ± 0.333 0.288 0.43

SVR 0.442 ± 0.243 0.553 ± 0.365 0.332 0.429

LR 0.54 ± 0.353 0.673 ± 0.471 0.258 0.339

MELD

ETR 0.94 ± 0.535 1.199 ± 0.673 0.785 1.101

RFR 0.92 ± 0.626 1.055 ± 0.677 0.857 1.195

SVR 1.256 ± 0.839 1.426 ± 0.893 1.071 1.488

LR 1.104 ± 0.764 1.209 ± 0.77 1.341 1.626
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The adjusted  R2 value for different independent variable combinations is shown in Figs. 7, 8 and 9 and the 
selected independent variables set is shown in Table 4. The top five AIC values with the respective feature set 
are shown in supplementary Table S3. The formulas used for calculation are shown in supplementary section 4.

Figures 10, 11 and 12 shows a scatter plot between predicted score and real score with the counts or number 
of test subjects (digit shown next to marker) for overlapped entries. As the dataset distribution shows CTP 
score 5 is more in number. All healthy people and patients with liver disease at minor stage their CTP score is 

Figure 7.  The adjusted  R2 value for different sets of features with CTP score as the dependent variable.

Figure 8.  The adjusted  R2 value for different sets of features with APRI score as the dependent variable.

Figure 9.  The adjusted  R2 value for different sets of features with MELD score as the dependent variable.
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5 which is the minimum value. The count number shows the entries in that coordinates.  R2 value is more than 
0.78. As the CTP score states that 5 to 6 score is considered as type-A and 7 to 9 as type-B. The above plot shows 
that there is one misclassification where the actual score is 6 and the predicted score is 5. If a CTP score of 5 got 
misclassified to 7 then a type A patient will be predicted as type B that is a serious misjudgment. The number of 
wrong predictions can be improved with an even distribution covering all possible score values. Figure 12 shows 
all the said regression method  R2 values for three different scores.

Table 4.  Set of features used for adjusted  R2 value calculation.

Number of features Set of features

1 IB1

2 IB1 and IB2

3 IB1, IB2 and IB3

4 IB1, IB2, IB3 and IB2-1

5 IB1, IB2, IB3, IB2-1 and IB2-3

6 IB1, IB2, IB3, IB2-1, IB2-3 and ML

7 IB1, IB2, IB3, IB2-1, IB2-3, ML and MD

Figure 10.  Comparison of actual and predicted CTP score (using ETR) and number of instances shown as 
label.

Figure 11.  Comparison of actual and predicted APRI score (using ETR) and number of instances shown as 
label.
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Discussion
The primary goal of this research is to evaluate the capability of the selected breath biomarkers analysis as a non-
invasive method for monitoring liver disease by quantifying the up-and-down-regulated VOCs concentration 
in the breath sample as a result of the disease. A study protocol that involves a brief physical exercise to make a 
trend change in the VOCs concentration is a unique approach in this work. Three VOCs considered in this work 
are isoprene, limonene, and DMS. As we hypothesized a significant difference in the isoprene concentration of 
the biomarker is observed between the healthy group and the patient group after performing the exercise. This 
work is further extended by using the biomarker profile and machine learning regression methods, whereby 
liver-related clinical scores are predicted.

A significant difference was observed, as shown in Table 2. An ill liver is deprived of its efficient metabolism 
potential, mostly due to damage to active liver cells. Changes in metabolism alter the concentration of VOCs. 
The concentration of isoprene decreases as the liver fibrosis stage increases towards critical  condition19. From 
previous studies, as described, the concentration window of isoprene is broad (varies from 50 to 500 ppb)40. To 
make better predictions or decisions using the machine learning approach, more independent variables are always 
appreciated. Rather than the absolute concentrations, this study considers the change in isoprene concentration 
as an important parameter and includes it in the dataset.

Figure 3 shows the isoprene concentration profile from the three breath samples from both groups. The 
isoprene concentration at rest (bag 1) and after rest (bag 3) in the liver group is lower compared to the healthy 
group. Isoprene concentration changes in human breath after exercise. In a study, it has been found that isoprene 
concentration is higher when the heart rate increases after a  workout30. Also, we observed the same in our study. 
In Table 2, a dependent t-test shows that before and after exercise, the isoprene concentration is different for 
all study subjects. Adenosine triphosphate (ATP) is the primary high-energy phosphate particle that empowers 
muscle compression. In the ATP production process, this acetyl-CoA enters the Krebs cycle to drive oxidative 
phosphorylation. This procedure mainly happens in mitochondria, which is the major source of ATP. In this 
procedure, acetyl-CoA is produced which triggers the mevalonate cycle which is responsible for the production 
of isoprene in the human  body41,42. The severity of the liver disease builds a hepatic accumulation, increases 
HMG CoA reductase (HMGCR) which results in dysregulation of cholesterol metabolism and affects the iso-
prene  production43–46. The isoprene concentration profile gets affected because of the malfunction of the liver. 
After performing the exercise, the collected sample (bag 2) isoprene concentration is about two times higher 
than the bag 1 concentration, but in the case of a liver patient, the amount it increases is lower in comparison 
to the healthy group.

The mean concentration of limonene, which usually does not increase after performing the exercise, remains 
nearly the same in all three bags, so the mean limonene concentration from the samples of both groups is consid-
ered. The mean limonene concentration of the healthy group is less compared to the liver patient group as shown 
in Fig. 5. Limonene is common in healthy people’s and liver patients’ breath because it is commonly found in food 
and beverages that give citrus fruit flavor, and this is hard to avoid in the regular  diet27. Limonene is obvious to 
appear in the exhaled breath of both the healthy and the patient groups, but the concentration remains higher 
in the latter group, and this was even proved in a recent  study47. The drugs and nutrients metabolizing P450 
enzymes were found to be deprived of the required quantity when the liver disease is in progression. In particular, 
CYP2C19 and CYP2C9 were down-regulated in production, and incomplete digestion of limonene appeared 
in the breath in a higher  concentration26. To avoid any residuals of limonene, a minimum of eight hours of fast-
ing and rinsing of the mouth with water just before the test is compulsorily imposed on all study participants.

The same trend was also observed with DMS concentration in the breath. As shown in Table 2, the DMS 
concentration in the breath is supposed to be higher in liver patients than in healthy people. We found the mean 
DMS concentration in patients higher than the healthy group (Fig. 6) and this type of result is also observed by 

Figure 12.  Comparison of actual and predicted MELD score (using ETR) and number of instances shown as 
label.
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other  authors25. There is a possibility that a liver with a progressing stage of dysfunction may cause a change in 
the concentration of exhaled sulfur  compounds22,48. Liver patients’ exhaled breath carries a higher amount of 
DMS than healthy individuals.

Three datasets were designed, each comprised of seven input features and the predicted output variable for 
each dataset is CTP score, APRI score, and MELD score, respectively. Two different errors were used to evaluate 
each regression method. Four different regression methods were adapted. Comparison of the regression method 
is not the objective of this study. Ensemble learning (ETR and RFR) based ETR did a better prediction of scores 
compared to the other three said regression methods, especially SVR and LR. The interpretation of regression 
results based on the chosen error matrix (MAE and RSME) is described in the following paragraph for the said 
scores. As shown in Table 3, the mean value of CTP in the dataset is 5.5, and using ETR, the least MAE and RMSE 
are found to be 0.071 and 0.267, respectively, which makes up the MAE less than 5% of the mean CTP score. 
Table 3 shows the APRI score prediction. The minimum MAE and RMSE are 0.143 and 0.249, respectively. The 
mean APRI score is 0.5 and the errors are more than 28% of this value. For the MELD score, the mean value is 
7.5. The MAE and RMSE are found to be 0.785 and 1.101, respectively, as shown in Table 3. The error is less than 
15% of the mean MELD value of the dataset.

A mixed variation is observed in the adjusted  R2 value for all the combinations of models and independent 
variables (Figs. 7, 8 and 9). The independent variables were added in a general way as shown in Table 4. With the 
addition of IB2 with IB1 for most of the models, there is an improvement in the adjusted  R2 value. This can be 
interpreted as IB2 having a good contribution to the model predicting power. For the CTP score, the adjusted  R2 
value for the chosen feature set is 0.891 and the adjusted  R2 value for the best model feature combination is 0.982. 
The difference in the adjusted  R2 value between the chosen feature set and the best model feature combination 
is 0.091. This may be considered as a small difference and the considered feature set seem to be acceptable based 
on the adjusted  R2 value. For the APRI score and the MELD score, the difference in the adjusted  R2 values is 0.08 
and 0.01, respectively. From the dataset and the model, AIC values are also calculated and the top five values are 
shown in supplementary Tables S3–S5. Only the linear regression model was used with MSE as the maximum 
likelihood function. The difference in score between the best model and the proposed model is 0.064 for the 
CTP score, 2.081 for the APRI score, and 0.308 for the MELD score.

There is one misclassification and the  R2 value is 0.78 between real and predicted CTP score plotted in Fig. 10. 
The APRI score states that if the value is less than 0.5 there is no fibrosis present and more than 1.5% strong 
chance of having fibrosis. Three misclassifications in APRI score prediction with  R2 value between the actual and 
predicted score is 0.82, as shown in Fig. 11. Three misclassifications are observed where the real value is 10 and 
the predicted score is 8. Figure 12 shows the  R2 value of 0.85 between the real and predicted score. Figure 13 puts 
together the performance of four different regression methods for predicting the scores. The ensemble learning 
fits very well with this dataset and predicts scores very close to the real scores.

Conclusion
Our pilot study demonstrated that Isoprene, limonene and DMS can be potential biomarkers for liver disease. 
This study design involves an exercise in the breath collection protocol that includes healthy subjects and liver 
patients. There is a significant difference in the breath profile that has been found between liver patients and 
healthy people. Breath profile data is analyzed using four different regression methods and advantages of pro-
posed method are highlighted quantitatively. We showed that clinical scores can be predicated with our machine 
learning regression approach and breath profile data. The regression result can estimate the clinical scores which 
imply the concentration of biomarkers varies according to the liver condition. The designed breath collection 
protocol includes a brief duration exercise which is a novel approach according to the best of our knowledge 
in the field of liver-related study. By training our model with big dataset, a non-invasive early disease diagnosis 
and prognosis.

Figure 13.  R2 value of actual score to predicted score using four different regression method for CTP, APRI and 
MELD score.
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