
INTRODUCTION

The conserved immune defense system is essential for host ho-
meostasis [1, 2] as it triggers innate and adaptive immunity. Both 
mechanisms protect the host against foreign invaders [3]. The 
triggered innate immune system can immediately recognize non-
specific pathogens without immunological memory and rapidly 
lead to an inflammatory reaction [4]. Innate immune cells are 
recruited towards the infected and inflammatory areas to engulf 
foreign substances [5]. Macrophages, monocytes, neutrophils, den-
dritic cells and natural killer (NK) cells sense pathogen-associated 
molecular patterns (PAMPs) and damaged or dying cell-derived 
danger-associated molecular patterns (DAMPs) by their pat-

tern recognition receptors (PRRs) such as cytoplasmic retinoic 
acid-induced gene (RIG)-I-like receptors (RLRs), absent in mela-
noma 2 (AIM2)-like receptors (ALRs), and nucleotide-binding 
oligomerization domain (NOD)-like receptors (NLRs), as well as 
membrane-bound Toll-like receptors (TLRs) and C-type lectin 
receptors (CLRs) [3, 6, 7]. Depending on the type of PRRs bind-
ing, activated immune cells initiate various intracellular signaling 
cascades to produce cytokines, chemokines, immune receptors 
and cell adhesion molecules, which are involved in the further 
recruitment of immune cells [4, 8]. Innate immunity is responsible 
for the induction of adaptive immunity [3]. The adaptive immune 
system is more specific and finely tuned to fight against non-self- 
and self-antigens [9]. The adaptive immune system is a delayed 
response, which generates immunological memory after an initial 
encounter with specific pathogens [8]. Primary contact with a 
specific antigen contributes to the transformation of immune cells 
such as naïve T and B cells into activated states. When the same 
pathogen re-enters organisms, memory T and B cells promptly 
respond depending on their memory [2, 10]. These cells imple-
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ment antibody-mediated (humoral) or cell-mediated immune 
responses. B lymphocytes play an important role in producing 
immunoglobulin (Ig) antibodies that attach to and neutralize spe-
cific foreign pathogenic antigens. T lymphocytes such as cytotoxic 
T cells and helper T cells, are involved in cell-mediated immune 
responses [4]. With ageing, immune system shows chronic, sterile, 
and low-grade inflammation (inflammaging) and immunodefi-
ciency (immunosenescence), and aberrant immune responses can 
lead to immune disorders and age-related diseases [11, 12]. 

Cell-derived membranous extracellular vesicles (EVs) mediate 
intercellular communication after their release into the extracel-
lular environment [13, 14]. EVs can be classified as exosome, mi-
crovesicle, and apoptotic bodies depending on their intracellular 
origin, size (diameter 100 to 1,000 nm) or composition [13, 14]. 
EVs enclosed in phospholipid bilayer contain lipids, nucleic acids 
and proteins (e.g., cytokines, proteinases, adhesion molecules, 
signal transduction proteins and chemokines) that deliver signals 
to the cytosol of recipient cells and activate intracellular signal-
ing pathway by their internalization or receptor-counter receptor 
interactions at plasma membrane [13-15]. EVs play important 
roles in the regulation of physiological and pathological processes 
including Alzheimer disease (AD), Parkinson disease (PD) and 
amyotrophic lateral sclerosis (ALS) [16]. In particular, EVs are 
involved in regulating the immune response, inflammation and 
tissue homeostasis [15]. In addition, acute insults may provoke 
pro-inflammatory EVs serving host defense. Under chronic in-
flammatory conditions, such as cellular senescence, EVs delivering 
immunosuppressive contents act in an attempt to prevent persis-
tent inflammatory response, acting as a counterweight to inflam-
matory conditions [17, 18]. In response to the inducer, EVs evoke 
either pro-inflammatory or anti-inflammatory responses [19]. 
This review summarizes current knowledge about EVs in immune 
systems under ageing and inflammatory states and their potential 
for clinical applications. 

OVERVIEW OF EXTRACELLULAR VESICLES

Exosomes (30~100 nm in diameter) are released by the endo-
cytic pathway in various cell types and transport cell-type specific 
molecules [20, 21]. Late endosomes called multivesicular bodies 
(MVBs) or multivesicular endosomes (MVEs) containing internal 
intraluminal vesicles (ILVs) fuse with host plasma membrane to 
secrete ILVs into the extracellular environment (exosomes) [20, 
21]. Otherwise, some late endosomes fuse with lysosomes to de-
grade cytoplasmic contents (Fig. 1) [22]. 

Multiple intracellular steps are required to accomplish exosome 
biogenesis and release. Exosome biogenesis proceeds in endosom-

al sorting complexes required for transport (ESCRT) dependent 
or ESCRT independent manner. Sub-complexes of ESCRT com-
prise ESCRT-0 (Vps27, Hse1), ESCRT-I (TSG101, Vps28, Vps37, 
and Mvb23), ESCRT-II (Vps22, Vps25, and Vps36) and ESCRT-III 
(Vps20, SNF7, Vps24, Vps2, Vps60, and Vps46) [23, 24]. ESCRT-0 
senses and recruits ubiquitinated cargo on endosomal mem-
branes, and ESCRT-0 recruits ESCRT-1, which subsequently re-
cruits ESCRT-II. Both ESCRT-I and -II are involved in membrane 
deformation and inward bud formation. Furthermore, ESCRT-1 
recruits ESCRT-III via ESCRT-II, and ESCRT-III is implicated 
in scission to form ILVs [23, 25]. Without ESCRT complexes, tet-
raspanins (CD9, CD81, and CD63) and ceramide are associated 
with exosome biogenesis [26]. Tetraspanins organize membrane 
microdomains, called tetraspanin-enriched microdomains (TEM), 
with lipids and transmembrane proteins that include Ig-superfam-
ily (IgSF) receptors and integrins. Tetraspanins are implicated in 
cargo sorting into ILVs [27]. The ESCRT complex and tetraspan-
ins play roles in protein sorting into vesicles [28]. 

Exosomes contain enriched cholesterol, sphingolipids (SLs) and 
phosphatidylcholine (PC). Ceramide (Cer), a central unit of SLs, is 
product of sphingomyelin (SM) hydrolysis by neutral sphingomy-
elinase (nSMase); it promotes membrane budding, generates ILVs 
[29], and is involved in lipid sorting [29, 30]. Other sphingolipid 
metabolite, sphingosine 1-phosphate (S1P) is also associated with 
cargo sorting into ILVs by binding to S1P receptors on MVBs 
[31]. In particular, heterogeneous nuclear ribonucleoprotein A2B1 
(hnRNPA2B1) and Y-box protein 1 (YBX1) are involved in exo-
somal microRNA (miRNA) sorting [32, 33]. Major vault protein 
(MVP) participates in RNA and miRNA sorting into vesicles [34, 
35]. 

MVBs then move toward the plasma membrane for secretion via 
microtubule and actin cytoskeleton [36], and the motor proteins 
(kinesins, dynein, and myosins) superfamilies are responsible for 
vesicular transport [37]. The Rab family of small guanosine-5’-
triphosphates (GTPases) regulate intracellular vesicle traffick-
ing and membrane fusion [early endosome (Rab4 and Rab5), 
recycling endosome (Rab11), late endosome (Rab7 and Rab9), 
and exosome secretion (Rab27)] [28, 38]. Rab27a and Rab27b 
are associated with MVB docking at the plasma membrane [39]. 
Soluble N-ethylmaleimide-sensitive factor attachment protein 
receptors (SNAREs) might contribute to the docking process by 
assembling vesicular SNAREs (v-SNAREs) and target SNAREs (t-
SNAREs). These trans-SNARE complexes are implicated in MVB 
fusion with the plasma membrane. Therefore, SNARE proteins are 
required for exosome release into the extracellular environment 
[40, 41]. Exosome secretion is also mediated by activation of the 
transcriptional factor, p53 [42]. 
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Microvesicles are directly derived from the cell surface via out-
ward bud formation and fission, and range from 50~1,000 nm in 
diameter [13]. Plasma membrane redistribution and contraction 
of the cytoskeletal structure contribute to microvesicle formation 
[43]. When cargo components move to the cellular periphery at 
sites of microvesicle shedding, changes in membrane-bending as-
sociated proteins and the plasma lipid composition change, and 
become involved in membrane rigidity and curvature, causing 
membrane budding [44]. Lipid raft microdomains are enriched in 
sphingolipids and cholesterol, and are important in the budding 
process [43, 45]. Acid SMase (aSMase) generates cone-shaped Cer, 
which alters microvesicle membrane curvature and fluidity [46, 
47]. Cholesterol might be involved in microvesicle shedding [48, 
49]. Modification of membrane asymmetry is ATP-dependently 
generated by aminophospholipid translocases such as flippases 
and floppases that move phospholipids from outer to inner leaflets 
and vice versa, respectively. Scramblases that are ATP-independent 

and Ca2+-dependent, are involved in the distribution of the plas-
ma membrane, by non-specifically translocating phospholipids 
between outer and inner leaflets [50]. Phosphatidylserine (PS) is 
translocated to the outer leaflet for shedding and lipid rafts also 
play pivotal roles in PS exposure [51].

Membrane bending and budding processes are also regulated by 
contractile proteins that add contractile or tensile forces [43, 44]. 
Actin-myosin interaction induces fission to release microvesicles 
from the surface of parent cells. The small GTP-binding protein 
ADP-ribosylation factor 6 (ARF6) facilitates the phospholipase D 
(PLD)-extracellular signal-regulated kinase (ERK)- myosin light 
chain kinase (MLCK) signaling pathway, which activates myosin 
light chain (MLC) that subsequently promotes actomyosin con-
tractility at the necks of forming vesicles, thus releasing microvesi-
cles into the extracellular space [52].   

Apoptotic bodies are vesicles that bleb from the plasma mem-
branes of cells undergoing apoptosis [53]. Apoptotic cells can 

Fig. 1. Schematic overview of the extracellular vesicles (EVs). EVs enclosed in phospholipid bilayer from secreting cells contain nucleic acids and pro-
teins that deliver signals to the cytosol of recipient cells. EVs can be classified as exosome, microvesicle, and apoptotic bodies depending on their intracel-
lular origin, composition and size.
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generate diverse apoptotic cell-derived EVs (ApoEVs) including 
membrane-bound vesicles (ApoBDs) and apoptotic microvesicles 
(ApoMVs) [54]. Apoptotic bodies allow phagocytes including 
macrophages and DCs to recognize and engulf apoptotic cells [53]. 
They can transport fragmented DNA and cytoplasmic organelles, 
as well as cytokines and miRNA; therefore, they play crucial roles 
in immune regulation during infection and autoimmunity [54, 
55].   

IMMUNE CELLS AND EXTRACELLULAR VESICLES IN IMMUNE 
SYSTEM

All types of immune cells such as macrophages, neutrophils, 
dendritic cells (DCs), T, and B lymphocytes secrete EVs, which are 
essential for cell-cell communication [56-60]. After recognition 
of foreign agents or stimuli, they release EVs with altered cargo 
[61]. Recent evidence indicates cytokines are encapsulated in EVs 
and then released into extracellular environment [19, 62]. These 
EVs include the cytokines [interleukin (IL)-1ra, IL-1β, IL-6, IL-
8, and IL-10], chemokines [monocyte chemoattractant protein-1 
(MCP-1) and regulated upon activation, normal T cell expressed 
and secreted (RANTES)], miRNA, and foreign constituents, which 
are important for the innate and adaptive immune systems [19, 63, 
64]. Also, EVs provoke either pro-inflammatory or anti-inflamma-
tory responses depending on the stimuli [19].

Macrophages are derived from the yolk sac, fetal livers or bone 
marrow and participate in phagocytosis, tissue remodeling, and 
homeostasis. They have the important ability to scan surround-
ing signals via their sensors such as TLRs, NLRs, CLRs, RLRs and 
ALRs [56, 65]. Activated macrophages release cytokines [IL-1β, IL-
6, IL-12, IL-18, and IL-10], growth factors [transforming growth 
factor (TGF)-β] and chemokines [chemokine C-X-C motif ligand 
(CXCL)1, CXCL2, and CXCL10] [65, 66]. Macrophages-derived 
EVs regulate the phenotype and function of recipient cells and are 
implicated in infections, such as those caused by Mycobacterium 
tuberculosis  and human immunodeficiency retrovirus (HIV). 
These EVs can also deliver mycobacterial or viral components [64].

Neutrophils are specific polymorphonuclear leukocyte (PMNs) 
that are involved in acute and chronic inflammation. Neutrophils 
are abundant in the circulation [67]. During inflammation due 
to host-derived and bacterial-derived stimulants, circulating 
neutrophils are captured by endothelial adhesion molecules and 
recruited neutrophils form neutrophil extracellular traps (NETs) 
[67, 68]. In particular, neutrophils store granules containing micro-
bicidal or enzymatic substances that are secreted upon activation. 
Azurophilic granules carry myeloperoxidase (MPO), serine prote-
ases including neutrophil elastase (NE) and cathepsin G (CG) [57, 

68]. Neutrophils also produce the cytokines and chemokines, IL-
1α, IL-1β, IL-12, tumor necrosis factor (TNF)-α, IL-8, granulocyte 
colony-stimulating factor (G-CSF), interferon-α, and interferon-β 
[57]. Neutrophil-derived EVs can modify the inflammatory re-
sponse of target immune cells by modulating production of pro- 
or anti- inflammatory cytokines [69]. In addition, EVs from neu-
trophils exhibit protective effects against inflammatory arthritis by 
inducing anti-inflammatory responses [70].

DCs are antigen-presenting cells (APCs) that are important for 
the induction of innate immunity as well as involved in adaptive 
immunity [71]. DCs are implicated in regulation of NK and NK T 
cells. Also, DCs interact with T and B cells: These cells prime naïve 
T cells (especially CD4+ T helper (Th) cells), which are required for 
T cell-dependent activation of B cells activation [71]. Also, DCs 
can induce naïve and memory B cell activation and support differ-
entiation activated naïve B cells to plasma cells [71]. Classical DCs 
(cDCs) have CD11b, CD11c, and CD13 on their surfaces and ex-
press TLR2, TLR4, TLR10, and NLR. Cytokines secreted by cDCs 
include IL-8, IL-10, IL-12, and TNF-α [58]. Plasmacytoid dendritic 
cells (pDCs) produce type 1 interferon (IFN) against foreign 
pathogens [72]. Plasmacytoid DCs express surface markers such 
as CD303 and CD45RA, sensors such as TLR7 and TLR9, and re-
lease IFN-α, IL-6, and TNF [58]. Microparticles from patients with 
systemic lupus erythematosus (SLE) induce the production of pro-
inflammatory cytokines, such as TNF, IFN-α, and IFN-γ, by pDCs 
[73]. 

T lymphocytes originate from bone marrow, mature in the 
thymus for selection, then migrate to the periphery. Naïve T lym-
phocytes can continuously circulate between blood and second-
ary lymphoid organs such as spleen and lymph nodes though the 
lymphatic system, and proliferate and differentiate into various 
types of T lymphocytes such as effector and memory cells after 
encountering antigens or costimulatory molecules of DCs [74, 75]. 
The major types of T lymphocytes are CD4 expressing Th cells 
and CD8 expressing cytotoxic T (Tc) cells. The CD4+ T cells com-
prise T regulatory (Treg), T follicular helper (Tfh), Th1, Th2, Th9, 
Th17, and Th22 types. These cells produce the anti-inflammatory 
or pro-inflammatory cytokines: IFN-γ and TNF (Th1), IL-4 and 
IL-5 (Th2), IL-9 (Th9), IL-17, IL-21, and IL-22 (Th17), IL-22 
(Th22), IL-10 and TGF-β (Treg), and IL-21 (Tfh) [59]. T helper 
cells support B cell maturation for the generation of antibodies 
and regulate cytotoxic T cell activation [59, 76]. Regulatory T cells 
are important for maintaining self-tolerance [75] and CD8+ T cells 
generate IFN-γ, TNF, and IL-2, and kill cells infected with viruses 
[77]. Upon T cell receptor (TCR) activation, T cells release EVs [78]. 
Furthermore, overactivated T cell-derived EVs contain Fas ligand 
(FasL) and Apo2 ligand (Apo2L), which are associated with the 
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activation of cell death pathway [79]. 
Like T lymphocytes, B lymphocytes originate form bone marrow 

and express B cell receptors (BCR) that allows them to initiate ac-
tivation after contact with antigens [80]. During T cell-dependent 
activation, B cells can become activated and differentiate into 
plasma and memory B cells with the help of T cells [80]. T cell-in-
dependent B cell activation results in production of B cell forming 
low-affinity antibodies in response to lipopolysaccharides (LPS) 
and glycolipids [81]. B lymphocytes are implicated in the produc-
tions of antibodies and cytokines. In particular, B regulatory (Breg) 
cells can release IL-10, which is responsible for supporting the 
differentiation of Treg cells, and the inhibition of Th1, Th17, and 
CD8+ T cells [60]. Moreover, B cell-derived EVs containing MHC 
class II complexes are secreted in response to the interaction with 
antigen-specific T cells and BCR crosslinking, which plays an im-
portant role in the immune response [82].

SENESCENCE-ASSOCIATED SECRETORY PHENOTYPE AND 
EXTRACELLULAR VESICLES IN AGEING

Cellular senescence is characterized as a stress response to ex-
tracellular or intracellular insults. This senescence system can in-
duce a permanent state of cell-cycle arrest and prevent malignant 
transformation [83]. Senescent cells undergo phenotypic changes 
such as acquiring the senescence-associated secretory phenotype 
(SASP). The SASP consists of cytokines [IL-1, IL-6, and IL-8], che-
mokines [CXCL-1, 2, chemokine C-C motif ligand (CCL)-3, 8, 11, 
13, and 20], proteases [matrix metalloproteinase (MMP)-1, MMP-
3, and MMP-10], and growth factors [insulin-like growth factor 
(IGF) and granulocyte-macrophage colony-stimulating factor 
(GM-CSF)] [12, 83]. Senescent cells are normally cleared by im-
mune cells [84]. However, senescent cells accumulate in multiple 
tissues due to age-related immunosenescence [12]. Concomitantly, 
SASP contributes to inflammaging, promoting inflammation by 
spreading the senescence phenotype to surrounding cells, which 
can lead to tissue dysfunction and age-related disease progression 
[11, 12]. 

For instance, aged vascular smooth muscle cells express IL-
6, CCL2, ICAM-1, and TLR4 compared to young [85]. Plasma 
TNF-α and IL-8 are increased in elderly humans [86]. The gene 
expression of IFN, IL-2, IL-1A, MMP-13, CXCL2, CXCL9, 
CXCL14, and CXCL20, which are closely associated with nuclear 
factor (NF)-kappa B activity, is elevated in aged human fibroblasts 
[87]. Monocytes from elderly persons produce increased amounts 
of IL-6, IL1-ra, and C-reactive protein (CRP), but not TNF-α and 
IL-1 compared with younger persons [88]. Circulating EVs from 
the cerebrospinal fluid (CSF) of aged rats have higher levels of 

CD63 level but not IL-1β level compared with young adult rats [89]. 
Notably, aged populations are vulnerable to pathological condi-
tions [90-92]. Systemic inflammation induced by injected LPS re-
sults in upregulated IL-1β and IL-10 levels in the brain and plasma 
of aged mice compared with adult mice. Notably, LPS induces 
aged microglia-derived IL-1β, IL-10, and TLR2 [90]. Microarray 
analyses showed increased levels of complement component (C) 
1q, C3, C4, MHC class I and II, CD68, CD44, and CD83 in brains 
from aged mice compared with adult mice. Similarly, LPS induced 
higher IL-6 and IL-1β levels in aged, than adult mice [91], and IL-6 
production is upregulated in aged splenocytes with or without LPS 
stimulation [92]. 

Senescent cells are generally metabolically active and enhance 
EV secretion [93]. Ageing can influence the concentration, size, 
and functions of circulating EVs throughout the body [94]. Also, 
miRNAs such as miR-21 and miR-223 are increased within the 
exosomes [18]. The senescence-associated increase in EVs might 
be mediated partially by p53 [42, 95]. Transcription factor p53 
can modulate the cell-cycle, DNA repair, cellular senescence and 
ageing [96], and targets endosomal compartment genes such as 
tumor suppressor-activated pathway 6 (TSAP6) and charged mul-
tivesicular body protein 4C (CHMP4C), which are implicated in 
exosome production. Under stress, p53 activation contributes to 
changes in membrane and vesicle trafficking [97]. The membrane 
phospholipid composition also changes with age [98]. The activa-
tion of nSMase in the liver and of nSMase and ceramidase in the 
brain and kidney during ageing is prominent, suggesting increased 
ceramide and/or sphingosine production [99]. Brains from aged 
monkeys show age-dependent endocytic pathology, as Rab GT-
Pases including Rab5, Rab7 and Rab11 are increased [100]. Taken 
together, senescent cells exhibit enhanced or suppressed immune 
activities with ageing, and have altered EVs biogenesis and secre-
tion.  

In addition, senescent cells inducing inflammation state can 
further increase the cancer incidence in the aged individuals [21]. 
Cancer cells can exploit EVs for EV-induced immunosuppressive 
environment in tumor tissues or areas, which prevents the recog-
nition by immune cells and removal of cancer cells [18]. Also, EVs 
from stem/progenitor cells have crucial ability to repair damaged 
tissues and modulate ageing process [101].

EXTRACELLULAR VESICLES IN HUMAN DISEASES

Under inflammatory conditions such as autoimmune and infec-
tious diseases, EVs can carry PAMPs, DAMPs, autoantigens, and 
cytokines that contribute to the pathogenesis of human diseases 
by suppressing or enhancing immune responses [102]. In acute 
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injuries, immune cells are likely to secrete pro-inflammatory EVs. 
In chronic or inflammatory diseases, they seem to release pro- or 
anti- inflammatory EVs depending on the inducers [18]. Thus, 
EVs might be key mediators in inflammatory diseases. 

Inflammatory bowel disease 

Inflammatory bowel disease (IBD) is an autoimmune condi-
tion that is due to the failure of immune tolerance to self-antigens. 
It leads to the production of auto-antibodies and impaired host 
tissues or organs. Patients with IBD are vulnerable to developing 
diverse autoimmune diseases such as psoriasis, coeliac disease, and 
multiple sclerosis [103]. Symptoms of IBD are abdominal pain, 
diarrhoea, and fever [104], and it is characterized by a dysregulated 
immune system and a chronic inflammatory response to an ab-
normal enteric microbiota, and genetic/environmental factors in 
the gastrointestinal (GI) tract. The major types of IBD are Crohn’s 
disease and ulcerative colitis (UC). Crohn’s disease involves the 
ileum, colon, and entire intestine, and UC involves the rectum and 
colon [105, 106]. A link between IBD and EVs has been identi-
fied. Intestinal luminal EVs from patients with IBD contain high 
levels of TNF-α, IL-6 and IL-8 [107], and Th1 and Th17 cells are 
involved in the pathogenesis of IBD [108, 109]. Th1 cell-derived 
IFN-γ and Th17 cell-derived IL-17 are key players in lesions of 
Crohn’s disease, as IL-12 and IL-23 production by DC is elevated 
[108]. Biopsies of intestinal tissues from patients with Crohn’s dis-
ease and UC have shown that Th17 cells and Th17-related cyto-
kines, such as IL-17 and IL-21, are upregulated [110]. Furthermore, 
the colon and ileum of patients with IBD express IL-8 and high 
levels of Th17 effector cytokines including IL-17A and IL-22 [111]. 
Many cytokines derived from immune cells are associated with 
IBD, indicating the importance of regulating these cytokines [112]. 
EVs derived from DC with a TGF-β1 modification inhibit Th17 
and delay IBD [113]. 

Rheumatoid arthritis 

RA is a chronic autoimmune disease that is characterized by the 
production of autoantibodies, persistent synovitis, and joint dam-
age [114, 115]. Autoantibodies such as rheumatoid factors (RFs) 
and anti-citrullinated protein antibodies (ACPAs) are associated 
with the severe clinical symptoms of RA such as pain, stiffness, 
swelling, and joint damage [114]. Rheumatoid factors are IgG, IgM 
and IgA that sense epitopes in the Fc fragment of IgG [116], and 
ACPAs recognize citrullinated peptides/proteins [117]. Both RFs 
and ACPAs are predominantly expressed in synovial fluid and 
blood of patients with RA [118]. The synovial compartment is a 
major region of inflammatory process in RA, and synovial cells, 
such as fibroblast-like and macrophage-like synoviocytes, are in-

volved in cytokine overproduction, as well as cartilage and bone 
destruction in joints [115]. Elevated numbers of EVs in joints and 
EVs in patients are likely to play key roles in pathogenesis of RA 
[119, 120]. Excessive cytokines and chemokines within synovial 
tissues are responsible for endothelial cell activation, and the in-
filtration and accumulation of immune cells including leukocyte 
and CD4+ T cells, thus worsening the inflammatory response [114, 
121, 122]. Both TNF-α and IL-1 might induce leukocyte recruit-
ment to inflamed areas [123, 124]. Infiltrated CD4+ T cells gener-
ate IL-2 and IFN-γ. T cells interact with DCs that express MHC 
class II or cytokines such as IFN-γ, TNF-α, and IL-17, and activate 
macrophages and monocytes [122]. Direct interaction between 
T cells and macrophage contributes to TNF-α production [125]. 
IL-17 can also trigger macrophages to produce TNF-α and IL-1β 
[126]. Conversely, monocytes/macrophages are sources of TNF-α, 
IL-6, and IL-12 [127, 128], and regulators of T cell differentiation; 
for example, IL-12 and IFN-γ regulate Th1, and IL-1β and IL-6 
regulate Th17 cell differentiation [129, 130]. These Th1 and Th17 
cells are pathogenic and abundant in joints of patients with RA 
[131, 132]. EVs from DCs expressing IL-10 are immunosuppres-
sive effects [133] and those from DCs expressing the tryptophan 
catabolic enzyme, indoleamine 2,3-dioxygenase (IDO) inhibit T 
cell activation and activate Treg cells, thus manifesting immuno-
suppressive and anti-inflammatory effects [134].

Systemic lupus erythematosus 

SLE is a heterogeneous and systemic autoimmune disease caused 
by genetic susceptibility, aberrant immune disturbance, and hor-
monal as well as environmental risk factors [135, 136]. The symp-
toms of SLE are rash, nephritis, serositis, and thrombocytopenia, 
and SLE is characterized by the production of autoantibodies, 
disrupted self-tolerance, and organ dysfunction [137, 138]. Usu-
ally, SLE influences the kidneys, skin, blood, and joints [135, 137]. 
Patients with lupus nephritis have shown high levels of autoanti-
bodies including anti-double-stranded DNA (dsDNA) antibodies 
[139]. SLE is associated with single-nucleotide polymorphisms 
(SNPs) in immune-associated genes or T-cell function-associated 
genes [137, 138]. Furthermore, TLRs, IL-10, IL-17A and costimu-
latory molecule CTLA-4 (CD152) polymorphisms are associated 
with SLE susceptibility [140-142]. EVs in patients with SLE express 
higher levels of IL-6, TNF-α, IL-1β, and IFN-α, than healthy indi-
viduals [143]. Microparticles from SLE plasma contain elevated 
levels of cytokines including IL-6, TNF, and IFN-α, and costimu-
latory surface proteins including CD80, CD86, and CD40. In 
addition, patients with SLE have higher proportions of apoptotic 
microparticles compared with heathy persons [73]. Microparticles 
from patients express high levels of Ig and complement proteins, 
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and low levels of cytoskeletal and organelle composition proteins 
[144]. T cells in SLE help B cells to produce high-affinity IgG au-
toantibodies through TCR and MHC binding and costimulatory 
interactions such as CD28-B7 and CD40-CD40 ligand, and acti-
vated T cells are involved in cytokine production [137]. Anti-dsD-
NA antibodies can penetrate cells, subsequently leading to DNA 
fragmentation and apoptosis. Also, such antibody internalization 
is responsible for the upregulation of inflammatory cytokines such 
as TNF-α, IL-6, and IL-1β [145].

Type 1 diabetes 

Type 1 diabetes (T1D) is a metabolic disease that is characterized 
by hyperglyceamia and inadequate insulin production. It results 
from a loss of insulin-producing pancreatic β cells in the islets of 
Langerhans. Patients with T1D are dependent on exogenous in-
sulin replacement, and are at risk of developing serious complica-
tions including neuropathy, retinopathy, and nephropathy [146]. 
Most patients develop immunological disturbances including 
autoantibodies or viral infections [147]. The pancreas of patients 
with T1D contains large populations of cytotoxic CD8+ T cells 
within islets, increased CD68+ macrophages, CD20+ B, and CD4+ 
T cells, and low levels of Forkhead box protein P3 (FOXP3) + Treg 
cells and NK cells are evident during insulitis [148]. Pancreatic tis-
sues from T1D donors also contain islets with infiltrative CD8+ T 
cells, human leukocyte antigen (HLA) class I hyperexpression, and 
β cell destruction in insulitic lesions [149]. The secretion of IL-17 
by CD4+ T cells in response to β cell autoantigens is involved in β 
cell death in D1M [150]. EVs released in human and rat pancreatic 
islets carry autoantigens such as insulin/proinsulin, GAD65, and 
IA-2, which are associated with a loss of self-tolerance and the de-
velopment of T1D [151]. In diabetic mice, EVs from islet mesen-
chymal stem cell-like cells promote the production of IFN-γ and 
the activation of autoreactive T and B cells [152].

Human immunodeficiency virus infection

Individuals infected with the HIV are at risk of developing 
acquired immunodeficiency syndrome (AIDS). Antiretroviral 
therapy (ART) can suppress HIV replication by inhibiting the 
reverse transcription of viral RNA and prolong life. Nevertheless, 
HIV in patients treated with ART is often accompanied by non-
AIDS comorbidities such as cardiovascular disease, neurological 
disease, and cancers [153]. Infection with HIV is characterized by 
persistent inflammation and immune dysfunction [154], and mas-
sive amounts of inflammatory mediators, such as cytokines and 
chemokines [155]. Infection with HIV also promotes the secretion 
of EVs from T cells, monocytes, macrophages, and dendritic cells 
[156]. Plasma from patient infected with HIV has EVs containing 

IL-1α, IL-2, IL-12p70, TNF-α, CXCL10, and CCL2 [157]. Infected 
patients have reduced numbers of CD4+ cells [153]. The HIV tar-
gets CD4+ T cells and coreceptors such as CCR5 and CXCR4 to 
penetrate cells [158], and CD4+ T cells expressing CCR5 gradually 
become depleted in the GI tract, a major site of CD4+ T cell, via de-
struction of lymph node [154]. EVs are involved in both the patho-
genesis of, and antiviral responses against HIV [156]. HIV exploits 
intracellular vesicle trafficking for its egress. The ESCRT system 
(TSG101) is needed for HIV release by being recruited at sites of 
viral budding [159]. The most prevalent protein in HIV, Nef is 
implicated in the vesicular trafficking network by interacting with 
Rab11, elevated microvesicle exocytosis, and apoptosis in CD4+ T 
cells. Nef from HIV is secreted from infected cells via CD45+ mi-
crovesicles in plasma [160]. In contrast, EVs stimulate the immune 
system to inhibit HIV spreading. EVs from infected cells contain 
APOBEC3G, which edits the HIV genome and targets HIV virion 
infectivity protein (vif), thus conferring antiretroviral capacity on 
recipient cells [161]. IFN-α is thought to restrict HIV replication 
and infection of CD4+ T cells by eliciting the APOBEG3 family in 
dendritic cells [162]. Besides this, tripartite-motif-containing 5α 
(TRIM5α) and tetherin are factors that restrict HIV [163]. 

Mycobacterium tuberculosis infection 

Tuberculosis is a contagious disease with a steadily declining 
global incidence, but drug resistance is increasing. Tuberculosis 
is caused by infection with the pathogenic bacterium, Mycobac-
terium tuberculosis , that usually invades hosts by inhalation into 
the alveoli, where causes the formation of granuloma and subse-
quent necrosis [164]. Alveolar macrophages, DCs and monocyte-
derived macrophages are involved in the phagocytic process of 
M. tuberculosis  [165], which inhibits phagosome maturation into 
phagolysosomes in infected macrophages [166]. The glycosylated 
protein of M. tuberculosis  can impede DC-mediated Th1 and 
Th17 polarization and block the protective effects of the bacillus 
Calmette-Guérin (BCG) vaccine [167]. M. tuberculosis  is involved 
in changes in the membrane composition of EVs, such as vimen-
tin and heat shock protein (HSP) 90, via infected macrophages 
[168]. In addition, M. tuberculosis  infection results in stimulation 
of CD4+ and CD8+ that express antigen-specific IL-2 and IFN-γ, 
which enhance the protective immune response of the host [169].

CLINICAL APPLICATIONS OF EXTRACELLULAR VESICLES 

EVs mediate intercellular communication and are implicated in 
various physiological and pathological processes. For that reason, 
EVs are likely to play crucial roles in inflammatory diseases and 
ageing. Even though EVs involve cellular homeostasis, they con-
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tribute to the ageing or pathological environment of hosts, and 
propagate the disease by carrying host or pathogen-derived ele-
ments [170, 171]. EVs transport and transfer pro- or anti-inflam-
matory cytokines, chemokines, and other inflammatory mediators 
from infected or resident immune cells to recipient cells, indicating 
their immunomodulatory capacity [19]. Thus, EVs have promising 
potential as biomarkers [172]. Cellular senescence is responsible 
for changes in circulating EVs dependently upon ageing [94]. The 
characteristic of SASP and potential of EVs as ageing biomarkers 
have been suggested through the results of proteomic analysis and 
profiling [172]. Increasing evidence indicates that EVs could serve 
as biomarkers in human diseases including cancer, central nervous 
system (CNS), and inflammatory diseases [173-175]. Disease stage 
can be monitored by analyzing circulating EVs in body fluids [173]. 
Microvesicles and exosomes in the CSF of injured CNS system 
contain specific biomarkers [174]. Myeloid-derived EVs and their 
cytokine expression in the CSF of patients with autoimmune dis-
ease can reflect disease progression and are considered as disease 
markers [175]. Thus, accumulated evidence indicates that EVs 

could be useful biomarkers for diagnostic, prognostic, predictive, 
and therapeutic interventions (Fig. 2).

EVs might be ideal for drug delivery from the viewpoint of phar-
maceutical drug development and useful in bioengineering [176, 
177]. Therapeutic substances loaded into EVs can be transferred 
to target cells regardless of distance [178, 179]. Thanks to their self-
derived nature, customized EVs have low immunogenicity and 
toxicity, and do not invoke immune responses [178]. The nature 
and size of EVs mean that they can protect their cargo against 
phagocytic clearance [177]. Lipid bilayer EVs are very stable and 
enough to be maintained in the circulation [178, 180]. Moreover, 
EVs can penetrate the blood-brain barrier to the CNS [179, 181]. 
The key features of EVs are desirable for delivering therapeutic 
agents to combat targeted pathological factors and for designing 
clinical applications.

Fig. 2. Extracellular vesicles (EVs) as potential biomarkers in immune system disorders. EVs could serve as biomarkers in inflammatory diseases. Dis-
ease stage can be monitored by analyzing circulating EVs in body fluids including plasma, CSF, urine, and serum. 
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EXTRACELLULAR VESICLES IN NEURODEGENERATIVE  
DISEASES

In the CNS, EVs are secreted by multiple cells, including microg-
lia, astrocyte, and neuron, and contribute to intercellular commu-
nication [16]. EVs are implicated in neurodegenerative diseases 
such as AD, PD, and Huntington disease (HD) [16]. EVs carry 
misfolded or aggregated proteins and, therefore, could be used as 
biomarkers [16]. In AD, amyloid β (Aβ) peptide is secreted via EVs, 
and brain tissues from AD patients show EV proteins  accumu-
lated in amyloid plaques [182]. EVs secreted by neuronal cells can 
bind soluble Aβ, and the CSF-derived EVs from AD patients lead 
to mitochondrial impairment and neuronal cell apoptosis [183, 
184]. Furthermore, EVs containing extracellular α-synuclein were 
observed in the CSF of patients with PD, which correlated with 
the degree of cognitive impairment [185]. Mutant α-synuclein 
plays a major role in PD pathology [186]. Also, mutant huntingtin 
transported by EVs propagates the HD phenotype, thus influenc-
ing motor and cognitive dysfunctions and striatal neuronal cell 
loss in HD [187]. EVs from stem cells or engineered EVs exhibit 
neuroprotective properties, including the release of neurotrophic 
factors and the ability to reduce neuroregeneration [188]. These 
characteristics suggest that EVs could be used for treating neuro-
degenerative diseases as well as immune diseases [188].

CONCLUSION

Extracellular vesicles are important for cellular homeostasis and 
cell-cell communication by carrying membrane and cargo com-
ponents. They transport cytokines, chemokines, autoantigens, and 
danger signals that play potential roles in processes ranging from 
initiation to the progression of human diseases. EVs are involved 
in the ageing process and spreading pathological or disease states, 
thus, their regulation might prevent or retard the ageing process 
and be novel targets for therapeutic intervention. EVs are also 
promising tools for clinical applications such as biomarkers and 
EV-based immunotherapy in immune diseases.
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