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SUMMARY

Mammalian RNA polymerase II (Pol II) transcription
termination is an essential step in protein-coding
gene expression that is mediated by pre-mRNA pro-
cessing activities and DNA-encoded terminator ele-
ments. Although much is known about the role of
pre-mRNA processing in termination, our under-
standing of the characteristics and generality of
terminator elements is limited. Whereas promoter
databases list up to 40,000 known and potential Pol
II promoter sequences, fewer than ten Pol II termi-
nator sequences have been described. Using our
knowledge of the human b-globin terminator mecha-
nism, we have developed a selection strategy for
mapping mammalian Pol II terminator elements. We
report the identification of 78 cotranscriptional cleav-
age (CoTC)-type terminator elements at endogenous
gene loci. The results of this analysis pave theway for
the full understanding of Pol II termination pathways
and their roles in gene expression.
INTRODUCTION

The transcription cycle consists of three stages. Initiation, where

RNA polymerase engages with the DNA template, followed by

elongation where it translocates along the DNA template synthe-

sizing the RNA copy of the gene and finally termination, where

polymerase disengages from the DNA template. In mammals,

promoter and terminator DNA sequences are well described

for genes transcribed by RNA polymerases I and III (Richard

and Manley, 2009). For genes transcribed by RNA polymerase

II (Pol II), including all protein coding genes, there is an extensive

literature describing promoter sequences. The Mammalian Pro-

moter Database lists 24,967 known and an additional 17,926

potential human Pol II promoters (Gupta et al., 2011); however,

fewer than ten verified mammalian Pol II terminator sequences

have been described (Proudfoot, 1989; Richard and Manley,

2009).

The major reason for this discrepancy is that Pol II termination

is coupled to the complex steps involved in pre-mRNA process-
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ing and is entirely dependent upon the presence of a functional

poly(A) signal (Whitelaw and Proudfoot, 1986; Connelly and

Manley, 1988). Pre-mRNA cleavage at the poly(A) site, mediated

by the 30 end processing complex (Shi et al., 2009), generates

two RNA products; a 50 cleavage product that is stabilized by

polyadenylation as it is processed into mRNA and a 30 cleavage
product that is subject to rapid degradation by the 50-30 exonu-
clease Xrn2. Such Xrn2-mediated transcript degradation has

been shown to have a role in Pol II termination (West et al.,

2004). The above could lead one to conclude that the poly(A)

site sequence, typically characterized by the hexanucleotide

sequence AATAAA followed by a GU/U rich region (Proudfoot,

2011), is the sole Pol II terminator signal. That this is indeed the

case, in lower eukaryotes, is supported by a number of studies,

mainly in yeast, which provide a detailed understanding of the

roles of a host of RNA processing factors in the Pol II termination

process (Richard and Manley, 2009; Kuehner et al., 2011). For

mammalian genes, however, the poly(A) signal is not the only

sequence that is required for Pol II termination. Studies in our

laboratory and others have shown the existence of dedicated

DNA-encoded Pol II terminator elements located downstream

of poly(A) signals (Proudfoot, 1989; Tantravahi et al., 1993; Dye

and Proudfoot, 2001; Plant et al., 2005; Gromak et al., 2006;

West et al., 2006). From these studies, it appears that there are

two broad categories of terminator sequence; G-rich sequences

that enhance poly(A) site cleavage and subsequent Pol II termi-

nation by pausing Pol II near to the poly(A) signal (Proudfoot

et al., 2002; Gromak et al., 2006) and AT-rich terminator se-

quences, located 1–2 kb downstream of the poly(A) site, which

mediate rapid cotranscriptional cleavage of nascent transcripts,

prior to poly(A) site cleavage (Dye and Proudfoot, 2001; Plant

et al., 2005; West et al., 2006). RNA degradation initiating at

cotranscriptional cleavage (CoTC) sites leads to release of Pol

II and associated unprocessed pre-mRNA, from the DNA

template (West et al., 2008). This distinguishing feature of

CoTC-mediated termination is supported by electron micro-

scopic studies in Drosophila that show that release of pre-

mRNA from transcription sites prior to 30 end processing is a

common occurrence (Osheim et al., 2002).

One of the major reasons for the paucity of mammalian Pol II

terminator sequences in the literature is that examination of

termination mechanisms is hindered by the technical difficulty

of mapping nascent transcripts in nuclear run on experiments
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(Proudfoot, 1989). Here we have used a CLIP-seq strategy (Lica-

talosi et al., 2008) to distinguish pre-mRNAs that are released

from the DNA template before cleavage at the poly(A) site, in

order to identify genes that utilize the CoTC termination

pathway. Thorough testing of potential terminator sequences

from a number of candidate gene loci shows that we have

isolated authentic Pol II terminators and indicates that CoTC-

mediated termination is a feature of a significant proportion of

mammalian genes.

RESULTS

CLIP-seq-Based CoTC Terminator Mapping Strategy
Detailed transcriptional analysis of the human b-globin gene has

shown that CoTC of b-globin 30 flanking region transcripts leads

to release of Pol II and associated pre-mRNA, from the chro-

matin template prior to cleavage/polyadenylation at the poly(A)

site. Interestingly, 30 end processing of these released pre-

mRNAs (referred to herein as unprocessed pre-mRNAs) occurs

posttranscriptionally, in the nucleoplasm (Figure 1A) (West

et al., 2008). Following on from these observations, we have

developed a strategy, using in vivo UV crosslinking immunopre-

cipitation (IP) with antibody to the CstF-64 pre-mRNA process-

ing factor (MacDonald et al., 1994), to select such unprocessed

nucleoplasmic pre-mRNAs in order to identify genes that use the

CoTC termination pathway.

In an initial pilot experiment, HeLa cells transiently transfected

with a b-globin minigene construct bTERM (that has an HIV-LTR

promoter) and a plasmid encoding the viral transactivator Tat

(pTat), were subjected to UV crosslinking followed by nuclear

fractionation into chromatin (Ch) and nucleoplasm (N) fractions,

as described previously (West et al., 2008). IP was then con-

ducted on the nucleoplasm fraction using CstF-64 antibody

to precipitate unprocessed b-globin pre-mRNA, which was

detected by RT-PCR using b-globin and control 7SK snRNA

primers (Figure 1B). In lane 1, the detection of PCR products rep-

resenting unprocessed b-globin pre-mRNA and mature 7SK

transcripts, confirms the presence of both RNA species in the

input nucleoplasm fraction. In control lane 2, no PCR products

are detected confirming that 7SK and b-globin pre-mRNA do

not interact with IgG. In lane 3, RT-PCR of nucleoplasmic RNA

precipitated with the CstF-64 antibody shows the presence of

a PCR product for b-globin but not 7SK, confirming a specific

interaction of CstF-64 with nucleoplasmic b-globin pre-mRNA.

We next performed CstF-64 IP, combined with high through-

put sequencing (CLIP-seq) (Licatalosi et al., 2008), to identify

endogenous CstF-64 interacting nucleoplasmic pre-mRNAs.

HeLa cells transiently transfected with bTERM and pTat were

UV crosslinked prior to nuclear fractionation. The nucleoplasm

fraction was then treated with high (40 U/ml; lanes 1–4) or low

(4 U/ml; lanes 5–8) RNaseI before IP with CstF-64 and IgG

antibodies. Immunoprecipitated RNA was 50 end-labeled with

[g-32P] ATP and protein RNA complexes were separated by

PAGE and transferred to a nitrocellulose membrane (Figure 1C).

IP of UV-treated cells with CstF-64 antibody (lanes 4 and 8)

results in two prominent radiolabeled bands. (The absence of

bands in control lanes 1–3 and 5–7, confirms the specificity of

the CstF-64 IP experiment; see legend for full details). The lower
C

70 kDa band is the expected size for CstF-64 and the upper

�200 kDa band is possibly a CstF-64 dimer. The bands detected

in lane 8 (4 U/ml) are relatively weaker than those detected in lane

4 (40 U/ml) and appear within a radioactive smear extending

from 40–300 kDa, which reflects partial RNA digestion due to

limiting RNaseI. RNA was eluted from the membrane at a

position 20–30 kDa above the 70 kDa CstF-64 band to

obtain CstF-64/RNA complexes containing 50–80 nucleotide

(nt) RNAs. Eluted RNAs were ligated to adaptors for reverse tran-

scription and PCR amplification. This experiment was repeated

twice more on untransfected cells. PCR products from each

experiment were analyzed by high throughput sequencing

(HITS). A total of 1,285 CLIP regions were identified, from the

three repeats, which were supported by at least two indepen-

dent read alignments in the pooled samples. These CLIP regions

were significantly enriched in genic (RefSeq+RNA genes) but not

intergenic regions and within genes, they showed significant

enrichment in extended 30 UTR regions, but not in exons or

introns (graphs, Figure 1D). Seventy-eight genes (Table 1) con-

taining CstF-64 CLIP regions within 30 UTRs (i.e., in proximity

to putative poly(A) sites) were selected as CoTC candidates

(see Experimental Procedures for details). Importantly, this list

contains the b-globin gene, as three unique CLIP reads were

mapped in the proximity of its annotated poly(A) site, in the trans-

fected sample (Figure 1E).

CLIP-seq Positive Candidate Pre-mRNAs Are Released
from the DNA Template
According to our hypothesis, the detection of a particular unpro-

cessed pre-mRNA in the nucleoplasm is a marker of CoTC-type

termination occurring at the corresponding gene locus. There-

fore, to further test the CLIP-seq data, we analyzed the nuclear

distribution of unprocessed pre-mRNA, from a subset of

CLIP-seq positive genes, by quantitative radioactive RT-PCR

(qRT-PCR) of chromatin and nucleoplasm fractions (Figure 2A).

Analysis of pre-mRNA in the chromatin (Ch) fraction (lane 1)

shows that unprocessed, presumably nascent, pre-mRNAs are

detected at each of the candidate gene loci. Likewise, for the

nucleoplasm (N) fraction (lane 2), unprocessed pre-mRNA from

each of the candidate gene loci is detected. Quantitative analysis

of the PCR products, in lanes 1 and 2, confirms that significant

amounts of unprocessed pre-mRNA (19%–55%) are released

to the nucleoplasm fraction from the corresponding gene loci

(Figure 2A, graph). Variation in the amount of nucleoplasmic

pre-mRNA, from different genes, may indicate variation in the

efficiency of pre-mRNA release, gene-specific rates of 30 end
processing or differential RNA stability. Importantly, these data

confirm our detection of unprocessed nucleoplasmic pre-

mRNAs in our CLIP-seq analysis and support the hypothesis

that a CoTC-type termination mechanism operates at these

gene loci.

To control for the possibility that the presence of unprocessed

nucleoplasmic pre-mRNA is a general feature of Pol II tran-

scribed genes, we employed the same qRT-PCR strategy to

examine the nuclear distribution of GAPDH, PKM2, and ENO1

pre-mRNAs, as these highly expressed transcripts (Kapranov

et al., 2007) were not detected in our CLIP-seq analysis. As

shown in Figure 2B, analysis of pre-mRNAs in the chromatin
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Figure 1. Isolation of Nucleoplasmic CstF-64-Associated Pre-mRNA

(A) Diagram of the CoTC termination mechanism. The CoTC terminator (red bar) is located downstream of the poly(A) site (pA, green arrowhead) of the human

b-globin gene. b-globin pre-mRNA (curved black line with blue cap) is generated by Pol II (gray icons). 30 flanking region transcripts (red dashed line) are cleaved

by CoTC activity (scissors). Xrn2 (blue icon) degrades the 30 transcript (black dashed line) leading to Pol II and pre-mRNA release from the DNA template. Pre-

mRNA is processed by poly(A) factors including CstF-64 (gray sphere) in the nucleoplasm to mRNA (line with AAAA indicating poly(A) tail).

(B) RT-PCR analysis of immunoprecipitated nucleoplasmic RNA. RNA in control input (lanes 1 and 4) and immunoprecipitated with rabbit IgG (lanes 2 and 5) or

CstF-64 antibody (lanes 3 and 6) was subjected to RT-PCRanalysis using b-globin-specific primers (blue arrows in diagram beside the data panel) and primers for

7SK snRNA. The lack of bands in lanes 4–6 (�RTase) confirms the absence of contaminating DNA in all samples.

(C) Purification of CstF-64-RNA covalent complexes by SDS-PAGE following treatment with high (40 U/ml, lanes 1–4) or low (4 U/ml, lanes 5–8) RNaseI. No

protein-RNA complexes were detected in the absence of UV irradiation (lanes 1, 2, 5, and 6) or following control immunoprecipitation with rabbit IgG (lanes 3

and 7), demonstrating the specificity of the CstF-64 antibody/CstF-64-RNA complex interaction. The red dashed box, in lane 8, indicates the area of the gel from

which CstF-64-RNA complexes were eluted for subsequent HITS analysis.

(D) Bar graphs showing the distribution of CLIP reads in annotated genic and intergenic regions (left panel) and in intron, exon, and 30 UTRs of annotated genes

(right panel). P values (brackets) for the significance of relative enrichment, with respect to what would be expected by chance, in the case of a random dis-

tribution, were calculated using a one-sided binomial test. *Indicates significant enrichment (p value < 0.001).

(E) Diagram of the human b-globin gene with CLIP tags (dark blue squares) mapped to the sequence shown below the diagram. The annotated poly(A) site is

indicated in green. Red letters highlight G/U stretches representing potential CstF-64 binding sites.
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(Ch) fraction (lane 1) detected unprocessed, presumably

nascent, pre-mRNAs at each of the candidate gene loci. In lane

2, analysis of the nucleoplasm fraction detected only faint PCR

products representing unprocessed nucleoplasmic pre-mRNAs

from these gene loci. Quantitative analysis of the radiolabeled

RT-PCRproducts derived fromchromatin and nucleoplasm frac-

tions (graph, Figure 2B) shows that unprocessed nucleoplasmic

pre-mRNAs represent merely 4%–7% of total pre-mRNA from

these gene loci. These data provide further validation of the

CLIP-seq experiment and indicate that, on the basis of our selec-

tion criteria (detection of unprocessed nucleoplasmic pre-

mRNA), it is likely that the GAPDH, PKM2, and ENO1 genes do

not employ a CoTC termination mechanism. We predict that

the terminationmechanismemployed at these gene loci is similar

to the previously described pause-type, where poly(A) site cleav-

age precedes Pol II release from the DNA template (Gromak

et al., 2006; West et al., 2008) (diagram, Figure 2B).

Mapping of Terminator Elements at CLIP-seq Positive
Gene Loci
We next developed a strategy to map terminator elements at the

CLIP-seq positive gene loci. Transcript cleavage occurring

downstream of and prior to cleavage at the poly(A) site is an

intrinsic part of the CoTC terminatormechanism (Dye and Proud-

foot, 2001; West et al., 2008) (Figure 1A). Therefore we reasoned

that it would be possible to infer the location of potential CoTC

terminator sequences, in the 30 flanking regions of CLIP-seq pos-

itive genes, by mapping sites of transcript cleavage using an RT-

PCR approach. Total nuclear RNAwas reverse transcribed using

random primers and the resulting cDNA was PCR amplified

using gene-specific primers complementary to 30 flanking region

transcripts. ForCCNB1, PCR amplification was carried out using

a single forward primer (F), located upstream of the CCNB1

poly(A) site, in combination with reverse primers (R1–R5) located

at increasing distance downstream of the poly(A) site in the

CCNB1 30 flanking region (Figure 3A, diagram). PCR amplifica-

tion using the F/R1-R3 primer pairs resulted in the detection of

180 bp, 580 bp, and 1.1 kb bands (lanes 6–8), which correspond

precisely to bands derived from control amplification of genomic

DNA using the same primer pairs (lanes 1–3). PCR amplification

using F/R4 and F/R5 primer pairs does not result in detectable

levels of product (lanes 9 and 10), even though corresponding

PCR products are derived from control amplification of genomic

DNA (lanes 4 and 5). Thus RT-PCR analysis shows that contin-

uous CCNB1 pre-mRNA is detected up to �1.1 kb downstream

of the poly(A) site (lane 8, F/R3 primer pair), with no continuous

RNA detected beyond this point (lanes 9 and 10). From these

data, we estimated that a potential CoTC terminator element

(PCTE) was located between 470–1,780 bp downstream of the

CCNB1 poly(A) site (the region bordered by primers R2 and

R4). This observation is similar to that reported for the b-globin

gene, where significant CoTC activity occurs at a position

�1.0 kb downstream of the b-globin poly(A) site (Dye and Proud-

foot, 2001). We next adopted the same terminator mapping

strategy for four other CLIP-seq positive genes (AKIRIN1,

PTCH2, THOC2, and WDR13). Transcript cleavage (30 flanking
region) was mapped to positions 0.8–1.2 kb downstream of

the respective poly(A) sites and was used to estimate the loca-
C

tion of PCTEs (Figure 3B). Confirmation of these results comes

from control experiments, measuring RT-PCR efficiency on

full-length in vitro transcribed CCNB1, PTCH2, and WDR13 30

flanking region transcripts (Figure S1).

Testing Candidate Terminator Elements
The five newly identified PCTEs were placed in the termination

reporter plasmid (bDTERM) and tested for terminator activity

by RNase protection assay (RPA) (Plant et al., 2005). Nuclear

RNA isolated from HeLa cells transiently transfected with each

of the candidate reporter constructs, positive (bTERM), or nega-

tive (bDTERM) terminator control constructs and pTat, was

hybridized to an antisense radiolabeled riboprobe spanning the

reporter gene HIV-LTR (Figure 4A). Following RNase digestion,

protected products were analyzed by PAGE (Figure 4B). In

lane 1, no protection products were detected, confirming the

absence of b-globin mRNA in untransfected HeLa cells. In lane

2 (bTERM), the prominent 85 nt band, (labeled mRNA) at the

base of the gel, results from hybridization of the riboprobe to

the 50 end of the b-globin mRNA. The weaker 242 nt band

(labeled RT) results from hybridization of the riboprobe to read-

through transcripts derived from Pol II transcription proceeding

around the plasmid into the HIV-LTR. In lane 3 (bDTERM), a

weaker mRNA band was detected together with a prominent

read-through band that reflects increased Pol II read-through

transcription in the absence of the b-globin terminator element.

In lane 4 (bCCNB1), the reduced intensity of the read-through

band shows that the CCNB1 PCTE effectively blocks Pol II

read-through transcription. Furthermore, the corresponding in-

crease in the mRNA band shows that b-globin mRNA recovers

to wild-type level in the presence of the CCNB1 PCTE. The low

level of the read-through band in all candidate PCTE samples

(lanes 5–8 and graph below the data panel) indicates that each

PCTE has terminator activity.

Although RPA is useful for screening terminator activity, it is

an indirect method and read-through transcript levels could

be affected by differential RNA stability. Therefore, we next

employed nuclear run on (NRO) analysis to measure termination

by the CCNB1 and PTCH2 PCTEs. NRO analysis was con-

ducted on nuclei isolated from HeLa cells transfected with

bCCNB1, bPTCH2, and three control constructs (bTERM,

bDTERM, and b4-7) along with pTat. Resulting radiolabeled

nascent transcripts were hybridized to the nylon filter shown

in Figure 4C. For the positive control construct (bTERM) prom-

inent hybridization signals are detected in the gene body and

post poly(A) site region (probes P, B3, and B4, respectively)

and background level signals are detected over probes A and

U3, which are located downstream of the terminator, showing

that efficient termination occurs before Pol II reaches region A

of the plasmid template (Dye and Proudfoot, 2001). For the

termination negative control (bDTERM), in the absence of the

terminator sequence, hybridization signals are detected over

all probes P-U3. The presence of prominent signals over

probes A and U3 shows that in the absence of the terminator

Pol II transcribes the entire plasmid. The transcription profiles

resulting from NRO analysis of bCCNB1 and bPTCH2 are

essentially identical to bTERM, with prominent radioactive sig-

nals detected over probes P, B3 and B4 and only background
ell Reports 3, 1080–1092, April 25, 2013 ª2013 The Authors 1083



Table 1. List of CLIP-Seq-Positive CoTC Candidate Genes

Gene Symbol Transcript_ID Gene Name

AGFG1 NM_004504 ArfGAP with FG repeats 1

AKIRIN1 NM_001136275 akirin 1

BCAP29 NM_001008405 B cell receptor-associated protein 29

BLCAP NM_006698 bladder cancer-associated protein

BRD9 NM_001009877 bromodomain containing 9

C5orf28 NM_022483 chromosome 5 open reading frame 28

C5orf35 NM_153706 chromosome 5 open reading frame 35

CANX NM_001746 Calnexin

CCDC72 NM_015933 coiled-coil domain containing 72

CCNB1 NM_031966 cyclin B1

CD55 NM_001114752 CD55 molecule, decay accelerating factor for complement (Cromer blood group)

CELF1 NM_001172640 CUGBP Elav-like family member 1

CHST15 NM_015892 carbohydrate (N-acetylgalactosamine 4-sulfate 6-O) sulfotransferase 15

CYBRD1 NM_024843 cytochrome b reductase 1

CYFIP1 NM_014608 cytoplasmic FMR1 interacting protein 1

DDX3X NM_001356 DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, X-linked

DDX58 NM_014314 DEAD (Asp-Glu-Ala-Asp) box polypeptide 58

DMD NM_004019 Dystrophin

DNAJC6 NM_014787 DnaJ (Hsp40) homolog, subfamily C, member 6

FAM200B NM_001145191 family with sequence similarity 200, member B

FAR1 NM_032228 fatty acyl CoA reductase 1

GNAI3 NM_006496 guanine nucleotide binding protein (G protein), a inhibiting activity polypeptide 3

GNB2L1 NM_006098 guanine nucleotide binding protein (G protein), b polypeptide 2-like 1

HADHA NM_000182 hydroxyacyl-Coenzyme A dehydrogenase/3-ketoacyl-Coenzyme A thiolase/enoyl-Coenzyme A hydratase

(trifunctional protein), a subunit

HBB NM_000518 hemoglobin, b

HES7 NM_001165967 hairy and enhancer of split 7 (Drosophila)

HN1L NM_144570 hematological and neurological expressed 1-like

HNRNPD NM_031369 heterogeneous nuclear ribonucleoprotein D (AU-rich element RNA binding protein 1, 37 kDa)

HNRNPM NM_031203 heterogeneous nuclear ribonucleoprotein M

IRX3 NM_024336 iroquois homeobox 3

KCMF1 NM_020122 potassium channel modulatory factor 1

KLF6 NM_001160125 Kruppel-like factor 6

MAFK NM_002360 v-maf musculoaponeurotic fibrosarcoma oncogene homolog K (avian)

MARK3 NM_001128920 MAP/microtubule affinity-regulating kinase 3

MIB1 NM_020774 mindbomb homolog 1 (Drosophila)

MRPL30 NM_145212 mitochondrial ribosomal protein L30

MRPS14 NM_022100 mitochondrial ribosomal protein S14

MYC NM_002467 v-myc myelocytomatosis viral oncogene homolog (avian)

NCS1 NM_001128826 frequenin homolog (Drosophila)

NQO2 NM_000904 NAD(P)H dehydrogenase, quinone 2

NUCKS1 NM_022731 nuclear casein kinase and cyclin-dependent kinase substrate 1

NUFIP2 NM_020772 nuclear fragile X mental retardation protein interacting protein 2

OMA1 NM_145243 OMA1 homolog, zinc metallopeptidase (Saccharomyces cerevisiae)

PRPF4B NM_003913 similar to hCG1820375; PRP4 pre-mRNA processing factor 4 homolog B (yeast)

PSIP1 NM_021144 PC4 and SFRS1 interacting protein 1

PTCH2 NM_001166292 patched homolog 2 (Drosophila)

RAB13 NM_002870 RAB13, member RAS oncogene family; similar to hCG24991

(Continued on next page)
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Table 1. Continued

Gene Symbol Transcript_ID Gene Name

RAPH1 NM_213589 Ras association (RalGDS/AF-6) and Pleckstrin homology domains 1

RBM27 NM_018989 RNA binding motif protein 27

RNASEH1 NM_002936 ribonuclease H1

RNF166 NM_178841 ring finger protein 166

RPL13A NM_012423 ribosomal protein L13a pseudogene

RPL37A NM_000998 ribosomal protein L37a

RRP15 NM_016052 ribosomal RNA processing 15 homolog (S. cerevisiae)

SAC3D1 NM_013299 SAC3 domain containing 1

SAP18 NM_005870 Sin3A-associated protein, 18 kDa

SCAF8 NM_014892 RNA binding motif protein 16

SCLT1 NM_144643 sodium channel and clathrin linker 1

SIK1 NM_173354 salt-inducible kinase 1

TEAD1 NM_021961 TEA domain family member 1 (SV40 transcriptional enhancer factor)

TFAP2A NM_001042425 transcription factor AP-2 a (activating enhancer binding protein 2 a)

THOC2 NM_001081550 THO complex 2

TNRC6A NM_014494 trinucleotide repeat containing 6A

TROAP NM_001100620 trophinin-associated protein (tastin)

TUBA1B NM_006082 hypothetical gene supported by AF081484; NM_006082; tubulin,a 1b

TXLNG NM_001168683 g-taxilin

TXNRD1 NM_001093771 thioredoxin reductase 1; hypothetical LOC100130902

WDR13 NM_001166426 WD repeat domain 13

WDR36 NM_139281 WD repeat domain 36

WNK1 NM_014823 WNK lysine deficient protein kinase 1

YWHAZ NM_145690 tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, z polypeptide

ZAK NM_133646 sterile a motif and leucine zipper containing kinase AZK

ZBTB9 NM_152735 zinc finger and BTB domain containing 9

ZDHHC7 NM_001145548 zinc finger, DHHC-type containing 7

ZNF215 NM_013250 zinc finger protein 215

ZNF616 NM_178523 zinc finger protein 616

ZNF714 NM_182515 zinc finger protein 714

ZNF740 NM_001004304 zinc finger protein 740

List of nonredundant RefSeq protein-coding genes containing CstF-64 CLIP regions (supported by at least two read-alignments) within poly(A) site

regions (extended 200 nt downstream). These genes represent candidates for the CoTC termination mechanism. ‘‘Ribonucleoprotein complex’’

and ‘‘RNA binding’’ GO-TERMs were significantly enriched (Benjamini < 0.05) among these genes (DAVID Bioinformatics Resources). HBB derives

from CLIP1 where cells were transfected with the b-globin expression plasmid bTERM.
level signal over probes A and U3. NRO analysis of control

construct b4-7, which includes an 850 bp spacer sequence in

place of the terminator, confirms that the effect of CCNB1

and PTCH2 PCTEs on the NRO profile is due to the presence

of authentic Pol II terminator signals and not to arbitrary

spacing effects.

The CCNB1 Terminator Mediates CoTC Activity
Having confirmed that a subset of PCTEs mediate efficient Pol II

termination, we next conducted further analysis of two PCTEs to

measure CoTC activity. Detailed analysis of the human b-globin

CoTC terminator shows that cotranscriptional cleavage of termi-

nator transcripts precedes Pol II disengagement from the DNA

template (Figure 1A) (Dye and Proudfoot, 2001; West et al.,

2008). To determine if a similar order of events occurs at the
C

CCNB1 terminator, we began by measuring the distribution of

transcribing Pol II in the endogenous CCNB1 terminator region,

by qRT-PCR analysis of nascent transcripts. Total nuclear RNA

was reverse transcribed using random primers and the resulting

cDNA was PCR amplified, using primer pairs to detect tran-

scripts of the CCNB1 poly(A) site and terminator regions (see

upper diagram, Figure 5A). The resulting PCR products were

quantified by PhosphoImage analysis before plotting on the

graph (gray bars, Figure 5A). PCR amplification, using primer

pair F1/R1, results in a prominent signal reflecting the high abun-

dance of transcripts in the poly(A) site region. PCR amplification

of cDNA representing CCNB1 terminator transcripts, using

primer pair F2/R2, indicates relatively high transcript abundance

at the 50 end of the terminator. However, transcript abundance is

significantly decreased by the middle of the terminator, primer
ell Reports 3, 1080–1092, April 25, 2013 ª2013 The Authors 1085



Figure 2. Nuclear Distribution of Pre-mRNA from CstF-64 CLIP

Positive and Negative Gene Loci

CLIP positive (A) and negative (B) gene names are shown to the left of the

corresponding data panels. RT-PCR analysis was performed on pre-mRNA

fromchromatin (Ch, lanes 1 and3) and nucleoplasm (N, lanes 2 and4) fractions.

cDNA synthesis was primed using random primers, in reactions with (+RTase,

lanes 1 and 2) or without (�RTase, lanes 3 and 4) the addition of reverse tran-

scriptase to control for the presence of contaminating DNA. PCR amplification

(23 cycles) of the resulting cDNA was conducted using gene-specific primers

(indicated by blue arrows in the diagrams above the data panels) spanning

annotated poly(A) sites (UCSC Genome Browser; http://genome.ucsc.edu/).

(The number of PCR cycles was determined to be within the linear range [data

not shown] and therefore accurately reflects RNA abundance). Radiolabeled

RT-PCR products from chromatin and nucleoplasm fractions (lanes 1 and 2)

were quantitated by PhosphoImage analysis and the proportion of released

nucleoplasmic pre-mRNA (% total) calculated and displayed in the graphs

below the data panels. The lack of PCR products in lanes 3 and 4 (�RTase)

confirms the absence of contaminating DNA in all samples. The diagrams

above thedatapanels illustratingCoTC-type (A) andpause-type (B) termination

mechanisms are labeled as Figure 1A, except for the pause element (blue bar)

and scissors (indicating cleavageby the30 endprocessing complex) in (B). Error

bars represent the results of three experimental repeats.
pair F3/R3, falling to �10% at the 30 end of the terminator

element (primer pair F4/R4). Examination of the post-terminator

region, using primer pair F5/R5, indicates a further decrease in

active Pol II level. These data show that the level of transcription-

ally engaged Pol II decreases as it proceeds through the termi-

nator region, indicative of Pol II termination. We next examined

the continuity of CCNB1 terminator transcripts by qPCR of
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random primed cDNA, using primer pairs composed of a single

forward primer (F1), located immediately upstream of the

CCNB1 poly(A) site, in combination with five different reverse

primers (R1–R5; see lower diagram, Figure 5A). The resulting

radioactive PCR products were quantified by PhosphoImage

analysis before plotting on the graph (black bars, Figure 5A).

This analysis shows that whereas high levels of continuous tran-

scripts are detected with reverse primers positioned before the

terminator element, very few or none (7%–0%) are detected

with primers positioned within or downstream of the terminator

element. These data show that nascent transcripts of the 50

end of the CCNB1 terminator are cotranscriptionally cleaved

and, when combined with results from the measurement of

transcript distribution above, indicate that transcript cleavage

precedes Pol II termination occurring throughout the CCNB1

terminator. The profile of transcript discontinuity followed by

Pol II termination is similar to that described for the human

b-globin gene terminator (Dye and Proudfoot, 2001) and is indic-

ative of the presence of the CoTC termination mechanism at the

CCNB1 gene locus. To test if other candidate genes utilize the

CoTC termination pathway we conducted analogous qRT-PCR

terminator transcript analysis on the endogenous WDR13 gene

and observed terminator transcript discontinuity occurring

before Pol II termination, again indicating the presence of the

CoTC termination mechanism (Figure S2).

Terminator and CoTC Activities Localize to the 50 End of
the CCNB1 Terminator Element
To analyze the CCNB1 terminator in more detail, it was divided

into three subfragments (labeled A, B, and C) that were placed

in the reporter plasmid bDTERM, forming bCCNB1A, bCCNB1B,

and bCCNB1C (diagram, Figure 5B). The termination capacity of

each subfragment was compared to that of the full-length

CCNB1 terminator (in bCCNB1) by RPA. Nuclear RNA isolated

from HeLa cells transiently transfected with bCCNB1/A/B and

C, positive (bTERM) and negative (bDTERM) control constructs

and pTat, were hybridized to an antisense radiolabeled ribop-

robe spanning the HIV-LTR (Figure 5B). The positive (bTERM,

lane 2) and negative (bDTERM, lane 3) controls show that bTERM

promotes efficient Pol II termination, as indicated by the reduced

read-through signal in lane 2. In lane 4 (bCCNB1), restoration of

read-through and mRNA protection products, to the levels seen

with the termination positive control bTERM (lane 2), confirms

that the full CCNB1 terminator mediates efficient Pol II termina-

tion. In lane 5 (bCCNB1A) a similar pattern of low read-through

and high mRNA signal is observed, indicating that region A of

the CCNB1 terminator mediates efficient Pol II termination. In

lanes 6 (bCCNB1B) and 7 (bCCNB1C), the significantly lower

level of the mRNA band and higher level of the read-through

band indicates that regions B and C of the CCNB1 terminator

have reduced terminator activity. This observation is confirmed

by quantitative phosphoImage analysis of the radiolabeled pro-

tection products, shown in the graph below the data panel.

We next tested the CCNB1 terminator subfragments for

CoTC activity by measuring transcript abundance using

qRT-PCR. Nuclear RNA isolated from HeLa cells transiently

transfected with bCCNB1/A, B, or C and pTat, was reverse tran-

scribed with PCR primers labeled BR and terR, which are

http://genome.ucsc.edu/


Figure 3. Mapping CoTC Terminator Elements at Endogenous Gene Loci

(A) RT-PCR analysis of CCNB1 30 flanking region transcripts using primer pairs indicated (blue arrows) in the diagram below the data panel. Lanes 1–5, control

PCR amplification of genomic DNA. Lanes 6–10 (+RTase) PCR amplification of reverse transcribed CCNB1 30 flanking region transcripts. Lanes 11–15, control

PCR amplification of�RTase samples. The diagram below the data panel shows theCCNB1 30 UTR (gray box), poly(A) site (green arrowhead), and putative CoTC

terminator element (PCTE, red bar).

(B) RT-PCR analysis of PTCH2, THOC2, AKIRIN1, andWDR13 30 flanking region transcripts. Sample lanes and diagram notation are as in (A). *In PTCH2 lane 8,

indicates nonspecific RT-PCR products of unknown origin. Control PCR amplification (�RTase, lanes 11–15) confirms the absence of contaminating DNA.

See also Figure S1.
complementary to plasmid sequence either side of the inserted

CCNB1 terminator subfragments (diagram, Figure 5C). We

then conducted PCR on the resultant cDNA using primer pairs
C

BF/BR and terF/terR to analyze transcripts from upstream of

and across the terminator subfragments (Figure 5C). The

absence of PCR products in lane 1 confirms that there is no
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Figure 4. Measuring Terminator Efficiency

(A) Diagram of the bDTERM construct. The tran-

scription start site (gray arrow), poly(A) site (green

arrowhead, labeled pA), insertion site of PCTEs,

and b-globin terminator (red bar) are indicated. The

HIV-LTR antisense riboprobe (tailed rectangle),

expected readthrough (RT), and mRNA (P) pro-

tection products (blue bars) are also shown.

(B) RNase protection termination assay (RPA).

Lane 1, untransfected cells, lanes 2–8 transfected

cells. Control RNase digestion of the riboprobe is

shown in lane 9 (tRNA+) beside undigested ribop-

robe (tRNA�, lane 10). For each sample RT and P

protection products were quantified by Phospho-

Image analysis and the relative abundance of the

RT product (RT/Total) was calculated and dis-

played in the graph below the data panel. Error

bars represent the results of three experimental

repeats.

(C) Nuclear run on (NRO) analysis of CCNB1 and

PTCH2 terminator elements. In the diagram, above

the data panel, positions of single strand (ss) DNA

probes, with respect to the plasmid template, are

indicated by characters in bold. Slot blots in the

data panel show the distribution of nascent tran-

scripts from the plasmid templates indicated to the

left of the panel. The bar graph, below the data

panel, shows quantitation of NRO hybridization

signals after removal of background hybridization

signal, detected by control probe M (M13 DNA),

and correction for [a-32P]UTP content of the

hybridized nascent transcripts.
background signal in untransfected HeLa cells. In lane 2

(bCCNB1A) amplification with the BF/BR primer pair yields a

prominent PCR product, representing transcripts from upstream

of terminator subfragment A. However, PCR amplification of the

region A transcript, with the terF/terR primer pair, results in a very

low abundance PCRproduct indicating that few continuous RNA

transcripts extend across this region. In contrast, bCCNB1/B

and C generated prominent PCR products with both primer

pairs, indicating that abundant continuous RNA transcripts

extend across these subfragments of the CCNB1 terminator.

The very low level of RT-PCR product representing transcripts

of subfragment A indicates that they are subject to CoTC. The

correspondence of the robust terminator activity of subfragment

A, shown by RPA (Figure 5B), and the observed discontinuity of

its transcript, shown both here (lane 2, Figure 5C) and in qRT-

PCR of terminator transcripts from the endogenous gene locus

(Figure 5A), contrasts with the weak terminator activity and

apparent stability of region B and C transcripts. These data pro-

vide further compelling evidence that Pol II termination on the

CCNB1 gene is mediated by the CoTC termination mechanism

and confirm that, using the CLIP-seq strategy, we have success-

fully identified authentic Pol II terminator elements.
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Bioinformatic Analysis of CoTC
Terminator Sequences
In order to search for conserved DNA or

RNA sequences involved in the CoTC

termination mechanism we next con-
ducted a detailed bioinformatic analysis of the 30 flanking re-

gions (0–2 kb downstream of the CLIP-seq sites) of all 78

CoTC candidate genes. From this analysis we found that candi-

date gene 30 flanking regions are slightly more AT- and T-rich

than equally sized regions downstream of the annotated pA sites

of other protein coding genes (Figure S3). This finding is in

agreement with our analysis of the b-globin terminator that has

shown the importance of AT rich sequences in CoTC-mediated

termination of b-globin gene transcription (Dye and Proudfoot,

2001; White et al., 2013). Next, in an effort to identify possible

trans-acting factors in the CoTC termination process, we

screened the candidate gene 30 flanking regions for the pres-

ence of DNA binding motifs of known transcription factors

represented in the professional version of the TRANSFAC data-

base, which includes 1,665 binding motif matrices. We found

that none of these motifs were significantly enriched or depleted

in the tested set when compared to the corresponding region of

other protein coding genes. Finally, we conducted a search for

potential novel sequence motifs by using MEME software

(Bailey and Elkan, 1994). Although, as expected, some weak

motifs were identified in a subset of candidate gene 30 flanking
regions using this approach (see Figure S4), their relevance to



Figure 5. Mapping of CoTC Termination Activity in the CCNB1 30 Flanking Region

(A) Graph showing results of qRT-PCR analysis of transcript distribution (gray bars) and transcript continuity (black bars) at the CCNB1 gene terminator.

Diagrams, below the graph, show primer pairs (blue arrows) used in transcript distribution and transcript continuity analyses. The CCNB1 poly(A) site (green

arrowhead) and terminator element (red bar) are indicated. In the graph, (*) indicates that no PCR product was detected with the indicated primer pairs. Error bars

represent the results of three experimental repeats.

(B) RPA of CCNB1 terminator fragments. In the diagram of the bDTERM reporter plasmid, dashed red lines indicate the insertion site of CCNB1 terminator

fragments (labeled colored bars). Lane 1, untransfected cells, lanes 2–7 transfected cells. Control RNase digestion of the riboprobe is shown in lane 8 (tRNA+)

beside undigested riboprobe (tRNA�, lane 9). For each sample RT and P protection products were quantified by PhosphoImage analysis and the relative

abundance of the RT product (RT/Total) was calculated and displayed in the graph below the data panel. Error bars represent the results of three experimental

repeats.

(C) qRT-PCR analysis of the continuity ofCCNB1 terminator subfragment transcripts. In the diagram, the location of PCR primers (red and blue arrows), relative to

terminator fragments (red bar) is shown. Lane 1, qRT-PCR of untransfected cells. Lanes 2–4, cells transfected withCCNB1 terminator fragment constructs. Lanes

5–8, control qRT-PCR of�RTase samples. cDNA in all samples was amplified using 15 PCR cycles (data not shown), whichwas determined to bewithin the linear

range and therefore accurately reflects RNA abundance.

See also Figure S2.
transcription termination is not clear. Thus our bioinformatic

analysis shows that CoTC terminators are not characterized

by a simple sequence motif and indicates that factors apart

from DNA sequence are involved in the CoTC termination

process.
C

DISCUSSION

Transcription termination is an important, yet relatively over-

looked, aspect of the Pol II transcription cycle. Major reasons

for this are the considerable technical difficulties involved in
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the analysis of nascent Pol II transcripts and the fact that Pol II

termination has not as yet, been recapitulated in vitro. However,

the finding that Pol II transcription termination on the human

b-globin gene, which occurs by the CoTC terminator mechanism

(Dye and Proudfoot, 2001), involves release of b-globin pre-

mRNA from the chromatin template to the nucleoplasm (West

et al., 2008) has enabled us to develop amethod for identification

of Pol II terminator elements. We have conducted IP of nucleo-

plasmic RNA, using antibody against the pre-mRNA processing

factor CstF-64, to select pre-mRNAs that are released from tran-

scription sites prior to 30 end processing. Mass sequencing of

such CstF-64 interacting pre-mRNAs enabled the identification

of 78 candidate genes for the CoTC termination pathway.

Detailed transcriptional analysis of the 30 flanking regions of a

randomly selected subset of five candidate genes (CCNB1,

PTCH2, WDR13, THOC2, and AKIRIN1), resulted in the identifi-

cation of CoTC terminator elements located 0.5–2 kb down-

stream of the candidate gene poly(A) sites. Each terminator

element promotes efficient Pol II termination with the most

potent, from the CCNB1 and PTCH2 gene 30 flanking regions,

mediating 100% Pol II termination in nuclear run on assays.

From these results we predict that the remaining 73

candidate genes contain CoTC terminators within their 30 flank-
ing regions.

Although we have identified CoTC terminators at a number of

gene loci, our data indicate that this number is limited because

we have not reached saturation in identification of unprocessed

pre-mRNAs in the nucleoplasm. This is possibly due to both the

relatively low abundance of these species and gene-specific

variation in the strength of the poly(A) site-CstF-64 interaction

(Takagaki and Manley, 1997; Martin et al., 2012). Thus it is likely

that many more protein coding genes employ the CoTC termina-

tion mechanism. Supporting evidence for this suggestion comes

from an electron microscopic study of Pol II transcription in

Drosophila. In this study, of over 100 unidentified Pol II tran-

scribed genes, it was found that Pol II termination and pre-

mRNA release occurred prior to pre-mRNA 30 end processing

for 64%of these genes (Osheim et al., 2002). Although themech-

anism of Pol II termination at these gene loci is unknown, the

observation of abundant released pre-mRNA is suggestive of a

CoTC-type termination pathway.

In order to understand more about the possible role of DNA

sequence in the CoTC termination mechanism we conducted

a detailed bioinformatic analysis of the 30 flanking regions

(0–2 kb downstream of the CLIP-seq sites) of all 78 CoTC candi-

date genes. From this analysis, we found that these regions are

more AT- and T-rich than equally sized regions downstream of

the annotated pA sites of other protein coding genes. Although

a search for known transcription factor DNA binding motifs in

the candidate gene 30 flanking regions, using the TRANSFAC

database (1,665 binding motif matrices), revealed no matches,

a search for potential novel sequence motifs using MEME

software (Bailey and Elkan, 1994) did identify a number of

weak motifs in a subset of candidate gene 30 flanking regions.

Further work will be required to determine the importance of

these sequence motifs in the CoTC termination process.

Combining these data with our understanding of the role of AT-

rich sequences in the human b-globin terminator (Dye and
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Proudfoot, 2001: White et al., 2013) enables us to state that

CoTC terminator sequences are complex and are not character-

ized by a simple sequence motif. An interesting possibility is that

the length and sequence composition of CoTC terminator

elements may have affects on nucleosome organization (Kaplan

et al., 2009) that may be instrumental in the Pol II termination

process.

Apart from mapping CoTC terminators our CLIP-seq strategy

illuminates another termination pathway at endogenous gene

loci. Analysis of pre-mRNA from the GAPDH, PKM2, and

ENO1 genes (that were not selected by IP of nucleoplasmic

pre-mRNA) shows that for these genes, cotranscriptional poly(A)

site cleavage precedes release of Pol II from the chromatin

template. Such an order of events corresponds to the pausing

model of transcription termination where it is envisioned that

G-rich sequences, located immediately downstream of the

poly(A) site, cause a transient pause in Pol II progression that

effectively enhances 30 end processing (Gromak et al., 2006).

In agreement with this model the GAPDH, PKM2, and ENO1

genes all have enrichment of G residues in the post poly(A) site

region, which correlates with a recent chromatin immunoprecip-

itation (ChIP) analysis showing significant Pol II accumulation at

the 30 ends of the GAPDH and ENO1 genes (Brannan et al.,

2012).

Although we have discussed Pol II termination in terms of

CoTC and pausing models (Figure 6) this may be an oversimpli-

fication. Results herein and in previous analyses of CoTC

sequences, show significant variation in CoTC terminator effi-

ciency (Dye and Proudfoot, 2001; Plant et al., 2005; West

et al., 2006). Considering the sequence-specificity of CoTC

(AT-rich) and pause (G-rich) terminator elements, it is likely that

the relative contribution of each termination mechanism, at indi-

vidual gene loci, is directed by 30 flanking region sequence

composition. This leads us to speculate that, especially in the

light of the observation that CoTC termination can enhance

levels of gene expression (West and Proudfoot, 2009), gene-

specific 30 flanking region sequence composition could have

subtle, but important, effects on gene expression.

This studymarks a successful attempt to map Pol II terminator

elements at endogenous gene loci. It has enabled the character-

ization of a significant number of CoTC terminator elements,

which we predict to be a common feature of mammalian genes,

and the visualization of a different termination mechanism,

possibly pause-type, occurring at gene loci that were not

selected using the CLIP-seq methodology. We anticipate that

application of the range of techniques described herein will

enable the definition of many more terminator elements and

lead to a deeper understanding of mammalian Pol II termination

pathways and their roles in gene expression.

EXPERIMENTAL PROCEDURES

PCR Primers and RNA Linkers

A list of oligonucleotide sequences used as PCR primers and RNA linkers is

given in Table S1.

Plasmid Constructions

pTat, bTERM, bDTERM, and b4-7 (formerly bD5–7, bD5–10, and bD8–10) have

been described previously (Dye and Proudfoot, 2001). bCCNB1, bPTCH2,



Figure 6. Diagram of CoTC and Pause-Type

Pol II Termination Pathways

In the CoTC termination pathway transcripts of

AT-rich terminator elements (red bar) are cleaved

by CoTC activity (red scissors) promoting Pol II

release before poly(A) site cleavage, mediated by

the 30 processing complex (green scissors). In the

pause-type termination pathway, Pol II transcrip-

tional pausing, at G-rich sequences (blue bar),

enhances pre-mRNA cleavage at the poly(A) site,

leading to Pol II release. Icons and symbols as in

Figure 1A.
bAKIRIN1, bTHOC2, bWDR13, and bCCNB1/A/B and C expression plasmids

were made by insertion of genomic PCR fragments, isolated using gene-

specific primer sets, into a cloning vector prepared by long range PCR

amplification (Barnes, 1994) of bDTERMwith primers BETA43/BETA10.3 using

PrimeSTAR HS DNA polymerase (Takara).

Transfection Procedure

Transient transfection of HeLa cells was performed as previously described

(West et al., 2008).

Nuclear RNA Fractionation

Nuclear RNA fractionation was performed as previously described (West et al.,

2008).

RNA Immunoprecipitation

HeLa cells on 10 cm plates were irradiated with 254 nm UV (300 mJ/cm2)

prior to nuclear fractionation. RNA in the nucleoplasm fraction was immuno-

precipitated with either rabbit IgG or CstF-64 antibody (Cambridge Biosci-

ence) conjugated to Protein G Dynabeads (Invitrogen). Following 1 hr incuba-

tion at 4�C, beads were washed four times with NET-2 buffer (10 mM Tris-HCl

pH7.5, 150 mM NaCl, 0.05% NP-40) and precipitated RNA eluted in Trizol

(Invitrogen).

HITS Library Preparation and Data Processing

HITS library preparation was performed as described (Licatalosi et al., 2008).

Samples from three independent repeats of CstF-64 CLIP-seq were sub-

mitted to high-throughput sequencing from the 50 ends using the Illumina

Hi-Seq 100 nt single-end reads protocol (Source Bioscience). Repeats 1

and 2 were multiplexed and sequenced together in the same lane. During

pre-processing, samples 1 and 2 were demultiplexed using barcodes; low

quality reads (mean Q < 30 within the first 50 bases) were removed and 30

sequences matching ligated adaptors or putative oligo-A tails trimmed. Reads

shorter than 24 nt were discarded and longer reads trimmed to 50 nt before

Bowtie alignment to the hg18 assembly of the human genome allowing for

three mismatches. From a total of 97.5 M reads (40.1 M, 32.9 M and

24.5 M, in repeats 1, 2, and 3, respectively), 49.8 M aligned, of which

38.5 M (13.1 M, 10.9 M, and 13.8 M in repeats 1, 2, and 3, respectively)

matched unique sites (only these were considered in the subsequent

analysis). Each of the experimental repeats resulted in a high level of duplica-
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tion indicated by many reads aligned to the

same genomic location, probably due to the low

amount of pre-mRNA targets recovered from the

nucleoplasm in the CLIP experiment. To avoid

bias PCR duplicates were removed and each

unique read-alignment location was considered

only once, resulting in 9,658 (3,410, 2,765, and

3,483, in repeats 1, 2, and 3, respectively) read-

alignment sites. To maximize sensitivity reads

from the three repeats were pooled for subse-

quent analysis. Overlapping read-alignments
(extended by 100 bp) were merged to ‘‘regions.’’ A total of 1,285 regions,

supported by at least two independent read-alignments, were considered sig-

nificant. Many regions were identified in only one repeat, indicating that the

experiment was far from saturation in detection of nucleoplasmic CstF-64

binding targets. To determine their genomic distribution, significant regions

were related to NCBI RNA reference sequences (RefSeq) and short RNA

gene (RNA genes) annotation tracks, downloaded from the UCSC genome

browser. To identify genes that employ the CoTC termination pathway we

selected pre-mRNAs with a CstF-64 CLIP region in 30 UTRs, extended by

200 bp downstream (to account for variability in poly(A) site usage and impre-

cision in transcript-end annotation).

RT-PCR and qRT-PCR

cDNA was synthesized using Superscript III (Invitrogen). DNA amplification

was performed using Go-Taq DNA polymerase (Promega). When conducting

qRT-PCR, PCR products were amplified with [a-32P]dCTP (Perkin Elmer). PCR

products were applied to 6% polyacrylamide gels and radioactive signals

quantified by PhosphoImager (Fuji).

RNase Protection Analysis

RNase protection analysis is as described previously (Plant et al., 2005).

NRO Analysis and Single-Stranded DNA probes

NRO analysis and single-stranded M13 probes used are as described

previously (West et al., 2008). Quantitation of NRO hybridization signals by

PhosphoImager analysis is based on the average of multiple experiments after

subtraction of background signal, shown by probe M.
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