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Abstract. Trade-offs exist between the point of early detection and the future cost of con-
trolling any invasive species. Finding optimal levels of early detection, with post-border active
surveillance, where time, space and randomness are explicitly considered, is computationally
challenging. We use a stochastic programming model to find the optimal level of surveillance
and predict damages, easing the computational challenge by combining a sample average
approximation (SAA) approach and parallel processing techniques. The model is applied to
the case of Asian Papaya Fruit Fly (PFF), a highly destructive pest, in Queensland, Australia.
To capture the non-linearity in PFF spread, we use an agent-based model (ABM), which is cal-
ibrated to a highly detailed land-use raster map (50 m × 50 m) and weather-related data, vali-
dated against a historical outbreak. The combination of SAA and ABM sets our work apart
from the existing literature. Indeed, despite its increasing popularity as a powerful analytical
tool, given its granularity and capability to model the system of interest adequately, the com-
plexity of ABM limits its application in optimizing frameworks due to considerable uncertainty
about solution quality. In this light, the use of SAA ensures quality in the optimal solution
(with a measured optimality gap) while still being able to handle large-scale decision-making
problems. With this combination, our application suggests that the optimal (economic) trap
grid size for PFF in Queensland is ˜0.7 km, much smaller than the currently implemented level
of 5 km. Although the current policy implies a much lower surveillance cost per year, com-
pared with the $2.08 million under our optimal policy, the expected total cost of an outbreak is
$23.92 million, much higher than the optimal policy of roughly $7.74 million.

Key words: agent-based model; early detection; optimal surveillance; optimization; papaya fruit flies
(Bactrocera papayae); sample average approximation; spatial-dynamic process; stochastic programming.

INTRODUCTION

Alien invasive species (AIS) cause enormous environ-
mental and economic damage (Wilcove et al. 1998,
Pimentel et al. 2000), due, in part, to the delay in detec-
tion and control. It is impractical to prevent every post-
border incursion that occurs behind the border and
biosecurity measures generally struggle to keep up with
the increasing risks of bioinvasions in an increasingly
connected world. Therefore, post-border surveillance
has received considerable attention (Epanchin-Niell and
Hastings 2010), with recent literature highlighting the
importance of combining early detection with the eradi-
cation of AIS to enhance biosecurity efforts, a practice
that used to be applied to only highly economically dam-
aging AIS (see Liebhold et al. 2016, for a review).

Finding the optimal level of post-border surveil-
lance is difficult, for at least two reasons. The first is
how to model the AIS spread in the most realistic
manner. Dangerous AIS often spread quickly and
randomly, over time and space, at a rate that can be
highly dependent on their characteristics, such as age
(Van den Bosch et al. 1992), the landscape with which
they interact, the interactions among themselves, and
the prevailing weather conditions (Kot et al. 1996,
Shigesada and Kawasaki 1997, Keeling et al. 2001).
Furthermore, while most of the spread is local, some
spread can be over a long distance, via jumps, and
therefore substantially alter an outbreak size. This fea-
ture is typical in biology but hard to calibrate in
modeling (Hastings et al. 2005, Meentemeyer et al.
2011). The second reason is the computational chal-
lenge in solving large-dimensioned problems. Overlay-
ing an optimization routine on a realistic spread
model, in which millions of cells are considered, can
make the problem intractable. This aspect alone
explains why quite a few studies have greatly
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simplified their spread models, assuming, for example,
constant spread rates (Meentemeyer et al. 2012).
In this study, we constructed a large-dimensional

model, where time, space and randomness are explicitly
considered, to find the optimal level of surveillance and
predict damages. We circumvented the computational
challenge using a combination of the sample average
approximation (SAA) approach and parallel processing
techniques. The model was applied to the case of Asian
Papaya Fruit Fly (PFF), a highly destructive pest, in
Queensland, Australia. To capture the non-linearity in
PFF spread, we use an agent-based model (ABM),
which is calibrated to a highly detailed land-use raster
map (50 m × 50 m) and weather-related data, validated
against a historical outbreak.
The combination of an SAA approach and an ABM

sets our work apart from the existing literature. ABMs
have become a powerful analytical tool in various fields,
especially in ecology, given its granularity and capability
to model the system of interest adequately (DeAngelis
and Grimm 2014). However, the complexity of an ABM
limits its application in optimizing frameworks. Indeed,
there is considerable uncertainty about solution quality
in studies in which an ABM is used in optimization
problems (Barbati et al. 2012). In this light, the use of
the SAA approach ensures quality in the optimal solu-
tion (where the optimality gap can be measured) while
still being able to handle large-scale decision-making
problems.
The paper is structured as follows. One section briefly

reviews the related literature. The following section
describes a discrete-time stochastic spatial-dynamic
model to find optimal surveillance against biological
invasions and the approach to solving it. We apply the
model to the case of PFF in Queensland in the next sec-
tion, in which the empirical dispersal model is an ABM.
The last section provides some discussion, especially on
the model’s applicability to other contexts/systems as
well as any caveats and limitations that are worth explor-
ing in future research.

APPROACHES TO MODELING BIOSECURITY

The economics of biosecurity has evolved rapidly
alongside the increasing risk of bioinvasions, with a bur-
geoning literature since the early 2000s (see Olson
[2006], Lovell et al. [2006] and Perrings et al. [2000] for
reviews). Although biosecurity is managed as a contin-
uum from pre-border to post-border, its activities are
classified into three types, namely prevention (pre-
border and at the border), post-border surveillance and
post-border control and eradication, each of which are
often studied separately. At first, most studies focused
on prevention, designing trade policies in a way to mini-
mize or prevent the introduction of AIS (e.g., Horan et
al. 2002, Costello and McAusland 2003, McAusland and
Costello 2004). Another strand analyzed strategies that
are optimal for controlling established AIS incursions s

(e.g., Olson and Roy 2002, Taylor and Hastings 2004,
Epanchin-Niell and Hastings 2010, Epanchin-Niell and
Wilen 2012). Over the last decade, however, with the
recognition that it is impossible to fully prevent every
entry at the border (including pests that arrive on wind
or other environmental pathways), post-border surveil-
lance efforts for early detection have attracted consider-
able attention (e.g., Mehta et al. 2007, Hauser and
McCarthy 2009, Barrett et al. 2010, Jarrad et al. 2011).
When biosecurity measures are studied together, the

economic trade-off among them is typically the focus.
Existing literature tells us that control and prevention
are generally substitutes for each other while control and
surveillance are complementary (Polasky 2010). Specific
bioeconomic modeling results also suggest that invest-
ment in prevention may likely yield higher returns than
for control (e.g., Leung et al. 2002, 2005, Finnoff et al.
2007). However, this depends very much on context, the
set of AIS incursions and the control measures (Kompas
et al. 2019). The trade-off between control and surveil-
lance is generally not clear. As a result, the existing liter-
ature conventionally finds an optimal surveillance and
search effort by minimizing the sum of upfront surveil-
lance cost and the probabilistic damage of an outbreak
with needed control measures (e.g., Mehta et al. 2007,
Epanchin-Niell et al. 2012, 2014, Horan et al. 2018).
Regardless of the focus, there has been increasing

demand for bioeconomic models that can capture the
typical features of AIS spread (Wilen 2007, Albers et al.
2010, Meentemeyer et al. 2012). This added demand has
resulted in the rapid growth of ABM applications over
the past two decades in all fields, including ecology
(DeAngelis and Grimm 2014). Nonetheless, due to their
complexity, ABMs have been used mainly in simulations.
Despite being insightful, simulations can reveal only the
relative efficiency of one, or at best a limited number of,
policy choices, without determining an optimal out-
come. In addition, full and explicit consideration of
time, space and randomness in AIS spread in an opti-
mization routine is generally limited by computational
complexity. This aspect explains why the literature that
applies an ABM for optimization problems is scant, and
the quality of their solutions is yet to be assured (Barbati
et al. 2012).
Against this background, we propose a bioeconomic

model that uses an ABM to capture the realistic spread
of a dangerous AIS and an optimization routine to
determine an optimal level of post-border surveillance
against it. Our work contributes directly to the growing
literature that finds optimal surveillance and eradication
of invasive species in heterogeneous landscapes. Specifi-
cally, similar to Epanchin-Niell et al. (2012) and differ-
ent from most studies in the existing literature (e.g.,
Hauser and McCarthy 2009, Horie et al. 2013, Bonneau
et al. 2019), we designed an optimal long-term surveil-
lance program. As in related work by Epanchin-Niell et
al. (2012), our model allows stochastic invasion, estab-
lishment and detection, unknown infected cells before
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their detection, and increasing detectability with increas-
ing age of infection. The distinct feature of our work lies
in the use of an ABM spread model to represent the
non-linear and random spread over time and space of an
AIS. This paper indeed presents the first agent-based
optimization surveillance model in the literature, to the
best of our knowledge.

A DISCRETE-TIME STOCHASTIC SPATIAL-DYNAMIC

SURVEILLANCE MODEL OF BIOINVASIONS

In this section, we develop and solve a model to find
the optimal level of surveillance to detect a bioinvasion
early, considering the cost of surveillance itself and its
potential benefit in reducing the economic damage of an
outbreak. The spread model is stochastic, temporal and
spatial, allowing for the growth and spread of a species
over both discrete-time and space, with jumps, all in a
random manner. It is worth noting that the description
of the model here is general to accommodate many
kinds of discrete-time stochastic spatial-dynamic disper-
sal processes. When being applied, the nature of stochas-
ticity, the scales for time and space are context specific,
as illustrated in the section on Empirical Application
and Results. Our model is most applicable to situations
in which the bioinvasion is probabilistic, and also poten-
tially damaging to a sector or the economy enough to
require (potential) eradication within a finite period.

Random dispersal model

To begin, consider a land area divided into q small
raster cells that is either habitable or not by an AIS. The
cell is considered to be small enough that the within-cell
AIS population growth can be ignored. We denote xit as
the infestation state of a habitable cell i at time t where
xit can take on one of the two values: xit = 1 means the
cell is infested, while xit = 0 means the cell is susceptible.
Vector Xt represents infestation states of all habitable
cells at time t. At t = 0, there is only one random cell
infested. Moving forward in time, the infestation state of
each cell i at time t where t > 0 depends on four factors
in the t and/or previous A periods, during which an AIS
can survive and search for a new host to colonize. The
first factor is the cell’s infestation status. The second is
the realization of the random dispersal ξ in terms of
range, direction and quantity. The third factor is the
realization of the probability γ of an infested cell being
detected without the aid of any active surveillance mea-
sures (or so-called “naturally detected,” typically by a
farmer or someone in the community). The fourth factor
is the intensity of an active surveillance measure (g) to
detect a bioinvasion early. Of these four factors, the last
two factors affect the cell status in the sense that, if it is
detected, it will be eradicated right away.
To this end, the random dispersal of an AIS over time

and heterogenous space can be expressed using the fol-
lowing transition equation:

Xt ¼ f Xt�A, . . ., Xt�1;ξt�A, . . ., ξt�1;γt�A, . . ., γt�1;X 0;gð Þ
¼ f Ξt;X 0;gð Þ (1)

where Ξt is a matrix combining all information on
the infestation states of all habitable cells and the
realizations of random events; and X0 is the initial
condition, that is, the initial cell from which an out-
break starts.

Economic costs and optimization set-up

An AIS outbreak incurs several economic costs.
For example, it damages production in the infested
area, and is usually expensive to remove, both directly
(eradication costs) and indirectly (management costs).
Sales revenues also generally suffer due to trade sanc-
tions during the outbreak and market closure periods.
In many cases, products in non-infested (but nearby
areas) can be sold to the market only after meeting
some specific conditions such as being sprayed with
particular chemicals, which results in treatment costs
in “suspension zones.”
Without active intervention, an invasion will even-

tually be detected when the outbreak becomes large
enough. Implementing active surveillance will help to
detect the bioinvasion early, therefore shortening the
time and reducing the size of an outbreak. However,
although surveillance cost is relatively known, upfront
and ongoing, outbreak costs are contingent on an
incursion probability λ, and the realization of various
random factors as discussed earlier. A relevant policy
question is whether it is worthwhile to implement
active surveillance activities and, if so, at what level
or intensity (i.e., how much to spend), so that the
total cost of an outbreak, along with total damages
and the cost of detecting it early, is the smallest. In
this light, our surveillance optimization problem is
formulated as follows:

min
g ≥ 0

TC ¼ gs|{z}
surveillance

þ λ ∑
Tobrk

t¼tdetect
D0

t eþ dð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
eradication þ damages

þ Z0
tz|{z}

suspension

0B@
1CA

264
þ D0

Tobrk þ Z0
Tobrkð Þm|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

management cost

þ Tobrk þ Tmktð Þr|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
revenueloss

375
¼ S gð Þ þ λ C Ξ, gð Þ½ � ≡ f Ξ, gð Þ

(2)

subjectto
Transitionequation : Xt ¼ f Ξt;X 0;gð Þ detailed inðÞ
Initialcondition : ∑xi0 ¼ 1

End� pointcondition : ∑xiTobrk ¼ 0 where 0 ≤ Tobrk <∞

8>><>>:
where S is surveillance cost, depending on surveillance
level or intensity g and surveillance marginal cost s. Dt
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and Zt are X × 1 vectors indicating whether at time t,
inhabitable cells are in the eradication and suspension
zones, respectively. The former encircles the infested cell
on the radius of reradication while the latter surrounds the
former on the radius of rsuspension. Similarly, e and z are
marginal (and average) eradication suspension costs,
respectively, while d is a vector Xt × 1 of cell-specific
damage costs, all one-off during the entire outbreak. For
simplicity, we assume that production damage is negligi-
ble before the invasion is detected at tdetect, and there-
fore, damages, together with eradication and suspension
costs, are incurred only after detection. Furthermore,
once infested, cells remain so until they are removed. A
management cost to cover the coordination of response
activities, if any, is applied to the entire outbreak at the
unit cost of m per cell. That means it depends linearly on
the size of the quarantine area that combines both eradi-
cation and suspension zones. Finally, revenue losses are
proportional to the “business-as-usual” revenues at the
rate r, and dependent on the length of outbreak and
market closure periods (i.e., Tobrk + Tmkt).
The problem in Eq. 2 can be viewed as a two-stage

optimization problem without recourse e (Shapiro
2003). The decision on surveillance intensity g, usually
the size of the trapping grid or the distance between
traps, has to be made regardless of incursion and before
a possible outbreak unfolds. However, this decision has
significant bearing on the realization of the random dis-
persal and detection and, therefore, the cost of an incur-
sion C Ξ, gð Þ. The objective function, therefore, boils
down to finding g, the correct point of early detection,
so that the combination of the upfront deterministic cost
of surveillance and the probabilisitic cost of an incur-
sion, denoted as f Ξ, gð Þ, is the smallest.
Finally, it is worth noting that a discount rate is not

needed in our model as we focus on equilibrium analysis.
This approach has been used previously in the literature
on optimal surveillance (e.g., Epanchin-Niell et al. 2012,
Kompas et al. 2017).

Solution method, algorithm and parallel processing
techniques

The model in (2) has many scenarios due to the real-
ization of various random factors. Therefore, a closed-
form solution is unlikely to be attainable. We use instead
the SAA approach (Shapiro 2003) to obtain the optimal
solution on average. Accordingly, the objective function
in the model (2) is re-written in the form:

min
g ≥ 0

TC ¼ S gð Þ|ffl{zffl}
Surveillance cost

þ λ C Ξ, gð Þ½ �|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Expected damages

≡  f Ξ, gð Þ½ �|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Total expected cost of an outbreak

(3)

where  is the expectations operator. The SAA method
minimizes the expected objective function in (3) approxi-
mately using a sample average estimate derived from a

finite set of samples from the underlying probability
space. The resulting sampled problem scenarios are then
solved by deterministic optimization techniques. As
SAA uses an exterior sampling method, in which the
random matrix Ξ is realized outside the optimization
routine, it separates sampling procedures and optimiza-
tion techniques, therefore making it easy to implement
and more efficient to solve (Shapiro 2003). More impor-
tantly, each sampled scenario has both treated (i.e., with
policy interventions) and untreated (i.e., without any
policy interventions) outcomes, allowing a precise mea-
surement of the policy impact.
Underpinned by the Law of Large Numbers and the

Central Limit Theorem, the SAA estimator has desired
statistical properties. They include unbiasedness, consis-
tency and asymptotic normality under some regularity
conditions (see Shapiro [2003] for detailed proofs). Put
differently, the SAA estimate of the optimal solution
converges to the true solution value of the problem with
probability 1 as the sample size N ! ∞ (Shapiro 2003).
Finally, statistical inference for SAA is well developed,
therefore allowing us to calculate error bounds for
obtained solutions, validate them, and set-up stopping
rules in our algorithm (see Kleywegt et al. 2002, Norkin
et al. 1998, Mak et al. 1999, Verweij et al. 2003 for
detailed proofs).
Regarding implementation, the SAA method involves

a three-stage procedure. This procedure is repeated until
convergence toward the true objective function value
TC* is achieved, as described in Algorithm 3.3 (Box 1).
Detailed spatial heterogeneity coupled with the need

to keep track of AIS results is an incredibly large-
dimensional problem. In this case, serial computing is
not as efficient as needed. We, therefore, use a parallel
processing algorithm to solve the problem. That is, sev-
eral processes in several computers (cores) generate
simultaneously many fractions of sample size N, N0 and
N″, and calculate lower and upper bound estimates
across processes, which are then sent to a master process.
Similarly, for the optimization process that is based on a
direct search for the optimal point, we apply the same
technique to simultaneously find the optimal solution
candidate, and estimate the optimality gap.

EMPIRICAL APPLICATION AND RESULTS

Our surveillance model is applied to the case of PFF
in Queensland (QLD) in Australia. The random disper-
sal model used in this application is an ABM, which is
arguably the best model to present a stochastic spatial-
dynamic dispersal process of invasive species. Having
said that, it is worth noting that the model described in
the section can be applied to other spread model types,
and not necessarily just for an ABM.
This section starts with a description of the ABM

model’s architect. We then explain the choice of parame-
ter values for both the dispersal process and economic
costs. Given the large dimension involved in our analysis,
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we describe our computing process, alongside the soft-
ware packages used. Finally we present results and check
their sensitivity subject to some key parameter values.
The research site, QLD, is under a constant threat of

PFF as it is located near South-East Asia and Pacific
Island Countries where PFF is native and widespread.
With monsoonal winds in the wet season, PFF can “tra-
vel” through the Torres Strait Islands (TSI), just north of
mainland Australia, to QLD, along environmental and
human-assisted pathways. To date, an ongoing and strong
surveillance and trapping program in the TSI has largely
prevented the permanent establishment of PFF in the TSI
and reduced the risk of flies moving south to mainland
Australia, via QLD. Furthermore, local traps in QLD can
potentially detect PFF early should it escape the quaran-
tine zone in the TSI (DAFF 2005). However, the threat to
QLD and Australia from PFF remains high with esti-
mates of the damage of a country-wide spread of PFF of
Australian Dollars (AUD) $3.3 billion (Hafi et al. 2013).

An agent-based PFF spread model

The outbreak in our model starts from an invasion of
PFF migrating via the TSI, the most likely event. A PFF

outbreak begins when fruit flies settle in a random cell
within the incursion area. Once settled, they will gradu-
ally expand in a southerly direction given wind and
weather patterns.
The architect of our agent-based PFF spread model

has three main components: weather conditions, the
environment and agents (Fig. 1). Weather conditions
include data on seasonal features such as wind, tem-
perature, soil moisture, and host suitability that affect
PFF dispersal (Bateman 1967, Dominiak et al. 2003,
Yonow et al. 2004). The environment spans 1.85 mil-
lion km2 with approximately 1.4 billion 50 m × 50 m
raster cells in QLD. Its detailed land-use raster map,
from ABARES (2015), provides us with information
on six broad categories of land use, with up to as
many as 60 different smaller land-use purposes in
each category. Based on this map and the fact that
PFF infests only horticultural crops, we classified the
research area into non-habitable and habitable raster
cells. Finally, agents in our model are propagules of
PFF, each of which can consist of two (one male and
one female) or more fruit flies to enhance their
chance of survival and successful reproduction in a
new host. The choice of propagules over individual

Box 1
Algorithm 1 The SAA procedure

Input: M independently and identically distributed (iid) samples of N iid training scenarios, a sample N0 of iid
testing scenarios, and a sample N″ of iid validating scenarios. Samples are independent from each other. N0 and
N″are much larger than N.
Stage 1:

•For each sample of N training scenarios in the set of M samples, estimate the minimum of average objective

function value TC
m
N ¼ min g

1
N ∑

N

n¼1
TC Ξm

n , g
� �

, and the candidate optimal policy solution ĝm, where mɛ[1,M].

•The lower bound of the optimal value TC* is the average of the estimated minimum function value of M sam-

ples, or TCN;M ¼ 1
M ∑

M

m¼1
TC

m
N

Stage 2: Use the testing sample N0 to find the best optimal solution ĝ∗ among all ĝm, or

ĝ∗ ∈ arg min

(
1
N0 ∑

N0

n0¼1
TC Ξn0 , ĝð Þ : ĝ∈ ĝ1, ĝ2, . . ., ĝM

n o)

Stage 3:

•Use the validating sample N″ to find the upper bound of the optimal value TC*, or

cTCN00 ĝ∗ð Þ ¼ 1
N00 ∑

N00

n00¼1
TC ĝ∗, Ξn00ð Þ

•Estimate the “optimality gap” or estimation error gap (ĝ∗) = cTCN00 ĝ∗ð Þ � TCN;M to check whether the conver-
gence is achieved.

Stop or increase the sample N and repeat the process until the desired optimality gap is achieved.
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fruit flies as the model agent reduces unnecessary
model complexity while remaining useful to represent
the realistic dispersal of PFF. In particular, agents tra-
vel together and have their own specific age and
geospatial location at each model time step (which is
1 week, to be in line with their life cycle).
There are two stages in the life of each agent. The

early development stage lasts for four weeks when the
agent develops from egg to larva and then pupa. During
this stage, it stays “latent” at the host (Yonow et al.
2004). In the adult stage the agent can potentially repro-
duce, and more importantly migrate to other hosts
(Yonow et al. 2004).
For an outbreak as a whole, PFF dispersal is charac-

terized by three important factors, namely the range, the
direction and the quantity of released agents (Adeva et
al. 2012). Regarding the range, some agents can make a
jump over a long distance of rjump in the first week of
their adult stage when they are the strongest and most
active (Adeva et al. 2012, Dominiak 2012). We denote

pjump as the probability of an agent making such a jump.
The agents that do not make a long jump but instead
move locally within a range of rlocal/week. Depending on
whether an agent moves locally or over a long distance,
the actual distance it makes is a random event following
uniform distributions unif(0,rlocal) or unif(0,rjump),
respectively. In terms of the direction, an agent making a
long jump does so in any direction. After the long jump,
it travels in a similar way as the ones that stay local. The
movement direction of locally traveling agents depends
on the proximity of a nearby host or food that they can
sense (Adeva et al. 2012). We denote the probability of
an agent finding a nearby host as β, a function of the dis-
tance between the two. When β is equal to zero, or all
hosts are too far away to be detected, the agent will
move randomly in any direction. Finally, the number of
agents released from each host per week, π, depends on
seasonal features such as wind, temperature, soil mois-
ture, and host suitability (Bateman 1967, Dominiak et
al. 2003, Yonow et al. 2004).

FIG. 1. Schematic of the Papaya Fruit Fly (PFF) spread model. GIS = Geographic Information System.
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The dispersal process in our model can be represented
in an extended network (Fig. 2). In panel (a), solid cir-
cles represent hosts or cells that are habitable for PFF
while the broken ones are not. Starting from host C,
agents are released to find new hosts, expanding their
colony. It is worth noting that many flies can be born in
host C, but not all of them will leave the host. To model
the colony expansion, we only focus on those who leave
as propagules and can form a new host for tractability.
The departing or leaving agents can find a new host
within one period of time (e.g., agent f C2 ), or they can
land on a non-habitable cell and have to keep searching
until they find a new host (e.g., agent f C1 ). If a host has
already been occupied, an arriving agent has to leave
immediately and continue their search for a new host in
the next period to avoid “collision” (e.g., agent f C3 ). The
reason is that eggs are inserted directly into the host fruit
and once larvae starts to feed, an unidentified change
occurs in the fruit, which generally causes females to
avoid it (Waterhouse and Sands 2001). Our dispersal
model can be seen more easily in panel (b), where all
non-habitable nodes and “unsuccessful” connections
(i.e., connections to/from non-habitable cells) are hid-
den, and therefore, a node at a particular time step t can
contact multiple nodes at the following time steps within
the length of a PFF adult stage.

Parameter values of the PFF dispersal process

Parameter values for the random dispersal model are
largely drawn from the literature (Table 1). In particular,

the outbreak arrival rate λ is one in every five years
(Kompas and Che 2009) while the lifespan of an agent is
A = 10 weeks, based on Bateman (1967); Yonow et al.
(2004); Adeva et al. (2012). Regarding the range of dis-
persal, the probability of an agent making a long jump
pjump is 0.3 based on the dispersal distribution in Adeva
et al. (2012) while the maximum range of local and dis-
tance travel are rlocal = 1.4 km/week and rjump = 94 km in
the first week, respectively, based on Adeva et al. (2012);
Dominiak (2012). For the direction of dispersal, we adopt
the probability β of an agent finding a nearby host from
Adeva et al. (2012, p. 101). Accordingly, an agent will
detect a habitable host within 0.1 km with certainty. But
the further away a habitable host is, the less certain an
agent can detect it. When habitable hosts are located
beyond 3 km far away, an agent cannot detect it, thereby
having to keep moving randomly in the direction until it
finds a habitable host, or die due to the lack of food or
reaching the end of its life (details in Appendix S1).
It is vital to calibrate correctly the quantity π of

propagules released from each infested cell as this
parameter largely determines the extent of PFF spread,
therefore the size of a PFF outbreak. Therefore, its cali-
bration deserves special attention and is made based on
two sources of information. First, we use historical data
on the spread of the first PFF outbreak in north Queens-
land in 1995 (Fay et al. 1997, p. 260b). It is widely
believed that PFF were present for 12–15 months before
a massive eradication campaign commenced (Cantrell et
al. 2002). In this light, we let PFF disperse freely (unde-
tected) for 16 months in our simulations using our

FIG. 2. Papaya Fruit Fly random network dispersal model. Solid circles represent hosts that are habitable for PFF while the
broken ones are not. Starting from host C, which is random, agents such as f C1 , f

C
2 , f

C
3 , etc. are released to find new hosts. From

these new hosts, more agents are released. For example, agent f C2 occupies host A in t = 1 and starts releasing new agents from
t = 2. Finally, agents avoid cells that have already occupied by other agents. For example, agent f C3 arrives at host B at t = 2, but
leaves immediately as it has been occupied by agent f C1 .
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TABLE 1. Model parameterization.

Parameters Description Unit Value

Parameters of random dispersal
λ Outbreak incursion probability(a) Per year 0.2
A Life span of a PFF propagule(b) Week 10
pjump Probability of an agent making a long jump(c) 0.3
rjump Maximum range of distance travel(d) km/1st week 94
rlocal Maximum range of local travel(c) km/week 1.4
β Probability of a PFF to find a nearby host(c) Appendix S1
π No. propagules released from an infested cell(e) No./week 2
γ Probability of an infested cell detected naturally(f) =1 if six/more

months; 0 otherwise
Economic costs
reradication Radius of the eradication zone(d1) km 1.5
rsuspension Radius of the suspension ring(d2) km 13.5
e Eradication cost(a) $/km2 539
d Damage cost $/cell Appendix S3
z Suspension cost(i) $/ton 143
m Management cost(g) $/cell 114
r Weekly trade-related revenue loss(g) $ mil/year 25
Tmkt Market closure period(h) Month 8.5
s Marginal cost of surveillance Appendix S4

Notes: All parameter values are in Australian Dollars (AUD) in the years of their respective sources. They are converted into
2015 AUD in our computation to generate model results. (a)Kompas and Che (2009); (b)Bateman (1967), Yonow et al. (2004) &
Adeva et al. (2012); (c)Authors’ assumption based on Adeva et al. (2012); (d1)Dominiak (2007); (d2)Dominiak (2012); The South
Australian Government Gazette (2020); (e)Authors’ calibration based on historical data of the first outbreak in 1995 (Fay et al.
1997, p. 260b) and seasonal patterns & Atlas of Living Australia (2015) described in Appendix S2; (f)Authors’ assumption;
(g)Authors’ calculation based on Cantrell et al. (2002); (h)Underwood (2007); (i)Authors’ calculation from (Hafi et al. 2013).

FIG. 3. (a, b) Papaya Fruit Fly outbreak: actual vs. a simulated medium-sized outbreak. The actual infestations are from the
outbreak that occurred in north Queensland in November 1995 (Fay et al. 1997, p. 260b). The simulated infestations are generated
by our model.
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random dispersal model, and compare the simulated
infestations with the historical snapshot data. Panel (b)
in Fig. 3 shows infested raster cells in a medium-sized
outbreak among our 100 simulation runs. With two
propagules/week, on average, released from an infested
cell, there is a visual correspondence between our simu-
lated spread in panel (b) and the actual spread in panel
(a). The second source of information is the monthly
occurrence records of fruit flies (Bactrocera (Bactrocera)
tryoni) in Queensland during 1950–2015 (Atlas of Living
Australia 2015). As PFF and Bactrocera tryoni belong to
the same genus, Bactrocera, they share some common
biological characteristics including seasonal patterns of
incursion and migration. For this reason, we can use
information on Bactrocera tryoni as a proxy to estimate
seasonal patterns of PFF. These estimated seasonal pat-
terns are then incorporated into our calibration of the
number of propagules released per week (details in
Appendix S2).
Finally, the probability γ of an infested cell being

detected naturally is 1 if the cell is infested for more than
six months, and zero otherwise. The reason is two-fold.
First, PFF is hard to detect. Its eggs are inserted directly
into the host fruit well before it ripens, and the rapidly
growing tissues quickly cover any marks made by the
fruit fly, making it difficult for all but the trained eye to
see where eggs have been laid (Cantrell et al. 2002). As
enlisting “trained eyes” has never been used as a measure
to detect PFF early in practice, we consider it exogenous.
As PFF makes infested fruit look ripe earlier, this will
get noticed by growers, therefore being eventually
detected. Second, it would generally take horticultural
crops in Queensland about six months to ripen.

Economic costs

Parameter values for costs are also largely drawn from
the literature and Australian biosecurity regulations
(Table 1). Specifically, the radius to define the eradica-
tion zone reradication is 1.5 km (Dominiak 2007) with an
eradication cost e of $539/km2, largely to cover labor
and chemicals (Kompas and Che 2009). Also, in this
zone, the production damage d is cell-specific and
accounts for 45% of the cell production value (Kompas
and Che 2009) which is estimated using the data on land
use (ABARES 2015) and production value (ABS 2011)
(details in Appendix S3). Conversely, the radius to define
the suspension ring rsuspension, which encircles the eradica-
tion zone, is 13.5 km (Dominiak 2012, The South Aus-
tralian Government Gazette 2020) with a suspension cost
z of $143 per ton, based on Hafi et al. (2013). Manage-
ment cost m is $114/cell, while revenue losses r are $25
million/year, both estimated based on the actual cost of
the outbreak in 1995 in Cantrell et al. (2002). The market
closure Tmkt of 8.5 months was applied to all scenarios
following Underwood (2007), while the outbreak time
Tobrk depended on how each simulated scenario is real-
ized. Nonetheless, if the realized outbreak time was

longer than 15 months, we adopted the eradication strat-
egy in 1995 (Cantrell et al. 2002) to change the radius of
the suspension zone to 80 km to ensure that the outbreak
will be terminated. Finally, adopted from Florec et al.
(2010), the ongoing surveillance cost depends on the
surveillance intensity g, and the marginal cost s that cov-
ers the cost for labor, equipment and materials, as well as
the time required for workers to check traps and travel
between them (details in Appendix S4).

Computing process

We used 12 processes over three quad core CPU com-
puters with Hyper-Threading to generate numerical
results. Such a parallel processing method helps increase
the possible simulation numbers in our computional sys-
tem by 12-fold, compared with a similar uni-processing
process. Algorithm 3.3 is executed until the optimality
gaps are stabilized at <1% (Table 1). To achieve this
optimality gap, we increase the training sample size N
gradually to 672 while keeping the number of training
samples M constant at 50. It is worth noting that the
convergence to the true solution under the LLN depends
on the sample size N, not the number of samples M. To
this end, the number of simulations in the first stage
grows to 33,600. In addition, the sample sizes N0 and N″
used to find the candidate optimal solution and check its
quality in the second and third stages remain, remaining
constant at 33,600.
Numerical results and ploting in this paper are

obtained using C, and R (R Core Team 2014). For R, in
particular, we use the following packages: maptools 0.8-
36 (Bivand and Lewin-Koh 2015), raster 2.3-40 (Hij-
mans 2015), rasterVis 0.31 (Perpiñán and Hijmans
2014), rgdal 0.9-2 (Bivand et al. 2015), sp 1.1.0 (Pebesma
and Bivand 2005, Bivand et al. 2013), plotrix 3.5.11
(Lemon 2006), and ggplot2 1.0.1 (Wickham 2009).

Results

Numerical results of one sample of N training scenar-
ios in Stage 1 are illustrated in Fig. 4. Other samples
have similar patterns and, therefore, are not presented
for brevity. The vertical axis shows the total expected
cost and its components, which include surveillance cost
and expected damages. In addition, the horizontal axis
shows surveillance intensity that is the PFF trap grid size
or the distance between traps. The smaller is the grid
size, the more traps will be laid and the more intense will
be the surveillance activity. As can be seen, there is a
clear trade-off between spending on early detection and
the total expected cost of an outbreak. When the surveil-
lance grid is much smaller than optimal (and therefore a
larger number of traps), the total expected cost is largely
driven by surveillance cost. In contrast, when the grid is
more extensive than optimal, the expected damages
dominate the total expected cost. Both cases are, more
importantly, not justified on economic grounds.
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Results of all sampled scenarios are summarized in
Table 2. The optimal trap grid size, ĝ∗, is 0.7 km, which
is equivalent to roughly 6,782 traps to be laid. With this
level of surveillance intensity, the minimized total
expected outbreak cost is estimated to range approxi-
mately from $7.73 million (the lower bound) to $7.75
million (the upper bound). The quality of our estimation
or the convergence of our estimates to the true optimal
value can be seen in the optimality gap (i.e., the differ-
ence between the two bounds) which is <1% of the lower
bound value. Furthermore, the gap is not statistically
significant from zero at the 5% level.
We next compare our optimal surveillance level with

the currently implemented policy in Queensland, which
is apparently effective given that no sizable outbreaks
have been detected since 1995. Fig. 5 shows that the
traps currently laid are less dense, at the grid size of
roughly 5 km, compared with those at the optimal

(economic) level of 0.7 km suggested by our results.
Although the current policy implies a much lower
surveillance cost per year, compared with the $2.08 mil-
lion under our optimal policy, the expected total out-
break cost under the current scenario is $23.92 million,
much higher than the optimal cost of roughly $7.74 mil-
lion.
Finally, our results support but differ from the existing

literature in a similar context. Specifically, the aggregate
and deterministic model of surveillance against PFF by
Kompas and Che (2009) for the whole of Australia sug-
gests a 60% increase in surveillance expenses against
PFF, or a trap grid size of ∼3 km. This difference high-
lights the need for considering spatial heterogeneity and
randomness in optimization models of surveillance
against AIS.

Sensitivity analysis

This subsection checks whether our results are sensi-
tive to key parameter values. It is worth noting that our
model, unlike deterministic ones, fully incorporates ran-
domness. Therefore, changes in parameter values will
alter the entire data generating processes for simulations.
New solution estimates, therefore, reflect the changes in
parameter values, not the randomness.
Here we only focus on five key parameters that are

hard to estimate precisely but are instrumental in deter-
mining model results. They are the incursion probability
λ, the number of agents released from each infested cell
π, the production loss rate to calculate cell-specific dam-
ages d, the management cost m and the market closure
period Tmkt. Other parameters have a relatively minor
impact, are determined by regulatory requirements or
are well established in the literature, and therefore are
not discussed here. Detailed results are available upon
request.
The optimal surveillance policy and outbreak costs

for different incursion probabilities are presented in
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FIG. 4. Total expected cost of an outbreak and its compo-
nents including surveillance and expected damage against
surveillance intensity.

TABLE 2. Estimated Papaya Fruit Fly total expected outbreak costs and optimality gaps.

Optimality indicators

N (the number of training scenarios)

48 144 240 336 432 528 576 624 672

The optimal trap grid size (km) 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
The lower bound
of the true optimal value,
$AU million (A)

7.656
(0.024)

7.714
(0.015)

7.730
(0.011)

7.743
(0.009)

7.735
(0.007)

7.745
(0.007)

7.755
(0.009)

7.744
(0.009)

7.736
(0.006)

The upper bound
of the true optimal
value, $AU million (B)

7.749
(0.007)

7.749
(0.007)

7.739
(0.006)

7.742
(0.006)

7.749
(0.006)

7.744
(0.006)

7.746
(0.006)

7.747
(0.007)

7.742
(0.006)

Optimality gap, $AU million
(C = B−A)

0.093
(0.031)

0.035
(0.021)

0.009
(0.017)

−0.002
(0.016)

0.013
(0.014)

−0.001
(0.013)

−0.009
(0.015)

0.003
(0.015)

0.006
(0.012)

Gap as percentage of the lower
bound D = (C/A) × 100%

1.216 0.449 0.123 −0.019 0.174 −0.014 −0.112 0.045 0.078

Notes: M = 50; N0 = N0 0 = 33,600; Number of processes = 12. Values in AUD million (2015). Standard errors in parentheses.
All estimates are significant at the 1% level except for the ones of the optimality gap which, as expected, are statistically insignificant
at the 5% level.
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Table 3. Clearly, if the incursion probability is zero, there
is no need for surveillance. But the higher the probability
is, the higher the total expected cost would be. Indeed, if
the probability is doubled (i.e., λ = 0.4), the expected
total outbreak cost is estimated to increase by 80%, from
∼$7.4 million to $13.4 million. In contrast, if the proba-
bility is halved (i.e. λ = 0.1), the expected total outbreak
cost is estimated to decrease by 35%, from ˜$7.4 million
to $3.8 million. Despite this big variation in the optimal
cost, there is little sensitivity in the optimal surveillance
policy. In particular, the optimal surveillance level is
0.9 km if λ = 0.05 and reduces slightly to 0.75 km if
λ = 0.1 For the most likely range of the incursion proba-
bility (λɛ[0.15,0.5]), the optimal surveillance level
remains highly stable at 0.7 km. This lack of sensitivity
is because the benefit of early detection depends on how
much benefit is gained when an early detection system is
put in place or how fast the outbreak grows undetected.
This, in turn, depends on the biological characteristics
of the species and the environment. The incursion prob-
ability will not change that; rather, it relates more to the
trade-off between the cost of the surveillance system and
the benefit of early detection.
Fig. 6a reveals some sensitivity in the optimal surveil-

lance policy outcome when π, the number of agents
released from each infested cell, varies. More agents
being released makes them easier to detect but also
extends the outbreak size, therefore its cost. As these
effects move in two opposite directions, the result is a
small reduction in the optimal level of surveillance.

Changes in the market closure period Tmkt do alter
the expected outbreak cost (Fig. 6b), but in a relatively
linear way. That is, the longer the market closure period,
the larger would be the expected outbreak cost. But the
optimal surveillance level remains unchanged. Finally,
there is little sensitivity in the production loss factor
(Fig. 6c) as well as management cost (Fig. 6d).

DISCUSSION

AIS causes an extensive economic loss and is the
second most ranked threat to biodiversity. Reducing
its damage has become one of the United Nations
Millennium Development Goals (Gurevitch and
Padilla 2004, Butchart et al. 2010). Spending on pre-
border and border measures alone is often not eco-
nomically effective as complete prevention is impossi-
ble and prevention measures cannot keep up with the
increasing risks of a bioinvasion due to globalization
and new or enhanced environmental pathways. In this
context, added priority is needed to identify optimal
surveillance intensity that takes into account both
ongoing surveillance costs, expected damages and
management costs.

Contribution to the literature and policy implications

Contributing to the growing body of literature on
surveillance, we propose and solve a bioeconomic model
to find the optimal surveillance for the early detection of

FIG. 5. Papaya Fruit Fly traps in Queensland: optimal vs. current. Panel (a) presents the optimal trap density generated by our
model while panel (b) illustrates the current trap density.
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an AIS. Specifically, we extend the current literature by
explicitly modeling spatial attributes and randomness in
full detail. The numerical solution of a large-
dimensioned problem is made possible due to a novel
combination of the SAA approach and parallel process-
ing techniques. Our study is the first, to the best of our

knowledge, that uses this solution method in environ-
mental and biosecurity economics.
We apply our model to the case of a potential entry of

PFF in Queensland. For this AIS, time, space and ran-
domness, all play vital roles in defining its damage and,
therefore, should be fully considered. The lack of

TABLE 3. Sensitivity analysis of the optimal results when the outbreak incursion probability or arrival varies.

Optimality indicators

N (the number of training scenarios)

48 144 240 336 432 528 576 624 672

Outbreak incursion probability λ = 0.05
Optimal trap grid size (km) 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
Lower bound of the true optimal
value, $AU million (A)

3.057
(0.022)

3.094
(0.015)

3.129
(0.008)

3.146
(0.010)

3.143
(0.008)

3.156
(0.008)

3.146
(0.007)

3.147
(0.006)

3.149
(0.007)

Upper bound of the true optimal
value, $AU million (B)

3.152
(0.007)

3.155
(0.007)

3.160
(0.007)

3.167
(0.007)

3.169
(0.007)

3.168
(0.007)

3.156
(0.007)

3.160
(0.007)

3.162
(0.007)

Optimality gap (C = B−A) 0.095
(0.029)

0.061
(0.022)

0.031
(0.015)

0.021
(0.017)

0.026
(0.015)

0.012
(0.014)

0.009
(0.014)

0.013
(0.013)

0.013
(0.014)

Gap as percentage of the lower bound
D = (C/A) × 100%

3.099 1.965 0.994 0.666 0.841 0.377 0.300 0.408 0.424

Outbreak incursion probability λ = 0.10
Optimal trap grid size (km) 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75
Lower bound of the true optimal
value, $AU million (A)

4.738
(0.025)

4.794
(0.015)

4.813
(0.011)

4.826
(0.011)

4.821
(0.009)

4.839
(0.009)

4.833
(0.008)

4.834
(0.007)

4.831
(0.008)

Upper bound of the true optimal
value, $AU million (B)

4.832
(0.007)

4.827 (
0.007)

4.829
(0.007)

4.839
(0.007)

4.843
(0.007)

4.841
(0.008)

4.831
(0.007)

4.834
(0.007)

4.835
(0.007)

Optimality gap (C = B−A) 0.094
(0.033)

0.034
(0.022)

0.016
(0.018)

0.014
(0.019)

0.021
(0.016)

0.003
(0.016)

−0.002
(0.015)

0.000
(0.015)

0.004
(0.016)

Gap as percentage of the lower bound
D = (C/A) × 100%

1.985 0.701 0.326 0.283 0.444 0.059 −0.046 0.001 0.076

Outbreak incursion probability λ = 0.15
Optimal trap grid size (km) 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
Lower bound of the true optimal
value, $AU million (A)

6.214
(0.023)

6.280
(0.014)

6.295
(0.010)

6.307
(0.009)

6.303
(0.008)

6.318
(0.007)

6.321
(0.008)

6.317
(0.006)

6.316
(0.005)

Upper bound of the true optimal
value, $AU million (B)

6.332
(0.005)

6.332
(0.005)

6.324
(0.005)

6.326
(0.005)

6.332
(0.005)

6.328
(0.005)

6.330
(0.005)

6.330
(0.005)

6.327
(0.005)

Optimality gap (C = B−A) 0.117
(0.028)

0.051
(0.018)

0.029
(0.015)

0.019
(0.014)

0.029
(0.012)

0.010
(0.012)

0.009
(0.013)

0.013
(0.011)

0.011
(0.010)

Gap as percentage of the lower bound
D = (C/A) × 100%

1.888 0.815 0.464 0.306 0.453 0.158 0.145 0.212 0.173

Outbreak incursion probability λ = 0.40
Optimal trap grid size (km) 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
Lower bound of the true optimal value,
$AU million (A)

13.311
(0.036)

13.379
(0.025)

13.399
(0.019)

13.421
(0.016)

13.405
(0.014)

13.420
(0.012)

13.430
(0.018)

13.410
(0.017)

13.393
(0.012)

Upper bound of the true optimal value,
$AU million (B)

13.418
(0.013)

13.417
(0.013)

13.398
(0.012)

13.403
(0.013)

13.417
(0.013)

13.408
(0.013)

13.412
(0.013)

13.414
(0.013)

13.405
(0.012)

Optimality gap (C = B−A) 0.107
(0.049)

0.038
(0.038)

−0.001
(0.031)

−0.018
(0.029)

0.012
(0.026)

−0.012
(0.025)

−0.017
(0.030)

0.004
(0.030)

0.012
(0.024)

Gap as percentage of the lower bound
D = (C/A) × 100%

0.806 0.282 −0.006 −0.133 0.091 −0.088 −0.129 0.031 0.091

Outbreak incursion probability λ = 0.50
Optimal trap grid size (km) 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
Lower bound of the true optimal value,
$AU million (A)

16.124
(0.042)

16.204
(0.030)

16.225
(0.023)

16.258
(0.020)

16.236
(0.017)

16.254
(0.016)

16.267
(0.022)

16.243
(0.021)

16.221
(0.015)

Upper bound of the true optimal value,
$AU million (B)

16.253
(0.016)

16.251
(0.016)

16.227
(0.015)

16.234
(0.016)

16.251
(0.016)

16.240
(0.016)

16.246
(0.016)

16.248
(0.016)

16.236
(0.015)

Optimality gap (C = B−A) 0.128
(0.059)

0.047
(0.046)

0.002
(0.038)

−0.024
(0.036)

0.015
(0.033)

−0.015
(0.031)

−0.022
(0.038)

0.005
(0.037)

0.015
(0.030)

Gap as percentage of the lower bound
D = (C/A) × 100%

0.794 0.290 0.012 −0.149 0.094 −0.091 −0.133 0.032 0.094

Notes: M = 50; N0 = N0 0 = 33,600; Number of processes = 12. Values in AUD million (2015). Standard errors in parentheses.
Setting the optimal gap aside, all estimates are significant at the 1% level.
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complete prevention, coupled with massive damage
caused by PFF, makes early detection and eradication
indispensable to reduce its potential impact, a shared
context of many bioinvasions.
Our PFF spread model is agent based with parameters

calibrated using a detailed land-use spatial map, histori-
cal outbreak snapshot data and seasonal patterns of
fruit fly spread. Results from our optimal surveillance
model suggest that the current surveillance against PFF
in Queensland, although effective, is below what would
be economically optimal. These results not only have a
direct bearing on Australia, a key agricultural crop
exporting country, but also raise questions on whether
surveillance measures are appropriate in many parts of
the world where fruit flies are a significant threat to hor-
ticultural crops. For example, the potential damage
caused by the Mediterranean fruit fly (Ceratitis capitata)
in the United States is estimated to be roughly $15 bil-
lion alone, if left uncontrolled (Hagen et al. 1981), while
the annual damage from fruit flies is worth millions of
dollars in Africa (National Research Council 1992).

Model applicability, limitations and future research

Because of the challenge in optimizing a problem that
involves uncertainty and spatial dynamics, our research

has at least three limitations that are worth addressing in
future research.
First, to enhance tractability, our model applies only

to bioinvasions that have to be eradicated swiftly so that
the time horizon is finite. A missing feature and an
important future improvement in this work would be to
allow for different response strategies such as limited or
spatial containment. A model framework that considers
such a feature has been proposed but only for a relatively
small-dimensional problem, and either in a deterministic
setting (Epanchin-Niell and Wilen 2012) or one with a
limited range of stochasticity (Chalak et al. 2017). Also,
to enhance tractability, we only consider the cases in
which cells, once infested, remain so until being detected
and removed. We therefore exclude cases in which
infested cells “wink on and off” on their own. With more
computational power, future research could incorporate
more heterogeneity in the policy response as well as a
wider class of bioinvasions to aid decision-making, while
retaining the fundamentally stochastic and spatial-
dynamic nature of the problem.
The second limitation concerns a few of the parameter

values in the empirical models in general. An example is
the detection value that is set as a binary in our applica-
tion. With further information, potentially estimated
from monitoring data, this can be improved.
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Finally, future research should consider enlisting the
“trained eye,” as noted, to spot potentially damaged
fruit, however difficult, as an option to speed up early
detection of PFF and therefore partially mitigate the
damage. At this moment, lack of information on the
costs and benefits of this measure compels us to exclude
this case, and not enlist it as a policy option.
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