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Abstract. Simultaneous modelling of dense and sparse pharmacokinetic data is possible with a population
approach. To determine the number of individuals required to detect the effect of a covariate, simulation-
based power calculation methodologies can be employed. The Monte Carlo Mapped Power method (a
simulation-based power calculation methodology using the likelihood ratio test) was extended in the
current study to perform sample size calculations for mixed pharmacokinetic studies (i.e. both sparse and
dense data collection). A workflow guiding an easy and straightforward pharmacokinetic study design,
considering also the cost-effectiveness of alternative study designs, was used in this analysis. Initially, data
were simulated for a hypothetical drug and then for the anti-malarial drug, dihydroartemisinin. Two
datasets (sampling design A: dense; sampling design B: sparse) were simulated using a pharmacokinetic
model that included a binary covariate effect and subsequently re-estimated using (1) the same model
and (2) a model not including the covariate effect in NONMEM 7.2. Power calculations were performed
for varying numbers of patients with sampling designs A and B. Study designs with statistical power
>80% were selected and further evaluated for cost-effectiveness. The simulation studies of the
hypothetical drug and the anti-malarial drug dihydroartemisinin demonstrated that the simulation-based
power calculation methodology, based on the Monte Carlo Mapped Power method, can be utilised to
evaluate and determine the sample size of mixed (part sparsely and part densely sampled) study designs.
The developed method can contribute to the design of robust and efficient pharmacokinetic studies.

KEY WORDS: mixed pharmacokinetic study designs; Monte Carlo Mapped Power; optimal
pharmacokinetic study design; statistical power calculations.

INTRODUCTION

Population pharmacokinetic analyses can be performed on
datasets consisting of densely, sparsely or a combination of
densely and sparsely sampled data (1). The random variability in
a population pharmacokinetic analysis is explained preferably in
part by physiological covariates (e.g. bodyweight, age, sex and/or
disease status) which are independent of the sampling frame-
work being analysed. However, both the sampling schedule and
the number of individuals studied affect the statistical power for
hypothesis testing of these covariates. A dataset consisting of
mixed sparsely and densely sampled individuals requires a
different sample size for hypothesis testing compared to a study
consisting of solely dense or sparse sampling. Furthermore, the

ratio of sparsely to densely sampled individuals in a combined
study design alters the precision of the parameter estimates. The
impact of (combined) sampling schemes on the statistical power
to detect covariate effects and the precision of the pharmacoki-
netic parameters should therefore be evaluated prospectively
during the design phase of a study. This will ensure that the
design is sufficient to answer the key research questions of the
population pharmacokinetic study. In the current study, the
Monte Carlo Mapped Power calculation method (2) (a simula-
tion-based power calculation methodology using the likelihood
ratio test) was adapted and developed further to enable the
determination of statistical power for varying sample sizes of sparse
only, dense only and mixed sparse/dense sampling study designs.

An example where statistical power calculations for
mixed study designs are commonly required is a pharmaco-
kinetic study nested within a clinical efficacy study. Typically,
these studies include a relatively densely sampled pharmaco-
kinetic study arm, implemented for a descriptive pharmaco-
kinetic analysis, and a larger relatively sparsely sampled
efficacy arm, which may have been implemented to evaluate
the correlation between pharmacokinetic and pharmacody-
namic endpoints. For example, in anti-malarial drug studies,
correlations are sought between measures such as the day 7
concentrations and/or concentrations at the time of the
recrudescent infection and cure rate (e.g. NCT00495508 at
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http://www.clinicaltrials.gov/). Optimal design methods have
been used to ensure that the selected sampling designs are
adequate for the descriptive and quantitative pharmacokinet-
ic (-pharmacodynamic) analyses (i.e. sufficient precision for
parameter estimates) (3–5). However, these types of pharma-
cokinetic studies are rarely designed incorporating the
assumption that hypothesis testing of covariate effects can
be performed using the sparsely and densely sampled study
arms simultaneously. Often no sample size calculations are
performed to detect the covariate effects on the full study
population, yet assessing the two designs together may
change the sample sizes required to detect the covariate
effects. The impact of sampling design and number of
individuals in mixed study designs should therefore be
evaluated prospectively during the design phase of the study
to avoid enrolling too few or too many patients.

Another situation where power calculations for mixed
study designs could be useful is pooling of individual datasets
for a meta-analysis. Power calculations for mixed study
designs can confirm if the sample size available for the
meta-analysis is sufficient to detect a clinically important
effect of the covariate of interest. The calculated statistical
power may highlight the need for inclusion of more studies to
the pooled dataset and thereby save unnecessary work, as
pooled population pharmacokinetic analyses are computa-
tionally intensive.

The aim of this study was to adapt and develop further
the Monte Carlo Mapped Power method to perform statisti-
cal power calculations for mixed (sparsely and densely
sampled) study designs. A workflow which guides an easy
and straightforward pharmacokinetic study design, consider-
ing the cost efficiency of alternative study designs, was
constructed and used during this study.

METHODS

The simulation-based statistical power calculation meth-
odology for mixed pharmacokinetic study designs was
assessed first through a predefined workflow (Fig. 1) on a
hypothetical drug. The impact of different study designs (i.e.
cross-over study design, parallel study design and different
sampling schemes) on the required sample size to detect the
covariate was evaluated. The findings of this simulation study
were used subsequently to design a simulation study based on
the pharmacokinetics of a currently available drug used to
treat malaria. The anti-malarial, dihydroartemisinin, was used
for this case study, and a pharmacokinetic study was designed
to evaluate the effect of the binary covariate, pregnancy, on
its pharmacokinetics.

Pharmacokinetic Models

The pharmacokinetic model used for the hypothetical drug
followed first-order absorption, one-compartment disposition
pharmacokinetics and first-order elimination (Table I) (6). The
model used for the dihydroartemisinin example followed
transit-absorption, one-compartment disposition pharmacoki-
netics, first-order elimination and additional reported literature
covariates (simulated according to the range of the reported
study population) (Table I) (6). A binary covariate on elimina-
tion clearance was implemented in both the hypothetical drug

(30% proportional increase) and the dihydroartemisinin (20%
proportional increase) examples (Table I).

Statistical Power Calculation: Simulation and Estimation
of Datasets

The simulation-based power calculation methodology for
combined pharmacokinetic study designs employed in this
study is based on the Monte Carlo Mapped Power method
(2). First datasets (dense sampling: dataset A; sparse sam-
pling: dataset B) were simulated and re-estimated. For the
hypothetical drug example, a cross-over and parallel study
design was evaluated. For the dihydroartemisinin example,
only a parallel study design was assessed since the covariate
of interest was pregnancy in malaria patients. The number of
individuals in the pseudo-population has to be sufficient in
order to obtain robust results from the statistical power
calculations; for the parallel study design in this study a
pseudo population of 1,000 individuals was simulated with
500 patients displaying and 500 patients not displaying the
binary covariate. For the cross-over design, a single dataset of
500 individuals was simulated displaying the binary covariate
during the first visit and not displaying the binary covariate
during the second visit (Table I, Fig. 1). Simulations were
executed using the population pharmacokinetic model con-
taining the covariate effect of interest, inter-individual
variability and inter-occasion variability, in NONMEM 7.2
(ICON Development Solutions, Ellicott City, MD, USA) on a
Windows 7 operating system (Microsoft Corporation, Seattle,
WA, USA) with a G-Fortran compiler (Free Software
Foundation, Boston, MA, USA).

The blood/plasma sampling protocols (sparse and dense)
were identical for the parallel and cross-over study designs in
the hypothetical drug example (Table I). The sampling
protocol for the hypothetical drug was obtained using PopED
version 2.13 (pharmacometrics research group, Uppsala
University, Sweden, http://poped.sourceforge.net/). This opti-
mal sampling was also used for the sparse design where two
samples per patient were drawn randomly from the selected
sampling protocol (Table I). The sampling protocols for a
dense and sparse study design for the dihydroartemisinin
example were taken from literature (6,7). For patients in the
sparsely sampled arm of the dihydroartemisinin example, a
sample could be drawn at any time within the specified
sampling windows (Table I).

The simulated datasets were re-estimated subsequently
(first-order conditional estimation method with interaction)
using (1) a model including the covariate effect (full model)
and (2) a model not including the covariate effect (reduced
model). Re-estimation of a simulated parallel design was
performed without inter-occasion variability as only one
occasion per individual was available.

Statistical Power Calculations: Bootstrapping of New Design
Combinations

At random, individuals (N) from dataset A and dataset B
were drawn to create new design combinations in terms of
number of patients with dense A (N) and sparse sampling B
(N). This was performed until all possible combinations were
assessed within the set boundaries (i.e. maximum number of
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patients with dense and sparse sampling). The difference in
objective function value (OFV; calculated as minus twice the
natural logarithm of the likelihood of the data) for the newly
created dataset was obtained by deducting the OFV obtained
with the full model from the OFV obtained with the reduced
model. The number of times that the procedure was repeated
for every design combination should be sufficient in order to get

a robust sample size and in this study the procedure was
repeated 10,000 times. The power was expressed as the
percentage out of 10,000 draws that ΔOFV dropped more than
3.84 (p<0.05) (Fig. 1). An R-package was developed
(PharmPow, available on the Comprehensive R Archive
Network (CRAN), http://cran.r-project.org/web/packages/
PharmPow/PharmPow.pdf) and used for these calculations. A

Fig. 1. Visual representation of the applied workflow and power calculation methodology.
Identify literature models: reference models from the literature were collected for the
paradigm drugs; define magnitude of the covariate: the magnitude of covariate effect that
resulted in clinically relevant differences in drug exposure was set; construct covariate
model: a final covariate model to perform the simulations was constructed; identify sampling
schedules: sampling schedules from the literature were identified (dihydroartemisinin
example) or obtained using an optimal design methodology (hypothetical drug example);
simulation-based power calculation: sample size calculation for the selected study designs
and validate study designs: different study designs were assessed for expected parameter
precision and expected cost. A (N) and B (N) in the depicted matrices represent the
number of patients randomly drawn from dataset A (densely sampled patient in this study)
and dataset B (sparsely sampled patients in this study) to create a new study design
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power of 80% in this study was considered to be the threshold,
resulting in a statistically significant covariate in 80% of studies.

Validation of Proposed Study Designs; Expected Parameter
Precision

A selection of potential study designs (with at least 80%
power) was evaluated further to determine the expected
parameter precision. For each selected study design scenario,
1,000 datasets were simulated and re-estimated in order to
obtain the expected relative standard errors on the estimates
of the fixed and random effects, which include the between-
subject, between-occasion and residual variability (Eq. 1).

Expected RSE %ð Þ ¼ 100 � standard error
mean parameter estimate

ð1Þ

Validation of Proposed Study Designs; Financial Figures

The selection of study designs was also evaluated from a
cost effectiveness standpoint (Eq. 2).

Budget ¼ cost hospitalisationð Þ � days Nð Þ þ cost assayð Þ
� samples Nð Þ

ð2Þ

‘Days’ in Eq. 2 represent the sum of the total number of
days that all patients were hospitalised during the study.
‘Samples’ in Eq. 2 represent the total number of samples
analysed during the study.

The hospitalisation cost for patients in the densely
sampled arm was chosen arbitrarily at 1,000 units. The
hospitalisation cost for patients in the sparse sampled arm
was chosen at 750 units to account for reduced enrolment
time and staff costs. The cost of analysing one sample was set
to an arbitrary value of 50 units.

RESULTS

Hypothetical Drug Example

For a cross-over study design, 7 (dense sampling only), 9
(5 assigned to dense sampling/4 assigned to sparse sampling),
10 (3 assigned to dense sampling, 7 assigned to sparse
sampling) or 13 (sparse sampling only) patients were required
to detect a binary covariate (30% proportional increase in
elimination clearance) with at least 80% statistical power
(Fig. 2a, c). For a parallel study design (i.e. 50% of patients
displaying the covariate and 50% of patients not displaying
the covariate), a total of 52 (dense sampling only), 58 (34
assigned to dense sampling, 24 assigned to sparse sampling),
60 (18 assigned to dense sampling, 42 assigned to sparse
sampling) or 66 (sparse sampling only) patients were required
to detect a binary covariate (30% proportional increase in
elimination clearance) with at least 80% power (Fig. 2b, d).

Precision of parameter estimates improved with an in-
creased number of plasma concentrations samples (Table II).
For example, the precision on V and ka was improved by the
inclusion of densely sampled patients compared to a study

Table I. Summary of Simulation Assumptions for the Hypothetical Drug Example and the Dihydroartemisinin Example

Hypothetical drug example Dihydroartemisinin example

Pharmacokinetic model
Fixed effects IIV/IOV† Fixed effects IIV/IOV†

Transit compartments (n) – – 7 –
MTT (h) – – 0.982 0.23†

ka (h−1) 0.8 0.1 – –
F (%) – – 100 (fixed) 0.0881
CL (L/h) 20 0.08/0.02† 78 –
V (L) 70 0.1 129 0.0162
Covariate on CL (%) 30 – 20 –
Residual error 10% (proportional) 0.58 (additive on LN data)

Dataset
Parallel design Cross-over design Parallel design

Sparse sampling times (h) Window 1: 0, 0.5, 1, 1.5,
2, 2.5, 3 or 4

Window 2: 5, 6, 8, 10, 12,
16, 20 or 24

Window 1: 0, 0.5, 1, 1.5, 2,
2.5, 3 or 4

Window 2: 5, 6, 8, 10, 12,
16, 20 or 24

Pregnant window 1: 0.42–0.48,
Window 2: 1.2–3.4, window3:
3.4–4.9 and Window 4: 6.0–8.0
Nonpregnant window1: 0.28–0.48,
Window 2: 0.5–0.95, window3:
2.5–3.7 and Window 4: 5.8–6.6 (7)

Dense sampling times (h) 0, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5,
6, 8, 10, 12, 16, 20 and 24

0, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5,
6, 8, 10, 12, 16, 20 and 24

0, 0.25, 0.5, 1, 2, 3, 4, 6, 8 and
12 (6)

Number of patients 1,000 500 1,000
Financial figures

Parallel design Cross-over design Parallel design
Sparse sample hospital cost (units) 750 1,500 750
Dense sample hospital cost (units) 1,000 2,000 1,000
Price per analyses sample (units) 50 50 50

MTT mean transit time, ka absorption rate constant, F bioavailability, CL elimination clearance, V apparent volume of distribution, IIV inter-
individual variability presented as variance, IOV inter-occasion variability presented as variance
† indicates that the estimate is IOV rather than IIV
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design consisting of solely sparsely sampled patients in both the
parallel and cross-over settings (Table II). Furthermore, preci-
sion on all parameter estimates was better using a parallel study
design compared to a cross-over study design (Table II).

As expected, a cross-over study design is potentially less
expensive to conduct compared to a parallel design since fewer
patients and samples are needed to achieve 80% statistical
power. Sparse sampling study designs are less expensive to
conduct compared to dense sampling study designs in both the
cross-over and parallel studies.

Dihydroartemisinin Example

Using a parallel study design, 88 (dense sampling only), 98
(56 assigned to dense sampling, 42 assigned to sparse sampling),
108 (28 assigned to dense sampling, 80 assigned to sparse
sampling) or 120 (sparse sampling only) patients were required
to detect the pregnancy effect (20% proportional increase in
elimination clearance) with 80% power (Fig. 3a, b).

Between-subject variability on V and the residual error
displayed substantial differences between the different study
designs but values of the relative standard errors did not
reach levels higher than 20% (Table III).

Themore densely sampled patientswere included in the study
design, the more expensive the total study became (Table III).

DISCUSSION

Optimal design methodologies and statistical power
calculations contribute to robust and efficient pharmacoki-
netic study designs. Different power calculation methodolo-
gies can be employed for sample size calculations such as a
simulation-based power calculation method or a power
calculation method based on an analytical solution (i.e.
optimal design approach) (8).

The Wald test (analytical solution using an optimal
design approach) has traditionally been used for sample size
calculations of parallel, cross-over and mixed pharmacokinet-
ic study designs (8,9). However, a simulation-based approach
can also be applied for all of these study designs (10). An
advantage of a simulation-based method, compared to the
Wald test, is that the same statistical methodology is used for
the power calculations as for the actual pharmacometric
analysis of the data (log-likelihood ratio test). A disadvantage
of a simulation-based approach is that it is computationally
intensive, in particular when models and/or study designs
become more complex. The Monte Carlo Mapped Power
method, which is a simulation-based sample size calculation
method, has proven to provide robust and accurate sample
size calculations with substantially reduced computation times
(2). However, the Monte Carlo Mapped Power method has,

a b

c d

Fig. 2. Statistical power for different study designs in a cross-over design (a, c) and a parallel design (b, d) for the
hypothetical drug example using 3-D plots (a, b) and 2-D contour plots (c, d)
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to the best of our knowledge, not yet been applied to mixed
pharmacokinetic study designs. The aim of the current study
was to modify the simulation based Monte Carlo Mapped
Power method, in order to enable sample size calculations for
mixed pharmacokinetic study designs (2). The methodology
was evaluated successfully using a workflow which also
considered the cost efficiency of alternative study designs.

The Monte Carlo Mapped Power method relies heavily
on the number of patients in the pseudo-dataset and the
number of times that each new study design is sampled
randomly from the pseudo-population. Vong and colleagues
compared the Monte Carlo Mapped Power approach to the
traditional computationally intensive stochastic simulation
and re-estimation approach and demonstrated that the Monte
Carlo Mapped Power method was able to provide robust and
accurate power estimates at less than 1% of the run-time of a
stochastic simulation and re-estimation approach (2).

a

b

Fig. 3. Statistical power for different study designs in a parallel design
for the dihydroartemisinin example using a 3-D plot (a) and a 2-D
contour plot (b)
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Dihydroartemisinin Example

The pregnancy effect on dihydroartemisinin elimination
clearance was implemented as a categorical covariate (20%
proportional increase) for simulation purposes. This has a
smaller impact on dihydroartemisinin exposure compared to
the 37.5% decrease in dihydroartemisinin bioavailability
observed previously in a population pharmacokinetic study
of data from 24 pregnant and 24 nonpregnant women with
uncomplicated malaria (6). Thus, the proposed study design
would therefore be sufficient to detect the 37.5% decrease in
dihydroartemisinin bioavailability actually observed in the
clinical setting.

Cross-over vs Parallel Design

The hypothetical drug example indicated that a cross-
over design requires substantially fewer patients and plasma
concentration samples to detect statistically the covariate
effect compared to a parallel study design. However, inter-
occasion variability for the hypothetical drug example was
small (0.02; 14.2% CV) and the sample size in a cross-over
study depends heavily on the magnitude of this variability. A
larger variability would therefore result in larger sample sizes
for cross-over study designs. Furthermore, type I error rates
are inflated for study designs with a small number of patients
and/or sparse sampling (i.e. the sparsely sampled cross-over
study design) (10,11). Sample size calculations for these study
designs should therefore be interpreted with caution as the
increased percentage of false positives can overestimate the
power of a study design.

A cross-over study design requires that the subject is in a
similar state at both study occasions. This is often not feasible
in the clinical setting particularly if there is a significant acute
disease effect. The example of malaria-infected pregnant
patients highlights this; there is a continually changing
physiological state when malaria is treated which confounds
a cross-over comparison. Furthermore, unless there was a
second episode of malaria, there is no ethical justification to
repeat the drug exposure. For the majority of situations, a
parallel comparison will therefore be preferable.

A cross-over study design is potentially less expensive to
conduct compared to a parallel design although this depends
on complete adherence to the cross-over protocol—and both
poor adherence and tracing costs to ensure completion of the
study will add to costs.

Dense vs Sparse Sampling

In both the hypothetical drug examples (cross-over and
parallel study design) and in the dihydroartemisinin case
study, similar or better precisions on all parameter estimates
were obtained using the dense sampling design compared to
the sparse sampling design. Considering the results obtained
with the partly dense and sparse sampling study designs,
parameter precision gets generally better with an increasing
proportion of densely sampled patients and an increasing
number of plasma concentration samples in the study.
Regarding the hypothesis testing of the covariate, there is in
general more to be gained from including more patients with
fewer samples than fewer patients with more samples (10,12).
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However, a too sparse sampling designs (e.g. one sample per
individual) in one of the arms of a mixed pharmacokinetic
study design can result in lower power because of shrinkage
(10). On the other hand, a (partly) densely sampled study
design may be preferred because it allows flexible recruitment
and so is more likely to be executable in certain circum-
stances. Fewer patients are required in a (partly) densely
sampled study design compared to a study design consisting
of solely sparsely sampled individuals. This would be of
particular interest for orphan diseases where the patient
population to recruit from may be small. There is also a
feasibility advantage. In studying acute diseases, it may only
be possible to conduct dense sampling on patients admitted in
the morning, and then only one at a time, so a pragmatic mix
of two sampling strategies may optimise best the opportuni-
ties provided.

The required sample size can change as a result of the
number of included densely sampled patients, total number of
patients, total number of samples and the type of study design
(i.e. cross-over or parallel design). Furthermore, the effect
size (i.e. magnitude of covariate effect) and the distribution of
the covariate within the study population (e.g. 10/90, 20/80,
40/60 or 50/50 distribution for binary covariate in a sample
size of 100 patients) can also affect the sample size. Since this
study focused on sample size calculations for mixed pharma-
cokinetic study designs, the impacts of changes in effect size
and covariate distribution were not evaluated and values
were constant for all evaluated designs.

For certain drugs, optimal sampling schedules for sparse
and dense sampling may not be available. In those cases the
model structure, the parameters that describe the pharmaco-
kinetics of the drug, the magnitude of covariate effects and
the variability parameters should be obtained first from the
literature (Fig. 1). An optimal sampling design with reason-
ably low expected residual errors should then be obtained by
making use of optimal design methodology (e.g. PopED:
h t tp : / / poped . sou r ce fo rge .ne t / o r PFIM: h t tp : / /
www.pfim.biostat.fr/). Subsequently, simulation-based power
calculations can be performed to evaluate the sample sizes for
different study designs consisting of part densely and part
sparsely sampled patients. This process can be iterative until
the outcome is clinically feasible (i.e. the sample size is
acceptable) and expected residual errors on parameter
estimates are acceptable. Combining a power calculation
method with optimal design methods for determining the
sample sizes and sampling schedules can contribute therefore
to a robust and efficient pharmacokinetic study design.

Economic Aspects

Following a clinical feasibility assessment and an evalu-
ation of the expected optimal precision of parameter esti-
mates, the next step is to consider also the financial costs of a
study design. For example, there are no major differences in
the precision of parameter estimates for dihydroartemisinin
pharmacokinetics between the four proposed study designs,
but the study costs vary tremendously.

The difference in study costs in the hypothetical drug
example and the selected dihydroartemisinin example is
mainly due to the number of samples to be analysed. There
is only a small difference in hospitalisation costs as all samples

were drawn on the same day (1,000 units for a dense sample
study design and 750 units for a sparse sampled study design).
However, the hospitalisation costs would have a larger
influence on pharmacokinetic study costs when assessing
drugs with a long elimination half-life where multiple hospital
visits are required for a dense study design compared to fewer
hospital visits for a sparse study design.

An alternative approach to compute the overall precision
of a model and a certain design is to use the D-criterion
(normalised determinant of the observed Fisher information
matrix) (13). This enables a comparison of a single measure-
ment value of model precision (D-criterion), from different
study designs, to the costs for these designs. However, the
applied approach in this research enables the possibility of
weighting certain parameters of interest (e.g. elimination
clearance in case one is less interested in, for example, the
absorption phase).

Performing the power calculations and the evaluation of
the financial costs of the different study designs can be
computationally intensive when complex models and large
sample sizes are being evaluated. Nevertheless, the potential
cost savings and prevention of doing an under-powered study,
by using the studied simulation-based power calculations
method, are worth the computational time and cost.

CONCLUSION

The simulation-based power calculation methodology,
based on the Monte Carlo Mapped Power method, enables
the successful evaluation of mixed (part sparsely and part
densely sampled) study designs. A workflow which guides an
easy and straightforward pharmacokinetic study design con-
sidering the cost-efficacy of the study was effectively used.
This shows that prior knowledge and the evaluated sample
size calculation method can contribute significantly the design
of a robust and efficient pharmacokinetic study design.

Open Access This article is distributed under the terms
of the Creative Commons Attribution License which permits
any use, distribution, and reproduction in any medium,
provided the original author(s) and the source are credited.
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