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ABSTRACT The long-term response of microbial communities to the microgravity
environment of space is not yet fully understood. Of special interest is the possibility
that members of these communities may acquire antibiotic resistance. In this study,
Escherichia coli cells were grown under low-shear modeled microgravity (LSMMG)
conditions for over 1,000 generations (1000G) using chloramphenicol treatment be-
tween cycles to prevent contamination. The results were compared with data from
an earlier control study done under identical conditions using steam sterilization be-
tween cycles rather than chloramphenicol. The sensitivity of the final 1000G-adapted
strain to a variety of antibiotics was determined using Vitek analysis. In addition to
resistance to chloramphenicol, the adapted strain acquired resistance to cefalotin,
cefuroxime, cefuroxime axetil, cefoxitin, and tetracycline. In fact, the resistance to
chloramphenicol and cefalotin persisted for over 110 generations despite the re-
moval of both LSMMG conditions and trace antibiotic exposure. Genome sequencing
of the adapted strain revealed 22 major changes, including 3 transposon-mediated
rearrangements (TMRs). Two TMRs disrupted coding genes (involved in bacterial ad-
hesion), while the third resulted in the deletion of an entire segment (14,314 bp) of
the genome, which includes 14 genes involved with motility and chemotaxis. These
results are in stark contrast with data from our earlier control study in which cells
grown under the identical conditions without antibiotic exposure never acquired an-
tibiotic resistance. Overall, LSMMG does not appear to alter the antibiotic stress re-
sistance seen in microbial ecosystems not exposed to microgravity.

IMPORTANCE Stress factors experienced during space include microgravity, sleep
deprivation, radiation, isolation, and microbial contamination, all of which can
promote immune suppression (1, 2). Under these conditions, the risk of infection
from opportunistic pathogens increases significantly, particularly during long-
term missions (3). If infection occurs, it is important that the infectious agent
should not be antibiotic resistant. Minimizing the occurrence of antibiotic resis-
tance is, therefore, highly desirable. To facilitate this, it is important to better un-
derstand the long-term response of bacteria to the microgravity environment.
This study demonstrated that the use of antibiotics as a preventive measure
could be counterproductive and would likely result in persistent resistance to
that antibiotic. In addition, unintended resistance to other antimicrobials might
also occur as well as permanent genome changes that might have other unantic-
ipated and undesirable consequences.
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The idea of long-term human space flight has gained increasing traction (4–6). The
planned durations for missions range from around a month for lunar missions to 1

year on the International Space Station to 30 months on Mars (Design Reference
Mission) (7, 8). Efforts to understand possible negative effects of the space environment
on human physiology and immune function have been a high priority (3, 6, 9, 10). In
particular, spaceflight may render astronauts increasingly prone to bacterial and viral
infections (11–15). This, in turn, raises the issue of how the microorganisms themselves
respond to the space environment.

Previous reports on the effects of microgravity or spaceflight on physiological
properties such as biofilm formation, bacterial motility, acid stress resistance (AST),
virulence, and antibiotic resistance (AR) have shown mixed results which vary from one
organism to another (16–22). These include studies done on diverse organisms, includ-
ing the pathogens Pseudomonas aeruginosa (23, 24), Salmonella enterica serovar Typhi-
murium (25), Streptococcus mutans (26), Yersinia pestis (21, 27), the yeast Candida
albicans (28), Serratia marcescens (18), Enterobacter cloacae (18), Enterococcus faecalis
(29), pathogenic Escherichia coli (30–32), nonpathogenic E. coli (33–38), and microbial
isolates (opportunistic pathogens P. fluorescens, Stenotrophomonas maltophilia, and
Chryseobacterium spp.) from water systems of the Mir Space Station (39, 40) or from the
International Space Station (ISS) (Enterobacter bugandensis and staphylococcal and
enterococcal strains) (41, 42) or on the space station MIR (31).

Acquisition of antibiotic resistance (AR) and its implications for human health are
significant concerns from clinical and evolutionary perspectives (32, 43–47). AR studies
performed under simulated microgravity and spaceflight conditions have yielded
contrasting results. An E. coli strain sent into space onboard the Shenzhou-VIII space-
craft for 17 days showed increased AR (48). Microbial isolates, including staphylococcal
and enterococcal strains (such as Enterobacter bugandensis) from the International
Space Station (ISS), showed AR (41, 42). Spaceflight (33) and LSMMG (34, 49) enhanced
antibiotic stress tolerance in E. coli. In a manned flight experiment, Staphylococcus
aureus and E. coli exhibited enhanced antimicrobial resistance relative to ground
controls (50). A study on Staphylococcus epidermidis cells flown aboard the ISS and
compared to matched ground controls showed that the frequency of mutation to
rifampin resistance (Rifi) was significantly greater in the spaceflight samples (51). A
similar study on Bacillus subtilis revealed significant differences in the spectrum of
mutations in the stress response gene rpoB, leading to Rifi differences between flight
and ground control samples (52). In another example, spaceflight enhanced the
production of the metabolite monorden (radicicol) by the fungus Humicola fuscoatra
WC5157 (53). LSMMG conditions enhanced resistance to gentamicin in stationary-
phase uropathogenic E. coli (UPEC) (54) and upregulated antibiotic stress resistance in
nonpathogenic E. coli (38). In contrast, studies on Staphylococcus haemolyticus (41) and
on four other species of bacteria subjected to long-term exposure to microgravity for
4 months on the Space Station MIR showed increased bacterial susceptibility to anti-
biotics (31). In other studies, LSMMG did not affect antibiotic tolerance in E. coli (35, 36)
or Y. pestis (21). With such contrasting observations, no clear consensus exists with
respect to the effects of microgravity/space conditions on microbial antibiotic resis-
tance properties. In the light of plans for future manned space missions, understanding
and evaluating the response of microbial strains to antibiotics thus represent vital
challenges.

In an earlier study, E. coli was grown under LSMMG conditions for over 1,000
generations spread over 6 months (35). These cells acquired an adaptive advantage, a
portion of which was genomic and as a result was maintained when the strain was
returned to a shake flask environment for 30 generations (3 cycles). Sensitivity to 20
antibiotics was evaluated by the antibiotic susceptibility testing (AST) feature (which
uses prefabricated AST antibiotic cards) of the Vitek automated system studies. The
strain failed to acquire resistance to any of the 20 antibiotics monitored by the Vitek
system throughout the adaptation period (35). That earlier result serves as the key
control for the current study. Here, the same strain of E. coli was again grown for over
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1,000 generations under LSMMG conditions. The only difference was the use of
chloramphenicol treatment rather than steam sterilization to prevent contamination
between growth cycles.

RESULTS

Since the E. coli MG1655 lac plus strain did not possess any natural growth
advantage over the lac minus strain under LSMMG conditions (35), the lac plus strain
was grown for over 1,000 generations in high-aspect-ratio vessels (HARVs) cleaned by
exposure to chloramphenicol and was stored. The resulting 1,000-generation
chloramphenicol-exposed strain (designated 1000G-BA [1,000-generations/background
levels of antibiotic]) was reactivated by 3 cycles (1 cycle refers to 10 generations, with
20 min for each generation) of growth under LSMMG conditions. The reactivated strain
outcompeted the unadapted lac minus strain when they were grown together under
LSMMG conditions in Luria broth (LB) medium with a lac plus/lac minus ratio of 2.71 �

1.25, whereas the original unadapted lac plus/lac minus ratio was 1:1, as reported
earlier (35). When the 1000G-BA lac plus strain was first grown under shaker conditions
over 1 cycle and then subjected to competition with the lac minus strain under LSMMG
conditions, the lac plus/lac minus ratio decreased to 2.02 � 0.46 (see Table S1 in the
supplemental material).

Statistical analysis was performed to analyze differences in variance (if any). The data
set from the competition between the 1000G-BA strain and the unadapted lac minus
strain showed a variance value of 1.56, while the competition between the 1000G-BA
strain grown under shake flask conditions for 10 generations (adaptation/memory
“erasure”) and the unadapted lac minus strain showed a variance value of 0.21 (see
Table S1). Given the differences in variance values between the two data sets, we
performed the t test, assuming unequal variances for the same. Despite the unequal
variances, comparisons of the t test results between these two data sets showed that
the two-tailed and one-tailed P values (0.03 and 0.02, respectively) were only slightly
below the statistically significant threshold value of 0.05. Thus, the LSMMG adaptation
of the 1000G-BA plus strain despite 10 generations of adaptation/memory erasure on
shaker flasks was only partially lost (see Table S2).

Antibiotic susceptibility. Vitek studies on the 1000G-BA strain showed that resis-
tance to the antibiotics cefalotin, cefuroxime, cefuroxime axetil, cefoxitin, and tetracy-
cline had been acquired (Fig. 1; see also Table S3). The cells did, however, remain
sensitive to ampicillin, amoxicillin-clavulanic acid, cefazolin, cefpodoxime, ceftazidime,
ceftriaxone, cefepime, gentamicin, tobramycin, ciprofloxacin, levofloxacin, nitrofuran-
toin, and trimethoprim-sulfamethoxazole (see Fig. 3; see also Table S3). Following Vitek
analysis, the 1000G-BA cells were grown in shaker flasks without any further antibiotic
exposure for 11 cycles. Resistance to several of the antibiotics continued. In particular,
the cephalosporin antibiotic cefalotin (55, 56) tested positive for resistance even after
11 cycles in shaker flasks without any antibiotic exposure (Fig. 1 and 2) (see also
Table S3). It took 5 cycles of adaptation erasure to lose the resistance to the cephamycin
antibiotic cefoxitin (57) and the broad-spectrum antibiotic tetracycline (58, 59) (see
Table S3 and Fig. S1 in the supplemental material). The resistance of the 1000G-BA
strain to the second-generation cephalosporins, namely, cefuroxime (60) and cefu-
roxime axetil (61), was lost after 20 generations of adaptation erasure (see Table S3 and
Fig. S1).

Because the Vitek system does not include chloramphenicol in the test panel,
separate studies for this antibiotic were undertaken. The initial lac plus (wild-type [WT])
strain served as a control. It was not resistant, whereas the final adapted 1000-BAstrain
was (data not shown). When the 1000G-BA cells were grown in shake flasks in the
absence of chloramphenicol, the resistance persisted for over 100 generations.

Genome resequencing. The genome of the 1000G-BA strain was resequenced to
identity changes, if any, acquired as a result of 1,000 generations of growth under
conditions of LSMMG and background antibiotic (chloramphenicol) exposure. A total of
17,801,713 reads were obtained with even coverage, showing a normal distribution of
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read depths. Overall, 22 major changes were seen (Table 1). The changes included 14
point mutations. Eight of these occurred within (intragenic) coding regions (i.e., genes).
Seven of these intragenic mutations were nonsynonymous mutations, occurring in
genes involved in antibiotic resistance/drug transport (acrB, marR, mdfA/cmr), cell
adhesion (fimE), transcription (rpoC), and general metabolism (treB and chbF). The single
synonymous point mutation occurred in the yadL gene, which is involved in adhesion.
In addition, two base changes were within pseudogenes, one of which is in the
pseudogene of lafU (mbhA) (pseudogene of a flagellar system gene, motility). The
remaining four point mutations occurred between genes (intergenic). Two of these
were between genes involved in drug transport (acrA ¢/¡ acrR and ybjG ¢/¡ mdfA),
one was between genes involved in adhesion (fimE ¡/¡ fimA), and one was between
genes involved in general metabolite transport across membrane (gltS ¢/¡ xanP). In
three cases, acrA ¢/¡ acrR, ybjG ¢/¡ mdfA, and gltS ¢/¡ xanP, the change was
clearly within the promoter region(s). In another instance, fimE ¡/¡ fimA, the mutation
occurred 3 bases upstream of the ATG start codon of the fimA gene (Table 1).

Base insertions and deletions. Among the remaining eight changes, one was a
base insertion found in a pseudogene (ylbE). glpR (involved in transcriptional regula-
tion) showed a single base deletion, while ompF (antibiotic/drug resistance) underwent
a significant Δ203-bp deletion (Table 1).

The remaining five changes represented transposon-mediated rearrangements
(TMRs) associated with the IS1, IS5, and IS30 insertion sequences. Two of the TMRs were
intergenic, mediated by IS5 and IS30. These occurred between genes involved in
drug/peptide transport. The IS30 insertion occurred at a position very close to (8 bp
away from) the PhosP regulator binding region and thus might affect the transcription
of the downstream ybjG gene (Table 1; see also Fig. S2).

The remaining three TMRs were mediated by IS1. Two of these completely disrupted
the crl (adhesion) and yeaJ (motility) genes. The third TMR associated with IS1 deleted

FIG 1 Resistance of the E. coli 1000G-BA strain to five antibiotics compared with that of the E. coli lac
plus (WT) strain and the E. coli 1000G-BA strain exposed to nonantibiotic conditions over 110 generations
(110E � 11 cycles) in shaker flasks.
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an entire segment of 14,314 bases. This included genes comprising the cluster of genes,
viz., flhA flhB (flagellar biosynthesis) cheZ cheY cheB cheR tap tar cheW cheA (chemotaxis)
motB motA (flagellar motor complex) flhC flhD (flagellar complex) (Table 1).

DISCUSSION

The results obtained in the current study are directly comparable to those obtained
in the earlier control study (35) in which steam sterilization was used to prevent
contamination between growth cycles. Genome resequencing experiments identified
25 changes in the current study, which is in contrast with the 17 changes seen when
steam sterilization was used (35). With but one exception, none of the changes
observed earlier were found again when chloramphenicol was used for sterilization. In
addition, none of those earlier changes were strongly associated with AR. When
chloramphenicol was used for sterilization, competition experiments revealed that the
long-term 1000-BA strain lost only 25% of its advantage, thereby indicating that a
significant portion of the adaptation was genomic.

In this study, genomic changes occurred in multiple genes known to be associated
with AR. In particular, four of the genomic changes in the 1000G-BA strain occurred in
key drug transport or AR genes, namely, ompF, acrB, marR, and mdfA. Both ompF and
acrB (as part of the acrAB MDR efflux pump gene system) are controlled by the marRAB
operon in response to tetracycline, chloramphenicol, and sodium salicylate stress
(62–66). The marRAB operon encodes the autorepressor MarR (67) and the autoactiva-
tor MarA (68).

Mutations in such genes were anticipated given the fact that the 1000G-BA strain
had acquired resistance to chloramphenicol in addition to resistance to other antibi-
otics. However, in general, one cannot deduce the effects of individual gene changes
with certainty from sequence data alone. Simply put, in the absence of experimental
verification, any such individual change might in fact be neutral or accidental. However,
the finding that the strain itself has become chloramphenicol resistant and that many

FIG 2 Persistence of antibiotic resistance of the E. coli 1000G-BA strain to the antibiotic cefalotin despite
exposure to nonantibiotic conditions over 110 generations (110E � 11 cycles) in shaker flasks.
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genomic changes are in regions associated with such resistance makes it very likely that
many of these changes are actually associated with the acquisition of resistance.

The ompF gene represents a clear, unambiguous link between the acquired AR and
the sequencing data. In this case, a 1,089-bp section had been deleted such that this
gene was clearly dysfunctional. OmpF is a major transmembrane channel porin regu-
lating the permeability of the Gram-negative bacterial outer membranes and influenc-
ing AR (69–77). E. coli and Serratia marcescens lacking ompF were shown to be resistant
to certain beta-lactam compounds (78–81). Deletion of ompF has also been shown to
reduce the permeativity of the cephamycin antibiotic cefoxitin (82, 83). In addition,
there is a significant increase in antibiotic MIC values for beta-lactam drugs such as
ampicillin and nitrofurantoin (besides cefoxitin) (79, 84). The resistance of the 1000G-BA
strain to cefoxitin, while retaining sensitivity to ampicillin and nitrofurantoin (Fig. 1 and
3) (see also Table S3 in the supplemental material), suggests an alternate pathway for
ampicillin and nitrofurantoin entering the cells.

Mutations in three other genes, acrB, marR, and mdfA, resulted in amino acid
changes; those three genes are either directly implicated in AR or are in functional
domains with established roles in resistance properties (85–96). Furthermore, bacterial
exposure to low levels of antibiotics often results in resistance causing mutations in

TABLE 1 Mutations found in E. coli MG1655 (lac plus) after 1,000 generations of growth under LSMMG conditions with background
exposure to chloramphenicola

Position Type of change Mutation type(s) Annotation Gene(s) Usual product

151656 T¡G Base change A192A (GCA¡GCC) yadL ¢ Predicted fimbrial-like adhesin protein
483212 A¡G Base change V139A (GTT¡GCT) acrB ¢ Multidrug efflux system protein
883682 C¡T Base change P263S (CCT¡TCT) mdfA ¡ Multidrug efflux system protein
4187022 C¡G Base change P1217R (CCG¡CGG) rpoC ¡ RNA polymerase, beta prime subunit
4463866 A¡T Base change V113E (GTG¡GAG) treB ¢ Fused trehalose(maltose)-specific PTS enzyme:

IIB component/IIC component
4540294 G¡A Base change E79K (GAG¡AAG) fimE ¡ Tyrosine recombinase/inversion of on/off regulator

of fimA
1617535 A¡T Base change E131V (GAA¡GTA) marR ¡ DNA-binding transcriptional repressor of multiple

antibiotic resistance
1816409 A¡C Base change V39G (GTG¡GGG) chbF ¢ Phosphochitobiase; general 6-phospho-beta-glucosidase

activity
250390 A¡G Base change Pseudogene

(319/756 nt)
lafU ¡ Pseudogene, lateral flagellar motor protein fragment

547694 A¡G Base change Pseudogene
(114/252 nt)

ylbE ¡ Predicted protein, C-ter fragment (pseudogene)

547835 �G Base insertion/
addition

Pseudogene
(4/1,008 nt)

ylbE ¡ Predicted protein, C-ter fragment (pseudogene)

484938 A¡G Base change Intergenic (95/47) acrA ¢ / ¡ acrR Multidrug efflux system/DNA-binding transcriptional
repressor

882870 G¡A Base change Intergenic (259/26) ybjG ¢ / ¡ mdfA Undecaprenyl pyrophosphate phosphatase/multidrug
efflux system protein

3826853 T¡C Base change Intergenic (165/115) gltS ¢ / ¡ xanP Glutamate transporter/xanthine permease
4541135 A¡C Base change Intergenic (�479/3) fimE ¡ / ¡ fimA Tyrosine recombinase/inversion of on/off regulator of

fimA/major type 1 subunit fimbrin (pilin)
986125 Δ203 bp Base deletion(s) Coding ompF ¢ Outer membrane porin
3558478 Δ1 bp Base deletion Coding (151/759 nt) glpR ¢ DNA-binding transcriptional repressor
257900 IS1 (–) � 8 bp TMR Coding (7279/402 nt) crl ¡ Sigma factor-binding protein (stimulates RNA

polymerase holoenzyme formation)
882777 IS30 (�) � 2 bp TMR Intergenic (166/118) ybjG ¢ / ¡ mdfA Undecaprenyl pyrophosphate phosphatase/multidrug

efflux system protein
1298718 IS5 (�) � 4 bp TMR Intergenic (�250/485) ychE ¡ / ¡ oppA Predicted inner membrane protein/oligopeptide

transporter subunit
1871055 IS1 (–) � 9 bp TMR Coding (991999/

1,491 nt)
yeaJ ¡ Predicted diguanylate cyclase

1962213 Δ14,314 bp TMR IS1 mediated (flhAB cheZYBR tap
tarc cheWA
motBA flhCD) ¢

Chemotaxis, flagellum, motility proteins

a¢, gene orientation on reverse strand; ¡, gene orientation on positive strand; ¢/¡, intergenic; Δ, deletion; C-ter, C-terminal; IS, insertion sequence; PTS,
phosphotransferase system; TMR, transposon-mediated rearrangement.
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genes not previously regarded as typical resistance genes. Such exposure to low-level
antibiotics also leads to mutations in genes which are typically not affected under
conditions of exposure to high doses (97). Similar changes in the 1000G-BA strain are
detailed in Table 2 and illustrated in Fig. 4.

An important issue is whether LSMMG exposure significantly enhances AR adapta-
tion rates to a greater extent than has been observed in other environments. Sustained
exposure to low concentrations of antibiotics in non-LSMMG environments is known to
result in the development of resistance to antibiotic at levels that are severalfold higher
than the initial level to which the bacteria were exposed (97). For clinically important
antibiotics (and nonantibiotic antimicrobials), concentrations that were several-
hundred-fold below the MIC of susceptible bacteria not only enriched the numbers of
resistant bacteria (98–100) but also resulted in cross-resistance across several classes of
antibiotics (101–104). For example, exposure of E. coli to low concentrations of broad-
spectrum antibiotics (tetracycline or chloramphenicol) resulted in an increased fre-
quency of fluoroquinolone-resistant chromosomal multiple-antibiotic-resistant (Mar)
mutants that was higher than that seen when E. coli was exposed to the fluoroquin-
olone norfloxacin directly (77).

Chloramphenicol exposure of E. coli MG1655 under LSMMG conditions resulted in
similar cross-resistance to 5 antibiotics in our study (Fig. 1; see also Table S3). Despite
11 cycles of antibiotic adaptation erasure (under conditions of exposure to nonmicro-
gravity [non-LSMMG] and nonantibiotic conditions in shaker flasks), the 1000G-BA
strain continued to demonstrate resistance to cefalotin (Fig. 2; see also Table S3). In fact,
it required 5 cycles of adaptation erasure to lose resistance to cefoxitin and tetracycline
(see Table S3 and Fig. S1 in the supplemental material). Overall, our findings strongly
suggest that the responses observed in the LSMMG environment are very similar to
those observed in non-LSMMG environments. Exposure to background levels of an
antibiotic could lead to acquisition of resistance under microgravity conditions as well.

Ideally, growth in HARVs would be undertaken with horizontal rather than vertical
rotation.as a control in which LSMMG is eliminated. As was the case earlier (35), this
non-LSMMG/nonantibiotic control is not available, a constraint resulting from HARV

FIG 3 Nonresistance/susceptibility of the E. coli 1000G-BA strain to thirteen antibiotics, compared with that of the E. coli lac plus (WT) strain and
the E. coli 1000G-BA strain exposed to nonantibiotic conditions over 110 generations (110E � 11 cycles) in shaker flasks. Data are presented in
two columns for convenience of viewing.
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availability. In lieu of this control, the unadapted lac plus strain was used as the control
for comparisons of sequencing results, and the unadapted lac minus strain was used for
the competition assay. Despite the absence of a 1000G non-LSMMG/nonantibiotic
control, the antibiotic resistance of the adapted strain (1000G-BA) and its dominance
over the unadapted lac minus strain under LSMMG conditions are indicators of the
combined effects of the antibiotic and the LSMMG.

The retention of AR as observed in the 1000G-BA strain suggests that similar
persistence of microbial AR could also occur in other microorganisms. This is of
particular concern with respect to the use of antibiotics as cleaning agents to reduce

TABLE 2 Description of mutations and their context in the genome of the E. coli 1000G-BA strain

Gene(s)/genomic
location & function Description or known function(s) Effects of mutations (if any)

yadL ¢ (intragenic) Adhesion and tissue tropism in E. coli (115, 116) Unknown
acrB ¢(intragenic) Antibiotic/drug efflux (86, 117–120) V139A is involved in tetracycline resistance in E. coli (81) and in

substrate binding and carbapenem resistance (85)
acrA ¢ / ¡ acrR

(intergenic)
acrR regulates efflux (acrAB) pump operon,

solvent tolerance (121), motility, flagellar and
biofilm/pellicle formation, and pathogenesis
(122, 123)

Mutation is in the promoter “acrRp,” upstream of acrR; mutation
effect unknown

mdfA ¡ (intragenic) Multidrug resistance, active exclusion of
chloramphenicol (95, 96, 124, 125)

P263S; changes nonreactive proline to serine, is often found in
protein functional centers, occurs in a transmembrane domain
(125, 126), and is a new mutation and an addition to mdfA
mutations as a response(s) to antibiotic stress

ybjG ¢ / ¡ mdfA
(intergenic)

ybjG—bacitracin resistance (127, 128); mdfA—
multidrug resistance (85–88)

Mutation is in the promoter “cmrp,” updstream of mdfA; effect
unknown; IS30 insertion occurs only 8 bp away from a (PhosP)
regulator binding region of ybjG.; the 3 changes (on mdfA and
its promoter cmrp and in its immediate neighborhood) are
additions to changes related to mdfA in response to antibiotic
exposure

rpoC ¡ (intragenic) Encodes the RNA polymerase subunit �’;
categorized as an essential gene for
E. coli (129)

Unknown

treB ¢ (intragenic) Encodes trehalose-specific PTS enzyme IIBC,
linked with biofilms in E. coli (130)

Unknown

gltS ¢ / ¡ xanP
(intergenic)

Flanking genes encode metabolite transport
proteins

Mutation is in the promoter “xanPp5” upstream of xanP

fimE ¡ (intragenic) fimE regulates adhesion protein coding gene fimA Unknown
fimE ¡ / ¡ fimA

(intergenic)
Flanking genes encode metabolite transport proteins Mutation is in the 3rd base upstream of the start codon “ATG”

of the fimA gene
marR ¡ (intragenic) Multidrug resistance (81) E131V is in the DNA-binding domain involved in organic

solvent tolerance (88) regulating
a global network of 80 genes (89–91, 131);
fluoroquinolone resistance (92–94) in clinically
relevant E. coli strains

ompF ¢ (intragenic) Encodes outer membrane porin involved in
antibiotic resistance (78, 132, 133), acid stress
response (ASR) (72, 134)

Dysfunctional ompF likely causes increased antibiotic
resistance of 1000-BA

crl ¡ (intragenic
TMR)

Highly conserved in Gram-negative bacteria;
encodes the thin, coiled aggregative surface
filaments called curli (curli mediate adhesion [135–138]
and wound colonization and interaction with
the immune system [138, 139] and influence stress
responses, quorum sensing [140], and biofilms
[141] and resistance to gentamicin [54] and
control ASR genes [142, 143])

Loss of the crl gene potentially results in a fitness cost
of antibiotic resistance in 1000-BA

yeaJ ¡ (intragenic
TMR)

Encodes a diguanylate cyclase and regulates
swimming motility and biofilm formation
(144–146)

Loss of the yeaJ gene potentially results in a
potential fitness cost of antibiotic resistance in 1000-BA

(flhAB cheZYBR tap
tar cheWA motBA
flhCD) ¢
(inter- and
intragenic TMR)

14-gene cluster, central to chemotaxis and biofilm
formation (144, 147); cheR, cheW (chemotaxis),
and motA (motility) are considered essential for
E. coli (129)

Loss of gene cluster potentially results in a fitness cost of
antibiotic resistance in 1000-BA
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the bioburden of microbes in the confined spaces of manned space flight missions. This
is most likely to happen independently of the microgravity component. An overall
scheme representing how a combination of various genome changes resulted in AR is
shown in Fig. 4.

Space and microgravity represent a unique environment. Microorganisms can sur-
vive even the combination of disintegration of the space craft, heat of reentry, and
impact (105). Given their resilience, understanding how bacteria evolve and adapt over
the long term to space conditions is even more important now with the imminent
increase in human space exploration (105). Long-term evolution studies performed on
the Space Station, in low Earth orbit projects (54), or through CUBESAT and related
projects (106–109) are critical to understanding how the spaceflight environment may
influence microbial dynamics within the spacecraft with respect to antibiotics and other
biocidal agents. This study was restricted to just one Gram-negative nonpathogenic
strain, namely, E. coli MG1655. Such long-term studies further exploring AR of a
human’s (the astronaut’s) gut microbiome, of which enterobacteria (such as E. coli)
(110) as well as Gram-positive organisms are major components, are of utmost impor-
tance.

MATERIALS AND METHODS
Bacterial strains. An isogenic pair of E. coli strains was used. One was a lac minus strain derived from

MG1655 (in which the entire lac operon was deleted) and the other a lac plus strain (MG1655; CGSC 6300)
(111). Both strains were obtained from the E. coli Genetic Stock Center at Yale University (112). The two
strains are distinguishable on MacConkey agar media, with the lac plus strain producing red/pink
colonies and the lac minus strain producing white colonies (113). The growth and maintenance

FIG 4 Putative mechanisms, viz., genomic changes contributing to or representing the consequences of the antibiotic resistance of the E. coli 1000G-BA
strain.
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conditions used were as described previously (35). In the work described here, the lac plus strain is
referred to as the wild-type (WT) strain (see Table S5 in the supplemental material).

Preparation of HARVs. To obtain background antibiotic exposure, HARVs were assembled and each
chamber was filled with a saturated solution of the broad-spectrum antibiotic chloramphenicol (Am-
resco; USP grade) (500 to 600 mg/ml) in a UV hood and then left to rotate for approximately 2 h. The
HARVs were then emptied and repeatedly rinsed with sterile water to remove all traces of the antibiotic
and then used for growth. These HARVs are designated HARV-BA.

Extended growth. Two HARV-BAs were used. While one was in use, the other was dismantled and
prepared for reuse. The E. coli MG1655 lac plus strain (WT) strain was inoculated into a HARV-BA in 50 ml
of LB medium at 37°C, followed by successive transfers into fresh HARV-BAs such that growth reached
1,000 generations. A 500-�l volume of the resulting E. coli MG1655 lac plus strain was added to 500 �l
of 50% glycerol in a 2 ml screw top tube, mixed, and stored at minus 70°C as glycerol stocks. This is
referred to here as the 1000G-BA strain.

Competition growth studies. The 1000G-BA strain was reactivated by growth in HARV-BAs and then
coinoculated in LB medium in a HARV-BA with an equal amount of the lac minus strain (grown in LB
medium in a flask at 37°C overnight). At growth saturation, the ratio of the 1000G-BA strain (producing
pink colonies) to the lac minus strain (white colonies) was determined as described earlier (35).

Adaptation erasure experiment. The 1000G-BA-adapted strain and the unadapted lac minus strain
were grown in LB medium in two separate flasks without any antibiotic under rotary conditions at 37°C
overnight as described previously (35). The 1000G-BA strain grown in the absence of chloramphenicol for
10E � 1 cycle (10 generations) was (i) streaked on MacConkey agar plates, (ii) coinoculated with the
unadapted lac minus strain under LSMMG conditions at 37°C, and (iii) subcultured into flasks without any
antibiotic(s) over several cycles to generate a total of 11 cycles of adaptation erasure (11E � 110
generations of adaptation erasure), with streaking on plates performed after each cycle. This competition
assay was analyzed by calculating the ratio of the lac plus strain to the lac minus strain. Antibiotic
sensitivity assays were performed using a Vitek 2 Compact instrument and Vitek 2 PC software
(bioMérieux, Inc., Hazelwood, MO) as described earlier (35). Vitek (AST) cards containing selected
antimicrobials at various concentrations were used. The antibiotics included ampicillin (2 �g/ml to
32 �g/ml), amoxicillin/clavulanic acid (1 �g/ml to 16 �g/ml), cefalotin (2 �g/ml to 64 �g/ml), cefazolin
(4 �g/ml to 64 �g/ml), cefuroxime (1 �g/ml to 64 �g/ml), cefuroxime axetil (1 �g/ml to 64 �g/ml),
cefoxitin (4 �g/ml to 64 �g/ml), cefpodoxime (0.25 �g/ml to 8 �g/ml), ceftazidime (1 �g/ml to 64 �g/ml),
ceftriaxone (1 �g/ml to 64 �g/ml), cefepime (1 �g/ml to 64 �g/ml), gentamicin (1 �g/ml to 16 �g/
ml), tobramycin (1 �g/ml to 16 �g/ml), ciprofloxacin (0.25 �g/ml to 4 �g/ml), levofloxacin (0.2 �g/ml to
8 �g/ml), tetracycline (1 �g/ml to 16 �g/ml), nitrofurantoin (16 �g/ml to 64 �g/ml), and trimethoprim-
sulfamethoxazole (20 �g/ml to 320 �g/ml).

Chloramphenicol resistance/susceptibility testing. LB medium (pH adjusted to 7 with NaOH) to
which (1.5%) agar was added was prepared, melted, and then autoclaved. The autoclaved LB agar
medium was cooled under sterile conditions, chloramphenicol was added to reach a final concentration
of 100 �g/ml, and then mixing was performed. The LB agar-chloramphenicol medium was poured onto
petri dish plates at 20 ml per plate. E. coli cultures were spread on these plates and incubated at 37°C
overnight. Growth was observed visually.

Genome sequencing. The genome of the 1000G-BA strain was sequenced as described previously
(35) and compared with the genome of the lac plus WT strain to identify genomic changes. The promoter
sequences were identified using the database RegulonDB (114).

Data availability. The genome data set is available as follows: BioProject accession identifier (ID)
PRJNA498488 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA498488); https://www.ncbi.nlm.nih.gov/
biosample/10290157.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.02637-18.
FIG S1, TIF file, 0.01 MB.
FIG S2, TIF file, 0.03 MB.
TABLE S1, PDF file, 0.03 MB.
TABLE S2, PDF file, 0.03 MB.
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