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Abstract: Pyrazinamide (PZA) is the only drug for the elimination of latent Mycobacterium tuberculosis
(MTB) isolates. However, due to the increased number of PZA-resistance, the chances of the success
of global TB elimination seems to be more prolonged. Recently, marine natural products (MNPs)
as an anti-TB agent have received much attention, where some compounds extracted from marine
sponge, Haliclona sp. exhibited strong activity under aerobic and hypoxic conditions. In this study,
we screened articles from 1994 to 2019 related to marine natural products (MNPs) active against
latent MTB isolates. The literature was also mined for the major regulators to map them in the
form of a pathway under the dormant stage. Five compounds were found to be more suitable that
may be applied as an alternative to PZA for the better management of resistance under latent stage.
However, the mechanism of actions behind these compounds is largely unknown. Here, we also
applied synthetic biology to analyze the major regulatory pathway under latent TB that might be
used for the screening of selective inhibitors among marine natural products (MNPs). We identified
key regulators of MTB under latent TB through extensive literature mining and mapped them in
the form of regulatory pathway, where SigH is negatively regulated by RshA. PknB, RshA, SigH,
and RNA polymerase (RNA-pol) are the major regulators involved in MTB survival under latent
stage. Further studies are needed to screen MNPs active against the main regulators of dormant MTB
isolates. To reduce the PZA resistance burden, understanding the regulatory pathways may help in
selective targets of MNPs from marine natural sources.
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1. Introduction

The latent state of tuberculosis (TB) is asymptomatic, but poses a risk in developing the active state
of TB during the lifetime. According to the latest World Health Organization (WHO) report in 2018,
TB is the leading public health problem among infectious diseases resulting from a single infectious
agent, ahead of HIV/AIDS, and is the ninth leading cause of death worldwide. Approximately 1.3
million TB deaths occurred in 2017 excluding 374,000 deaths (10%) among HIV-positive individuals
among 10.4 million total TB incidents (90% adults). About 1.7 billion people (23% of the world’s
population) are estimated to have a latent TB infection, indicating a risk of developing active TB during
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their lifetime. India, Indonesia, China, Philippines, and Pakistan are the top five countries comprising
56% of the world’s estimated TB cases [1]. Among the infected individuals, 5–10% develop active
TB. Such individuals suffer from latent TB, where the Mycobacterium tuberculosis (MTB) resides in
alveolar macrophages in a non-replicative form (latent TB) [2–4]. The risk of developing active TB
from non-replicative forms has been accounted in 10% of cases in latently infected populations [2,3,5],
but may increase in cases of TB-HIV co-infections, immunosuppressive therapy, and old age [6–11].
Recently, a large number of studies reported drug resistances in TB [12–14] effecting the global TB
control program.

1.1. PZA against Latent TB

Among the available anti-tuberculosis agents, pyrazinamide (PZA) is the only drug that is active
against non-replicative MTB [15–18]. The host generates different types of stresses to eliminate the
MTB isolates effectively. However, the organism switches a sensory system that generates a complex
signaling network, assisting in entry into the latent state [19,19–22]. Before conversion into the latent
stage, MTB faces a number of oxidoreductive stress in alveolar macrophages of the host including
oxidative, acidic, and nitrative stress. These stresses are vital in the transition from active (replicative)
TB into latent (non-replicative) state [23,24].

1.2. Signaling in Latent TB

The genome of MTB strains have diverse stress responders, switching on the genetic program
for transition into latency [25,26]. Among these sensors under the latent stage are sigma (s) factors,
which are the primary regulators of gene expression. MTB genomes encoded 13 factors of the sigma 70
family [27], which are categorized into four groups known as S1, 2, and 3 including SigA, SigB, and
SigC, respectively, while the remaining one belongs to group 4, mainly involved in extra-cytoplasmic
sensing and signaling [28–30]. These regulators have been called “S” factors due to their role in
growth and stress conditions [28]. MTB senses redox through SigH, SigE, SigF, and SigL encoded
regulators, playing a critical role in survival under extreme conditions [23,30,31]. Fernandes et al.
first demonstrated that the role of SigH in oxidative stress [29] was also involved in the expression of
thioredoxins (trxB1 and TrxC) and thioredoxin reductase, while the stress-responsive “S” factor and
SigE helped mitigate oxidative stress. The “S” factor, along with SigB expression, is also regulated
by SigE and SigH. [32,33]. Song et al. demonstrated that Rv3221a, an anti-sigma factor known as
RshA in the same operon, [30] interacts with SigH at a 1:1 ratio [30], leading to SigH inhibition in vitro.
Under oxidative stress, phosphorylation of RshA by PknB causes disruption of the RshA and SigH
interactions, thereby regulating the induction of the oxidative stress response in mycobacteria [23].

1.3. Drugs Effective under Latent Stage

Pyrazinamide (PZA) is the only drug that kills MTB in a latent state, which has successfully
reduced the time span of TB therapy from nine to six months [34–36]. PZA is a prodrug that depends on
MTB encoded pyrazinamidase (PZase) (Figure 1A), whose activity is essential for the activation of PZA
into the active form, pyrazinoic acid (POA). The POA targets ribosomal protein S1 (RpsA), aspartate
decarboxylase (panD) (Figure 1D). The earlier protein helps in trans-translation while the latter is
involved in ATP synthesis [37,38]. POA binds with RpsA, disrupting the complex of RpsA–tmRNA
(Figure 1B). Recently, a large number of PZA-resistance cases have been reported, affecting the latent
TB treatment. In our recent study, we evaluated the mechanism behind PZA-resistance in RpsA and
PncA, showing a significant effect of mutation in PncA on protein activity [39–45]. Due to the large
number of PZA-resistance cases, the latent stage of TB may function as a reservoir for transmission,
affecting the global TB end control program.
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of RpsA and its C-terminal domain (MtRpsACTD); (D) PanD. PZase converts PZA into POA 

inhibiting the activity of PanD and RpsA. POA interactions with RpsA (E) and PZA with PZase (F). 

The prodrug PZA is converted into active form, POA, inhibiting the trans-translational proteins 

(RpsA). 
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In a study by Felix et al. [51], a library of MNPs was screened where four among five compounds 

(Figure 2) were active against latent MTB isolates, containing 2 puupehenone group metabolites 

(Table 1). Propane,1,2-diol was not effective against dormant MTB isolates. These dormancy-active 

hits could reveal novel druggable targets under latent stage, and therefore may lead to an alternative 

of PZA.  

Figure 1. Crystal structures of PZA and POA targets. (A) PZase; (B) RpsA; (C) Domain organization of
RpsA and its C-terminal domain (MtRpsACTD); (D) PanD. PZase converts PZA into POA inhibiting
the activity of PanD and RpsA. POA interactions with RpsA (E) and PZA with PZase (F). The prodrug
PZA is converted into active form, POA, inhibiting the trans-translational proteins (RpsA).

1.4. Marine Natural Products against Latent TB

With increased resistance to PZA, alternative novel bactericidal against non-replicating MTB will
be important to reduce the transmission in the population and also for short period treatment. The
screening for alternatives to PZA under latent TB from natural products is a validated approach. Here,
nine out of 12 groups of available drugs are naturally derived [46]. Screening of more diverse natural
product libraries has incentivized efforts in recent years [47]. The chemical diversity screening may
be extended for marine natural products as more diverse and active products have been reported
in marine environments [48]. Secondary metabolites that are produced by marine organisms have
been found to be effective against many disease causing microorganisms [49]. Recently, some active
compounds have been sourced from marine organisms against latent MTB isolates [47,50].

In a study by Felix et al. [51], a library of MNPs was screened where four among five compounds
(Figure 2) were active against latent MTB isolates, containing 2 puupehenone group metabolites
(Table 1). Propane,1,2-diol was not effective against dormant MTB isolates. These dormancy-active
hits could reveal novel druggable targets under latent stage, and therefore may lead to an alternative
of PZA.
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Figure 2. Compounds active against latent TB (dormant state). Compound 1, fistularin-3/11-
epi-fistularin-3; compound 2, 15-methyl-9(Z)-hexadecenoic acid; compound 3, (hexadecyloxy)
propane,1,2-diol; compound 4, 15- alpha methoxypuupehenol; and compound 5, puupehedione.
Compound 3 exhibited mild activity against replicating MTB (active TB).

Table 1. Biological profile of marine pure compounds against dormant MTB isolates adopted from
Felix et al; 2017 with permission from 2017 American Society for Microbiology [51].

Compound Formula
Molecular

Mass
(kDa)

MICR
(g/mL) a

MICD
(g/mL) b MICR/MICD

IC50
(g/mL) SIR c SID d Source

1 C31H30Br6N4O11 1,114.02 8.5 Inactive NA 200 23.5 NA HBOI.047.F07
2 C19H40O3 316.53 60.8 22.5 2.7 200 3.3 8.5 HBOI.047.F07
3 C16H30O2 254.41 28.5 7.9 3.6 200 7.0 31.1 HBOI.031.C02
4 C22H32O4 360.49 11.3 0.5 21.8 8 0.7 15.5 HBOI.050.F04
5 C21H26O3 326.44 87.6 15.4 5.6 50.4 0.6 6.2 HBOI.050.F04

a MICR, MIC against replicating Mtb-Lux. b MICD, MIC against dormant Mtb-Lux. c SIR, SI for replicating Mtb-Lux.
d SID, SI for dormant Mtb-Lux.

The core drug regimen has not been modified despite continuous efforts after a prolonged time [52].
Alternatively, research on MTB during in vivo has explored subpopulations of distinct metabolic states
within a single host [53]. This knowledge may be useful to uncover the essential activities required for
the survival of nonreplicating inhibition [54]. Whole cell screening under the dormancy–activating
signaling pathway may provide a direct path to discovering novel bactericidals against latent MTB
isolates. Here, the main goal of our study was to highlight the importance of marine drugs [55–57] that
could effectively kill dormant bacteria as well as the analysis of some signaling pathways for more
potent drug target identification.

2. Results

A total of 42 articles were retrieved from 1994 to 2018 containing data about the regulations and
interactions of genes and proteins under latent MTB isolates where 14 manually searched papers also
contained relevant information.

2.1. SigH Regulatory Network

We confirmed the interaction among the SigH regulons where a network file of “string” database
in tsv format exposed different paths through Pathlinker of Cytoscape (Figures S2–S4). The stress
responder, SigH, has a major role in controlling the response of pathogens to go into latent state and
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also in the survival of the pathogen. The regulatory pathway is shown in Figure 3A. The external stress
signals are sensed by the membrane receptor protein PknB, initiating the signal transduction pathway
by phosphorylating the SigH-RshA complex. This phosphorylation causes the disintegration of the
SigH-RshA complex, allowing SigH to form a complex with RNA polymerase (RNA-pol), activating
a series of stress responders. Upon activation, SigH and RshA are also synthesized, but RshA is
continuously inactivated as long as the stress is sensed by PknB. The pathway is negatively regulated
by RshA, while positively regulated by phosphorylated RshA (RshA-P), depending on the presence or
absence of a stress signal (Figure 3A).Mar. Drugs 2019, 17, x FOR PEER REVIEW 6 of 13 
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Figure 3. SigH signaling pathway under stress conditions. (A) The SigH signaling mechanism.
(B) Boolean network simulation with the SigH-RshA complex negatively regulated the pathway,
deactivating the regulatory pathway. (C) Boolean network simulation without the SigH-RshA
complex, where the “SigH-PO4” activates the mechanism. RshA-P: phosphorylated RshA; SigH-PO4:
phosphorylated SigH.
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2.2. Paths Identification in the Network

All of the stress responders were used as input proteins and the interaction network was searched
in a string database. The file (Figure S3) was imported into Cytoscape, where a total of 12 paths were
identified using the Pathlinker plugin. The plugins computed multiple paths from the sources to
targets where the longest path shown (Figure S1) was found to be most similar to the literature mapped
SigH pathway (Figure 3A). The longest path linked all of the essential proteins regulated under the
latent stage of MTB.

2.3. SigH Regulation and Marine Drugs

The interacting entities were subjected to six and nine different state stochastic simulations for
100 seconds in the active and inactive states to evaluate the dynamic behavior under latent state of
MTB (Figure 3B,C). Stochastic simulations validate the desired functioning of the proposed biological
regulatory systems (redox response) as shown in Figure 3. The SigH regulatory pathway may play a
crucial role in the survival of the pathogen under extreme stress environment.

3. Discussion

Currently, PZA is the only drug regularly prescribed along with other first-line drugs for the
effective control of dormant MTB and is recommended in sensitive as well as multi and extensive
drug resistance. However, due to an increased number of PZA-resistance, alternative sources of
natural products that are active against the dormant isolate in acidic pH are continuously being
sought. Sponges in the marine environment are rich sources of such compounds. Quinones with high
selectivity against dormant MTB are from a sponge from the Petrosia (Strongylophora) genus. Terpene
quinones including puupehenone metabolites have been extensively studied for their antimicrobial
and cytotoxic properties [58–60]. The puupehenone derivatives showed anti-TB activity as reported
earlier [50]. The MIC of 15-methoxypuupehenol was 20-fold lower and effective against dormant, but
not replicating. Puupehedione and Puupehenone had been previously extracted from the sponge
Hyrtios sp. [58]. Puupehedione had minor activity against replicating MTB [50], however, a 6-fold
selectivity of puupehedione against dormant MTB was still observed.

Puupehenone metabolites inhibit NADH oxidase activity in submitochondrial particles [61,62].
Weinstein et al. observed a bactericidal effect for M. tuberculosis’s type II NADH oxidase (NDH-2)
inhibitors in a murine model [63,64]. Inhibitors of NDH-2 proteins such as thioridazine, exhibited
bactericidal activity against dormant MTB when compared to replicating isolates [65]. The synthesis of
puupehenone enables a path for these molecules [66]. Characterization of the molecular targets for
these antimycobacterial marine natural products with selective activity against dormant MTB will be
helpful for exploring the insight mechanisms of the survival of dormant MTB under the latent stage
of infections.

The halicyclamine alkaloids (HA) with piperidine rings, haliclonacyclamines A and B (Figure 2)
C-1 and C-2 [67], 22-hydroxyhaliclonacyclamine B (C-3) [68], and halicyclamine A (C-4) (Figure 4) [69]
have been discovered from the marine sponge Haliclona sp. [70]. Haliclona sp. is one among the
dominant sponges at Heron Island, occurring at depths of about 15 m in reef slope [71]. The anti-TB
bactericidal and bacteriostatic activity of C-3 and C-4 were evaluated under aerobic and hypoxic
conditions. The colony forming unit (CFUs) of M. bovis BCG was not detected after eight days and
10 days of incubation under aerobic and hypoxic environment, respectively, indicating bactericidal
activity of C-2. Compound C-4 exhibited a strong cidal effect against mycobacterium sp. including
M. tuberculosis H37Ra (MICs of 2.16–10.82 µM) under dormant state. Compounds C-1 and C-2 also
exhibited cidal activities against replicating and non-replicating (latent state) of MTB. C-3 exhibited
weak activity that might be due to the 22-hydroxy group. Compound C-4, which is involved in
catalytic conversion of inosine monophosphate to xanthosine monophosphate in the de novo synthesis
of guanine nucleotides, was isolated as an inhibitor of inosine 5′-monophosphate dehydrogenase
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(IMPDH) [69]. IMPDH was cloned into M. smegmatis to study the anti-TB mechanism. However,
both the wild-type M. smegmatis and IMPDH over-expressing strains exhibited similar MIC values,
indicating that IMPDH was not the target of compound C-4 [70]. Another HA, neopetrosiamine A
(C-5) (Figure 2), isolated from sponge Neopetrosia proxima growing near Puerto Rico in a marine
environment [72], showed good cidal activity against MTB H37Rv (MIC:17.05 µM).
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Figure 4. Anti-TB compounds, C-1 to C-5 active against latent TB. The blue colored lines were the same
in all compounds. Haliclonacyclamines A and B (C-1 and C-2). 22-hydroxyhaliclonacyclamine B (C-3),
Halicyclamine A (C-4), and neopetrosiamine A (C-5).

The stress response under the latent state of MTB is mediated by many regulatory genes and the
role of SigH in the oxidative stress was first established by Fernandes et al. [29] through experiments
using M. smegmatis SigH mutants. SigH is a major MTB regulator that provides protection from reactive
oxygen species generated by the human host [31,73]. The SigH-encoded protein protects MTB against
oxidative stress by regulating the expression of the stress-responsive factors SigE and thioredoxins
trxB1 and trxC. The stress-responsive “S” factor and SigB were also regulated by the SigE and SigH
regulators. However, the mechanism of SigH regulation was not clearly explored, and neither were
there any synthetic biology approaches applied for better understanding. Marine compounds shown
in Figure 2 may be applied against dormant isolates to find their effect. Furthermore, the mechanism
may also be through a knockout system.

Prokaryotic RNA-pol may be a potent target as it plays a role in the initiation of the complex
network. RNA-pol is directed by sigma factors toward specific promotors through the formation of a
sigma/RNA-pol holoenzyme, which may be a closed stable complex that is ineffectual for transcription
initiation (sigma 54), or may proceed directly to an open complex that is capable of transcription (sigma
70). RNA-pol is an ideal drug target for a number of antibiotics because it is an integral part of a crucial
cellular process [74,75].

4. Methods

4.1. Literature Search

To map a signaling pathway under the latent stage of MTB, the RISmed package of R was used to
retrieve relevant literature from the Entrez Utilities to the PubMed database at National Center For
Biotechnology Information (NCBI) [76–78]. The RISmed package is fast and time efficient, extracting
the exact information. The key words, latent stage TB, dormant state MTB, MTB survival under stress,
role of sigma factors, SigH of MTB, regulation of MTB pathway under stress condition, RshA role, role
of TrxC, PknB, and stress regulation were used to mine the relevant information from the literature
databases. Subsequently, all the relevant papers were manually searched for the genes and proteins
expressed under the latent stage.
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4.2. Pathway Construction Using Systems Biology Approach

All the major regulators involved in signaling and interactions were extracted from the literature
and mapped in the form of a regulatory network in UPPAAL, an integrated tool for modeling [79], in
the form of a pathway.

4.3. Validation of SigH Regulatory Pathway

The SigH regulatory pathway mapped from the literature was further confirmed for their
interactions in a “STRING” database [80]. All the SigH regulons were entered as input in the string
database to observe the interacting network. The protein network was further increased by the addition
of more nodes (proteins) until all of the extracted entities were found to be interconnected in a single
network. The network file was downloaded in the Tab Separated Values (TSV) format (Table S1) and
imported into Cytoscape v 3.5.1 [81] where different paths were generated inside the network using
the Pathlinker [82] plugin in Cytoscape. The sources and targets were selected based on the mined
literature data, and the longest path was searched using a background protein interaction network.
Pathlinker requires three inputs: a (directed) network G, a set S of “sources”, and a set T of “targets”.
Each element of S and T must be a node in G. Pathlinker efficiently computes several short paths from
the receptors to transcriptional regulators (TRs) in a network and can accurately rebuild an inclusive
set of signaling pathways from the NetPath and KEGG databases. Pathlinker has a higher precision
and recall when compared to several state-of-the-art algorithms. The longest path was analyzed based
on the score of Pathlinker using the ANIMO plugin [83] for visualization purposes.

4.4. Synthetic Biology and SigH Activation

The pathway was simulated for 100 s using the Java Script [84] to analyze the effect on the active
and inactive state of SigH regulation.

5. Conclusions

The marine environment, a highly valuable source for new lead structures, is a rich source of
anti-TB bioactive compounds that have the potential to be used as an alternative to PZA. The biological
activity of these leads gives hope for effective anti-TB agents that will show low-toxicity under the
latent stage. Here in this review, we highlighted some marine natural products that are effective against
latent TB. Furthermore, we mapped a novel SigH regulatory pathway whose regulons may be patent
targets to verify the mechanism of action. Although studies have been carried out to discover these
agents, the mechanism of action is still uncertain and will require future research. These compounds
may be tested against the potent targets of the SigH signaling pathway, which is required for the
survival of MTB under different kinds of stress including oxidative and acidic stress. This study
provides useful information about the screening of marine natural products active against latent TB
that may be tested against the signaling pathway under the latent stage of MTB.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-3397/17/10/549/s1,
Figure S1: Longest path generated through the Cytoscape plugin, Pathlinker; Figure S2: Pathlinker identified
paths in a string network file; Figure S3: PknB and SigH network generated in string; Figure S4: PknB, SigH, and
RshA containing network in the string database. Table S1: PknB and SigH network.
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