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ABSTRACT

In recent years, progress in our understanding of immune-modulatory signaling pathways in 
immune cells and the tumor microenvironment (TME) has led to rejuvenated interest in cancer 
immunotherapy. In particular, immunotherapy targeting the immune checkpoint receptors 
such as cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), programmed cell-death 
1 (PD-1), and programmed cell-death ligand 1 (PD-L1) have demonstrated clinical activity 
in a wide variety of tumors, including gynecological cancers. This review will focus on the 
emerging clinical data on the therapeutic role of immune checkpoint inhibitors, and potential 
strategies to enhance the efficacy of this class of compounds, in the context of gynecological 
cancers. It is anticipated that future biomarker-directed clinical trials will provide further 
insights into the mechanisms underlying response and resistance to immunotherapy, and help 
guide our approach to designing therapeutic combinations that have the potential to enhance 
the benefit of immunotherapy in patients with gynecologic cancers.
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INTRODUCTION

In recent years, an improved understanding of immune-modulatory signaling pathways in 
immune cells and the tumor microenvironment (TME) has led to rejuvenated interest in 
cancer immunotherapy. In particular, immune therapy targeting the immune checkpoint 
receptors such as cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), programmed cell-
death 1 (PD-1), and programmed cell-death ligand 1 (PD-L1) are among the most promising 
approaches, having demonstrated clinical activity in a wide variety of tumors. This review will 
focus on the current evidence of immune checkpoint inhibitors in gynecologic malignancies, 
with specific emphasis on two of the most actively studied immune checkpoint receptors, 
CTLA-4 and PD-1 pathways.

Under physiologic conditions, immune checkpoints comprise several key inhibitory signals 
crucial for maintenance of self-tolerance. These inhibitory signals can be modulated by 
tumor cells to prevent the immune system from mounting an effective anti-tumor immune 
response [1]. The response of the immune system is initiated through antigen recognition by 
the T cell receptor (TCR) following antigen presentation by professional antigen-presenting 
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cells (APCs) such as dendritic cells (DCs). It is regulated by a balance between co-stimulatory 
and inhibitory signals [2-4], leading to interactions between the TCR and antigenic tumor 
peptide bound to major histocompatibility complex (MHC) class I or II, resulting in T-cell 
mediated tumor destruction [5].

CTLA-4 is expressed exclusively on T cells and primarily counteracts the activity of the T cell 
co-stimulatory receptor, CD28 [6]. CTLA has a higher affinity to the B7 ligand on APCs than 
CD28, resulting in inhibition of T cell activation [1]. CTLA-4 functions as a signal dampener 
[7,8] with high-affinity ligands inducing higher levels of CTLA-4 [1]. The inhibitory role of 
the PD-1 pathway serves to enhance immune resistance in the TME by down-regulating the 
activity of T cells in peripheral tissues when bound to PD-L1, thus limiting collateral damage 
[1,5,9-11]. PD-L1 induction is via interferon-γ (IFN-γ), which is predominantly produced by T 
helper 1 (TH1) cells [12,13].

Hence, by blocking the interactions mediating down regulation of T cell activity against 
tumors, immune checkpoint inhibitors aim to inhibit immune escape and improve 
recognition of tumors by the immune system. Here we describe the rationale for its use in 
several gynecologic tumors and review the literature for this promising approach.

IMMUNE CHECKPOINT INHIBITION IN ENDOMETRIAL 
CANCER
Endometrial cancer is the sixth most common malignancy in women worldwide, with 
majority of cases occurring in developed countries [14]. Historically, endometrial cancer 
has been divided into type I and type II based on clinicopathological characteristics. Type I 
tumors are of endometriod histology, generally associated with obesity, hormone receptor 
positivity, estrogen excess and a favorable prognosis. Type II tumors comprise primarily 
of serous and other histological subtypes, and have a worse clinical outcome [15,16]. 
When diagnosed early, surgery and adjuvant therapy portend a favorable prognosis while 
those who are diagnosed at an advanced stage or with recurrent disease have few effective 
chemotherapeutic options [17].

1. Rationale for immune checkpoint inhibitors in endometrial cancer
Endometrial cancers can be molecularly classified into four distinct categories — an ultra-
mutated group, hyper-mutated group, copy number low group and copy number high group 
[18]. The ultra-mutated group is characterized by extremely high mutation rates that harbors 
mutations in the exonuclease domain of polymerase ɛ (POLE) while tumors in the hyper-
mutated group, consist of mainly mismatch repair (MMR) deficient tumors [18]. The copy 
number low group has lower mutation frequencies and consist primarily of the microsatellite 
stable (MSS) tumors. Similar to its ovarian counterpart, the serous-like tumors of the copy 
number high group have extensive somatic copy number aberrations (SCNA) with a low 
mutation rate [18].

The MMR pathway is a single strand break repair mechanism for DNA replication errors and 
inhibits recombination between non-identical (homologous) sequences [19]. It is critical 
for genomic stability and failure results in the microsatellite instability (MSI) and hyper-
mutator phenotype [19]. Deficiency in MMR increases mutation rates up to 1,000-fold and 
is causally associated with the development of endometrial cancer (approximately 24% of 
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cases), with MLH1 methylation being reported in 89% cases demonstrating MLH1/PMS2 
immunohistochemistry (IHC) loss [20,21]. Most MMR defects are caused by somatic epigenetic 
silencing of MLH1 but mutations in MLH1, MSH2, MSH6, MLH3, PMS1 or PMS2 can occur either 
somatically or inherited as germline mutations in Lynch syndrome [20-22]. Lynch syndrome 
(also known as hereditary non-polyposis colon cancer [HNPCC]) is associated with early onset 
proximally sited colonic tumors and increased incidence of endometrial, stomach, small 
intestine, liver, brain, and urinary system cancers [21], commonly involves MLH1 (50%), MSH2 
(39%) or MSH6 (7%) mutations with MLH3, PMS1 or PMS2 genes occasionally involved [22] and 
has a 40%–60% lifetime risk of developing endometrial and colorectal cancer [23]. Germline 
MSH6 mutations are associated with a high risk of endometrial cancer (71%) [24] and germline 
MSH2 mutations are at higher risk of developing extra-colonic cancers [25].

Aside from MSI, the loss of DNA catalytic and proofreading function in DNA POLE, is 
another important player in endometrial cancer tumorigenesis. POLE exonuclease domain 
mutations (EDMs) are found in 5%–8% of endometrial cancers [26], and have been shown to 
increase spontaneous mutations [27]. Several reports have suggested that ultra-mutated and 
hyper-mutated tumors may harbor more tumor-specific neoantigens resulting in increased 
amounts of tumor infiltrating lymphocytes (TILs) [28,29], potentially making the ultra-
mutated and hyper-mutated groups excellent candidates for immunotherapy.

High mutational load MSI and POLE endometrial cancers were observed to be associated 
with significantly increased predicted neoepitopes and CD3+/CD8+ TILs demonstrating that 
the neoantigen load is proportional to the mutational load [30]. POLE mutated tumors 
demonstrated neoantigen load 15 times higher compared to MSI tumors, which in turn 
demonstrated 7 fold higher neoantigen load compared with MSS tumors [30]. Furthermore, 
MSI and POLE endometrial cancers tended to overexpress PD-1/PD-L1 in both tumor cells as 
well as in the TME compared to their MSS counterparts [30].

This hypothesis was clinically validated in a pivotal phase II study using pembrolizumab, an 
anti-PD-1 inhibitor, in patients with previously treated metastatic carcinoma. Mismatch repair 
status was retrospectively assessed using a standard polymerase chain reaction (PCR)-based 
method [31]. Notably, objective immune related response rate (RR) and immune related 
progression free survival (PFS) rate were 40% and 78%, respectively, for MMR-deficient 
colorectal cancers and 0% and 11%, respectively, for MMR-proficient colorectal cancers [31]. 
Not surprisingly, responses in patients with MMR-deficient non-colorectal cancer (this cohort 
included 2 patients with endometrial cancer) reflected those of patients with MMR-deficient 
colorectal cancer — immune related RR 71% (5/7 patients); immune related PFS rate, 67% (4/6 
patients) [31]. Whole-exome sequencing revealed a mean of 1,782 somatic mutations per tumor 
in MMR-deficient tumors, compared with 73 in MMR proficient tumors (p=0.007), and high 
somatic mutation loads were associated with prolonged PFS (p=0.02) following PD-1 blockade 
[31]. Intriguingly, membranous PD-L1 expression was noted in all MMR-deficient tumors and 
correlated with greater density of CD8-positive lymphoid cells [31].

Hence, the key question is how best to identify patients with endometrial cancers that are likely 
to harbor MMR-deficiency. When comparing the pathologic features of sporadic MSI-high 
endometrial carcinoma, sporadic endometrial cancer in women less than 50 years who were 
Lynch syndrome-negative, and Lynch syndrome-associated MSI-high, endometrial carcinoma, 
the sporadic group consisting of women less than 50 years with endometrial carcinoma and the 
sporadic MLH1 methylation group were almost entirely composed of tumors with endometrioid 
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histology (41/42, 97.6% and 25/26, 96.2%, respectively) [32]. However, the histology of Lynch 
syndrome-associated cancers was more heterogeneous (86% endometrioid; 14% papillary 
serous, clear cell or malignant mixed Müllerian subtypes). Interestingly, all of the non-
endometrioid tumors in this study occurred in patients with MSH2 mutations and the mean age 
of diagnosis in this group of patients was 46.4 years [32]. It is unclear if MSI-high endometrial 
carcinoma associated Lynch syndrome responds similarly to PD-L1 blockade as their colorectal 
counterparts (only 3/11 MSI-high Lynch syndrome responded to pembrolizumab compared to 
6/6 non-Lynch syndrome MSI high). As we continue to evaluate the role of MSI in endometrial 
cancer, it is worthwhile to consider all patients diagnosed with endometrial cancer for MSI 
testing and germline testing for Lynch syndrome especially if diagnosed at a young age or have a 
family history of Lynch syndrome related cancers.

2. Clinical studies of PD-1/PD-L1 blockade in advanced endometrial cancer
An ongoing phase II study of advanced, pre-treated endometrial cancer harboring deficiency 
in MMR proteins has reported preliminary observations of overall response rate (ORR) 
of 55.6% (5/9) and a clinical benefit rate of 88.9% when treated with pembrolizumab. Of 
interest, one patient who achieved a sustained complete response (CR) for 17 months, had 
previously progressed through 3 prior lines of chemotherapy [33].

Preliminary results from the phase Ib KEYNOTE-028 (National Clinical Trial 
[NCT]02054806) cohort of 24 patients with MSI high advanced endometrial cancer, also 
suggest activity for pembrolizumab with tolerable toxicity. Recruited patients had PD-L1 
expression in ≥1% of tumor or stromal cells by immunohistochemical staining. At a median 
of 69.9 weeks of follow-up, confirmed ORR was 13% (3/24), and another 13% (3/24) achieved 
stable disease (SD) [34]. We await the phase II KEYNOTE-158 trial (NCT02628067) that will 
better assess the efficacy of pembrolizumab in this setting.

IMMUNE CHECKPOINT INHIBITION FOR EPITHELIAL 
OVARIAN CANCER (EOC)
EOC is the fifth most common cause of cancer death in western women [35]. With no 
validated screening schedule, and paucity of symptoms at disease onset, more than 50% of 
ovarian cancers are diagnosed at an advanced stage [35]. Cytoreductive surgery integrated 
with platinum based chemotherapy has become the initial standard treatment [36-39]. 
However, approximately 70% of patients experience disease relapse after a varying disease-
free interval. Pegylated liposomal doxorubicin [40], topotecan [41], and gemcitabine [42] are 
among the cytotoxic agents used in the platinum-resistant setting, with generally low RRs 
[40-42]. Targeted approaches with anti-vascular endothelial growth factor (VEGF) antibody, 
bevacizumab [43], and olaparib, an inhibitor of the enzyme poly-(ADP ribose) polymerase 
inhibitor (PARPi), have also demonstrated improvement in outcomes for patients with 
advanced ovarian cancer [44]. More recently, there is an increasing body of evidence pointing 
to the intrinsic immunogenicity of advanced ovarian cancer with the presence of CD3+ TILs 
and a high CD8+/regulatory T cell ratio correlating with improved survival in ovarian cancer 
patients [45,46], thus supporting the feasibility of an immunotherapeutic approach.

1. Rationale for immune checkpoint inhibitors in advanced EOC
In a previous study examining the prognostic relevance of the host immune response 
in ovarian cancer, intratumoral CD3+ T-cell infiltration was found to be an independent 
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prognostic factor for improved outcomes in 186 patients with advanced ovarian cancers 
[45]. Conversely, infiltration of CD4+ CD25+ regulatory T-cells carried a worse prognosis 
[47]. More recently, intratumoral CD8+ TIL was observed to be superior compared to CD3 
as a marker for immune cell infiltrates and correlates with improved clinical outcomes 
in a large cohort of ovarian cancer patients, particularly in the serous histology [48]. The 
presence of intratumoural TILs were also observed to be associated with BRCA mutation or 
epigenetic loss, suggesting a possible link to chromosomal instability [48]. In the serous 
histological subset of ovarian cancer, tumor infiltrating B cells (CD20+) appear to play an 
equally prominent role when they co-localized with T cells and display characteristics of APC 
[49]. The presence of both CD20+ B cells and CD8+ T cells in tumors has been associated with 
better prognosis than T cells alone [49]. However, the role of B cells in anticancer immunity 
remains controversial. Nevertheless, a recent study assessed co-localization patterns in 
the high grade serous histological subset and observed tumors containing CD8+, CD4+, 
and CD20+ TIL together with PCs were associated with markedly increased survival, with 
approximately 65% of patients alive at 10 years [50]. In addition, patients with plasma cell 
gene signatures were strongly associated with cytotoxic immune responses and improved 
survival [50]. Therefore, immunotherapeutic strategies that activate both lymphocyte subsets 
may have more potent and sustained antitumor effects.

Further evidence that an immunogenic TME may be associated with improved outcomes 
was observed in gene expression analysis of advanced EOC, that categorized the disease into 
four main molecular subsets — C1 or mesenchymal, C2 or immunoreactive or Epi B, C4 or 
differentiated or Epi B, C5 or proliferative or Stem A — with distinct clinical outcomes [51-53]. 
An enrichment of genes, ontology terms, and signaling pathways associated with immune 
cells was found to be associated with one molecular subtype, the immunoreactive subtype 
(C2/Epi B) with genes related to the adaptive immune response found to be significantly 
overexpressed, including markers of T-cell activation (CD8A) and T-cell trafficking (CXCL9) 
[53]. The immunoreactive/C2 subtype is not only immunogenic but is also associated with 
BRCA1 mutations [54] which leads to defects in the homologous recombination DNA repair 
(HR) pathway [55]. Tumors with DNA repair deficiencies are thought to stimulate the immune 
system through their high mutational load and expression of neoantigens resulting in higher 
levels of TIL in these tumors [31,56], suggesting these patients may be more responsive to 
immune checkpoint blockade. Notably, the C2 molecular subtype has been associated with a 
better clinical outcome compared to other subtypes (C1, C4, C5) [51,53].

An increased risk of EOC is also associated with Lynch syndrome. In a study that analyzed 
the clinical features, tumor morphology and mismatch repair defects in all ovarian cancers 
identified in Swedish and Danish Lynch syndrome families [57], EOC developed at a mean 
48 years of age and had a higher incidence of endometrioid (35%) and clear cell (17%) 
histological subtypes. The underlying MMR gene mutations were 49% MSH2, 33% MSH6 and 
17% MLH, and IHC loss of the corresponding MMR protein was demonstrated in 33/36 (92%) 
tumors. The study demonstrated that EOC associated Lynch syndrome typically presents at a 
young age with non-serous tumors. This is especially relevant in the context of advanced and 
recurrent ovarian clear cell carcinomas (OCCC) as they tend to be relatively chemo-resistant 
and carry a poor prognosis [58]. Upregulation of the pro-inflammatory cytokine IL6 has 
been reported in OCCCs [59] and approximately 10%–15% of OCCC have been found to be 
MSI high [60], with a higher number of CD3+ TILs and PD-1+ TILs compared to their MSS 
counterparts suggesting that this subset of OCCC may be more immunogenic and may thus 
respond more favorably to immune checkpoint blockade [61].
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2. Clinical studies of PD-1/PD-L1 blockade in advanced ovarian cancer
In several early phase trials to date, durable RRs were observed in patients with recurrent 
EOC and variable PD-1/PD-L1 expression (Table 1) [62-65].

Interestingly, consistent, durable and significant responses were observed when patients 
with recurrent EOC were treated with checkpoint inhibitors. In a phase II platinum-resistant 
EOC trial, nivolumab was administered in 2 cohorts. Two patients achieved CR with ORR 
of 17% and disease control rate (DCR) (CR/partial response [PR]/SD) of 44% observed [62]. 
80% of tumor specimen showed high expression of PD-L1 but no significant correlation 
with response was observed [62]. A study of pembrolizumab in patients with PD-L1 positive 
advanced solid tumors (PD-L1 expression ≥1%) in a phase Ib trial presented by Varga 
and colleagues [63] showed 1/26 patients with advanced EOC obtained a CR while 2/26 
experienced PR. Best ORR was 11.5% and DCR was 34.6%. BMS-936559 was also used in 207 
patients with advanced solid tumors, including 17 EOC patients. One-seventeenth and 3/27 
obtained PR and SD respectively [64]. Avelumab was used in 124 women with recurrent and 
refractory EOC in a phase Ib trial that observed 12 PR and ORR of 10.7% (DCR 54.7%) with 
grade ≥3 immune related RRs of 6.5% (Table 1) [65]. The durable RRs in a subset of ovarian 
cancer and ease of tolerability of these checkpoint inhibitors support further investigation, 
however, it is clear that only a proportion of patients will respond to checkpoint inhibitor 
monotherapy. Of note, there were a total of 3 reported cases of recurrent OCCC treated in 
the nivolumab and avelumab studies with durable responses in all 3 patients [62,65]. These 
results are indeed intriguing and further clinical trials are warranted.

3. Clinical studies of CTLA-4 blockade in advanced ovarian cancer
In 2003, the CTLA-4 antibody, ipilimumab, was used in patients with advanced ovarian 
cancer previously immunized with ovarian tumor cell vaccine transduced with granulocyte-
macrophage colony-stimulating factor (GM-CSF). A single infusion of ipilimumab at 3 mg/kg 
induced a durable stabilization or reduction of cancer antigen 125 (CA-125) levels in 2 out of 
2 ovarian cancer patients [66] while in an expanded cohort, SD was seen in 3 patients with 1 
patient achieving a durable response lasting more than 4 years [67]. Two patients experienced 
grade 3 gastrointestinal toxicities and tumor regression correlated with CD8+/regulatory T 
(Treg) ratio (Table 2) [67]. No clinical evidence for tremelimumab, the other anti-CTLA-4 
antibody, is yet available for ovarian cancer.

4. Combination blockade and other strategies in advanced ovarian cancer
To date, immune checkpoint inhibitors tested as single agents in the setting of relapsed 
platinum resistant EOC have shown ORR <15%. In order to generate clinically effective 
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Table 1. Selected trials of PD-1/PD-L1 and CTLA-4 immune checkpoint blockade in ovarian cancer
Target Antibody IgG subclass Study setting Phase No. CR PR SD ORR 

(%)
DCR 
(%)

Median 
PFS (wk)

≥G3 AE 
(%)

Trial identifier Ref.

PD-1 Nivolumab Human IgG4 Relapsed platinum 
resistant EOC

II 20 2 1 6 15.0 45.0 14.0 40.0 UMIN000005714 [62]

Pembrolizumab Humanized IgG4 Advanced EOC I 26 1 2 6 11.5 34.6 NA 3.8 NCT02054806 [63]
PD-L1 BMS-936559 Human IgG4 Advanced EOC I 17 0 1 3 6.0 23.5 NA 9.0 NCT00729664 [64]

Avelumab Human IgG1 Relapsed platinum 
resistant EOC

I 124 0 12 55 9.7 54.0 11.3 6.5 NCT 01772004 [65]

CTLA-4 Ipilimumab+GM-CSF Human IgG1 Advanced EOC I 9 0 1 3 11.1 44.4 NA 22.2 NCT01611558 [67]
AE, adverse events; CR, complete response; CTLA-4, cytotoxic T-lymphocyte-associated antigen 4; DCR, disease control rate includes patients with complete 
response, partial response and stable disease; EOC, epithelial ovarian cancer; GM-CSF, granulocyte-macrophage colony-stimulating factor; IgG, Immunoglobulin 
G; NA, data not available at the time of review; NCT, National Clinical Trial; ORR, overall response rate; PD-1, programmed cell-death 1; PD-L1, programmed cell-
death ligand 1; PFS, progression free survival; PR, partial response; SD, stable disease; UMIN, University Hospital Medical Information Network.



antitumor immune responses, several immune processes may need to be manipulated 
simultaneously using combinatorial approaches of conventional therapy, novel targeted 
agents and immunotherapy (Table 3). Preclinical studies of combination immunotherapy 
in ovarian cancer are encouraging revealing up to half of TILs were positive for both CTLA-4 
and PD-1 in the murine model [68]. These TILs had lower proliferative abilities and did not 
generate the necessary cytokines to mediate cell-kill. However, with dual blockade of both 
immune checkpoints, TIL function was restored and responses observed were double that of 
either agent given alone [68]. Clinical trials combining PD-1 inhibitors with chemotherapy, 
targeted therapy, and other forms of immunotherapy are currently underway. A phase I study 
of combination ipilimumab with nivolumab in metastatic melanoma showed increased PFS 
compared with monotherapy treatment [69], thus generating much interest in other solid 
tumors, including ovarian cancer (NCT02498600). However, 55.0% of patients receiving the 
combination regimen experienced grade 3 or 4 treatment-related adverse event of which the 
most common were diarrhea (9.3%) and colitis (7.7%), compared with 16.3% (nivolumab) and 
27.3% (ipilimumab) in patients treated in the monotherapy arms [69]. These toxicities will 
certainly need to be considered in the context of heavily pre-treated ovarian cancer patients.

Other awaited studies are investigating the combination of immune checkpoint inhibitors 
with cytotoxic chemotherapy, PARP-inhibitors or VEGF inhibitors (Table 3). Preclinical data 
in a murine ovarian cancer model demonstrated CTLA-4 antibody but not the inhibition 
of PD-1/PD-L1 pathway, synergize with PARP-inhibitors increasing long term survival in 
the majority of mice [70]. There are several trials underway with tremelimumab+olaparib 
evaluating the potential efficacy of this combination (NCT02571725, NCT02485990). 
Nevertheless, preliminary phase I data of the anti-PD-L1 antibody, durvulamab, in 
combination with the PARP-inhibitor, olaparib or VEGF receptor inhibitor, cediranib 
has demonstrated that this approach is safe and tolerable [71] with increased efficacy. In 
essence, facilitating the therapeutic targeting of several described hallmarks of cancer in 
the same effort [72]. Indeed, 9 patients with advanced EOC or breast cancer were treated 
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Table 2. Selected ongoing trials of immune checkpoint inhibitors in gynecological cancers
Type of malignancy Combination Treatment Study population Phase Trial identifier
Ovarian cancer aPD-1+TLRa+CTX Durvulamab+motolimod+pegylated 

liposomal doxorubicin
Recurrent platinum resistant I/II NCT02431559

aPD-1+aCD27 Nivolumab+varlilumab Recurrent previous platinum based 
therapy

I/II NCT02335918

aPD-1+aCSF1R Pembrolizumab+PLX3397 Advanced I/II NCT02452424
aPD-L1+Bev Atezolizumab+bevacizumab Recurrent platinum resistant II NCT02659384
aPD-1+PARPi Pembrolizumab+niraparib Recurrent platinum resistant I/II NCT02657889
aCTLA-4 Ipilimumab Recurrent I NCT00039091
aCTLA-4+PARPi Tremelimumab+olaparib Recurrent BRCA1/2 mutation+ I/II NCT02571725
aCTLA-4+PARPi aCTLA-4+VEGFi Tremelimumab+olaparib, 

tremelimumab+cediranib
Recurrent platinum resistant I/II NCT02484404

Endometrial cancer aPD-1+CTX Pembrolizumab+carboplatin+paclitaxel Advanced/recurrent II NCT02549209
aPD-1+JAK1i aPD-1+PI3Kδi Pembrolizumab+INCB039110, 

pembrolizumab+INCB050465
Advanced I/II NCT02646748

aPD-1 Pembrolizumab Advanced II NCT02628067
Cervical cancer CTX/brachytherapy+aPD-1; CTX/

brachytherapy followed by aPD-1
Pembrolizumab brachytherapy cisplatin Advanced II NCT02635360

CTX/EBRT followed by aCTLA-4 Ipilimumab external beam RT cisplatin Stage IB–IVa II NCT01711515
aPD-1±aCTLA-4 Nivolumab±ipilimumab Advanced I/II NCT02488759
aPD-1 Nivolumab Advanced II NCT02257528

aCD-27, agonist monoclonal antibody for CD27; aCSF1R, small-molecule receptor tyrosine kinase inhibitor of CSF1R; aCTLA-4, anti-cytotoxic T-lymphocyte-
associated antigen 4; aPD-1, anti-programmed cell-death 1; aPD-L1, anti-programmed cell-death ligand 1; CTX, chemotherapy; JAK1i, inhibitor of Janus-
associated kinase 1; NCT, National Clinical Trial; PI3Kδi, poly (ADP-ribose) polymerase inhibitor; PI3Kδi, inhibitor of the delta isoform of phosphoinositide-3 
kinase; TLRa, agonist of Toll-like receptor 8; VEGFi, inhibitor of vascular endothelial growth factor.



with durvulamab and olaparib, 1 patient achieved PR, and 5 SD, resulting in a 67% DCR. 
Interestingly, all patients were BRCA1/2 wild-type in this group. Similar efficacy trends 
were observed in 7 evaluable patients with advanced ovarian, cervical cancer and uterine 
leiomyosarcoma on durvulamab and cediranib (57% DCR; 2 PR; 2 SD) [71].

IMMUNE CHECKPOINT INHIBITORS FOR CERVICAL 
CANCER
Cervical cancers are unique among gynecologic malignancies due to its well-established 
infectious etiologic agent, chronic human papillomavirus (HPV) infection [14]. This has 
led to the development of effective preventative vaccines and cytologic screening and DNA 
testing of HPV types in developed countries leaving the global burden of cervical cancer 
disproportionately to developing, resource-poor countries. Despite advances in screening, 
vaccination, and treatment of early-stage disease, advanced stage cervical cancer remains 
a principal cause of gynecologic cancer mortality with limited treatment options. The 
Gynecologic Oncology Group (GOG) 240 trial demonstrated improved survival outcomes 
with the addition of an anti-VEGF agent, bevacizumab, to standard chemotherapy with no 
significant deterioration in quality of life [73]. Nonetheless, it is unclear what the optimal 
treatment options are once patients progress on anti-angiogenic therapy. Novel therapeutic 
strategies warrant urgent investigation in an effort to further improve outcomes.
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Table 3. Potential drug combinations with immune checkpoint blockade relevant for gynecological cancers
Drug class Effect on the tumor Combination Rationale Ref.
PARP-inhibitor Inhibit repair of double strand DNA 

breaks through PARP inhibition
Olaparib+CTLA-4 Increase recruitment of TILs through inhibition 

of DNA repair and induction of memory T cells in 
BRCA mutant or C2/immune reactive EOC

[52]
[53]
[54]
[70]

VEGF inhibitor Modulate TME to reduce MDSC and 
Treg cells

Bevacizumab/cediranib+immune checkpoint 
inhibitor

Eliminate immune suppression [96]
[97]
[99]

PI3K/AKT pathway 
inhibitor

Inhibit PI3K-AKT pathway activation AKT inhibitor/PI3K inhibitor/mTOR 
inhibitor+immune checkpoint inhibitor

Abrogate anti-tumor immune resistance resulting 
from PI3K-AKT pathway activation; decreases pro-
survival signaling and decreases tumor-promoting 
inflammation

[84]

Metformin Activation of AMPK pathway Metformin+immune checkpoint 
inhibitor±GM-CSF

Restoring exhausted T-cells potentiating effector 
T-cell and macrophage activity

[93]

GM-CSF Adjuvant to DC maturation Sargramostim+immune checkpoint inhibitor Activate de novo immune response [96]
[113]

Wnt pathway 
inhibition

Inhibit Wnt pathway signaling Porcupine inhibitor/β catenin inhibitor/FZD 
antibodies+immune checkpoint inhibitor

Abrogate anti-tumor immune resistance resulting 
from activation of Wnt pathway

[86]
[87]

HSP90 Increases unfolded protein-
associated stress in tumor cells

HSP90+vaccine±immune checkpoint 
inhibitor

Boost antigen recognition of tumor cells; 
decreases antigen presentation

[116]
[117]

Radiotherapy Increase antigen presentation; 
stimulation of danger signaling 
pathways

Radiotherapy→(sequential) immune 
checkpoint inhibitor

Eliminate immune suppression; induce 
immunogenic cancer death and enhance antigen 
presentation

[110]
[111]

Conventional 
chemotherapy

Increase release of tumor antigens 
and damage-associated molecular 
pattern molecules

Anthracyclines/platinum/cyclophosphamide 
chemotherapy+immune checkpoint inhibitor

Upregulate neoantigens; induce immunogenic 
cancer death and enhance antigen presentation

[96]
[106]
[107]

Dual immune 
checkpoint 
blockade

Inhibits T cell co-stimulatory 
receptor

CTLA-4+PD-1/PD-L1 inhibitor PD-1/PD-L1 
inhibitor+LAG-3/TIM-3 inhibitors

Elimination of immune suppression by inhibiting 
immune suppressive mediators

[100]
[102]
[103]

AMPK, AMP-activated protein kinase; AKT, protein kinase B; CTLA-4, cytotoxic T-lymphocyte-associated antigen 4; DC, dendritic cell; EOC, epithelial ovarian 
cancer; FZD, frizzled; GM-CSF, granulocyte-macrophage colony-stimulating factor; HSP90, heat shock protein 90; LAG-3, lymphocyte-activation gene 3; MDSC, 
macrophage derived suppressor cells; mTOR, mechanistic target of rapamycin; PARP, poly (ADP-ribose) polymerase; PD-1, programmed cell-death 1; PD-L1, 
programmed cell-death ligand 1; PI3K, phosphatidylinositol 3-kinase; TIL, tumor infiltrating lymphocyte; TIM-3, T-cell immunoglobulin and mucin protein 3; TME, 
tumor microenvironment; Treg cells, T regulatory cells; VEGF, vascular endothelial growth factor.



1. Rationale for immune checkpoint inhibitors in cervical cancer
Recent evidence supports a potential role for immune checkpoint inhibitors as a viable 
therapeutic strategy in cervical cancers. PD-L1 expression has been reported in 95% of 
cervical intraepithelial neoplasia and 80% of squamous cell carcinomas [74] and lymph 
nodes harboring metastatic cervical cancer were characterized by high levels of PD-L1+APCs 
and FOXP3+ Treg cells [75]. Recently, the role of the PD-1:PD-L1 interaction in HPV-associated 
head and neck squamous cell cancer (HPV-HNSCC) creating an “immune-privileged” site 
for initial viral infection and subsequent adaptive immune resistance once tumors are 
established suggest a rationale for therapeutic blockade of this pathway in patients with HPV-
associated tumors [76].

2. Clinical trials in cervical cancer with immune checkpoint inhibitors
To date, there is limited data on reported cases of recurrent/persistent cervical cancer 
treated with anti-PD-L1 in the literature. The largest study is a phase Ib study, KEYNOTE-028 
(NCT02054806), in patients with advanced cervical squamous cell carcinoma treated with 
pembrolizumab [77]. All patients had ≥1% PD-L1 expression in tumor or stromal cells. A 
dose of 10 mg/kg of pembrolizumab appeared to be well tolerated in this series of 24 patients 
with ORR of 12.5%; median duration of response of 19.3 weeks and 6-month PFS rate of 
66.7% [77]. These results appear encouraging and several other cervical cancer-directed trials 
are currently underway (Table 2).

CHECKPOINT INHIBITORS FOR GYNECOLOGICAL 
CANCER: FUTURE PERSPECTIVES
As we continue to explore the role of immune checkpoint inhibitors in our therapeutic 
paradigm for gynecologic cancers, several potential hurdles need to be addressed. Firstly, 
potential biomarkers to determine which immune checkpoint pathways dominate in a 
particular tumor will be crucial to guide therapy. Secondly, we need a better understanding 
of the key immune modulatory mechanisms in gynecologic cancers, particularly the causes 
of immune resistance, and to develop approaches to enhance the efficacy of checkpoint 
inhibitors. Both these strategies will be discussed in this section.

1. Predictive biomarkers for immune checkpoint inhibitors
As PD-1 is expressed on a large proportion of TILs [78] and the PD-L1 ligands are commonly 
upregulated on the tumor cell surface of solid tumors [9], the expression patterns of 
PD-1 ligands may be crucial for determining the suitability of therapeutic blockade of this 
pathway. Currently, no pre-treatment biomarker has been validated to be included as part of 
the standard-of-care decision-making for immune checkpoint inhibitors in gynecological 
cancers. In ovarian cancer, no correlation was found between PD-L1 expression and anti-
tumor response in two trials utilizing nivolumab and avelumab [62,65]. This is partly due to a 
wide array of companion diagnostics being developed individually by several pharmaceutical 
companies each utilizing different IHC antibody clones, protocols, scoring systems and 
positive cutoffs in determining expression levels [79]. Furthermore, the lack of a uniform 
consensus in the level of protein expression of key ligands (PD-L1/PD-L2) or receptor (PD-
1) in tumor tissue or TME and the dynamic nature of PD-L1 expression makes determining 
potential biomarkers challenging [79]. Current evidence suggests that the presence of TIL 
infiltrates and an active PD-1/PD-L1 axis are important for responses to immune checkpoint 
inhibitors [80-82]. In advanced non-small-cell lung cancer (NSCLC), PD-L1 expression of 
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TILs in the TME, not tumor cells, was associated with response in patients treated with a 
PD-L1 inhibitor, atezolizumab [82], while reports have correlated TILs expressing PD-L1 at 
the invasive margins of melanoma cells with response to pembrolizumab [81]. Moreover, in 
ovarian cancer, tumor associated macrophages (TAMs) in the TME frequently express PD-L1 
and may be relevant in response to checkpoint inhibitors [83]. Given that a uniform consensus 
for predictive biomarkers remains elusive, perhaps the use of surrogate biomarkers could 
be useful for predicting response. There is potential for specific oncogenic pathways, such 
as phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT) or signal transducer and 
activator of transcription 3 (STAT3) to induce the expression of specific immune-inhibitory 
molecules and could thus be used as surrogate markers [1,84] of immune checkpoint therapy 
resistance. Established molecular markers in certain tumor types could also potentially be 
used as predictive biomarkers. As mentioned previously, a strong association between BRCA1 
inactivation with the C2/immunoreactive molecular subtype was recently observed [53]. It 
is still unclear whether BRCA1-mutation associated tumors tend to be more immunogenic. 
Recent interrogation of the Cancer Genome Atlas (TCGA) dataset observed the well-
established prognostic benefit of CD8+ TIL restricted to tumors that additionally harbor plasma 
cells but no association was observed with BRCA1/2 status. They also found that, rather than 
working in opposition, the B-cell and T-cell lineages mount closely integrated responses to 
human tumors as reflected by their physical co-localization, synergistic functional profiles, and 
interdependent prognostic significance [50]. However, the knowledge of BRCA1/2 mutation 
status should still be considered in the design of future immunotherapy trials. As previously 
described, MSI high tumors have been observed to harbor a higher mutational load and 
expression of neoantigens, which may account for improved responses to immune checkpoint 
inhibitors [31]. Further validation of the utility of this molecular aberration as a predictive 
marker for gynecological malignancies will depend on the outcome of ongoing trials.

2. Overcoming immune resistance to enhance effectiveness of immune 
checkpoint inhibitor

In most tumors, PD-L1 is not constitutively expressed but rather induced on tumor cells by 
inflammatory signals (i.e., IFN-γ) to resists immune elimination [1]. Evidence suggests that 
for therapeutic PD-1 blockade to induce tumor regression, the TME is crucial in modulating 
an anti-tumor immune response [81]. Patients who responded to anti-PD-1 were observed to 
contain tumor specific CD8+ T cells expressing PD-1 in the TME in close proximity to PD-L1 
expressing cells [81] suggesting importance for modulation of the TME to enhance efficacy of 
checkpoint inhibitors.

Recent literature have cited four mechanisms that require targeting for successful induction 
of anti-tumor immunity [10]: (1) Elimination of immune suppression by inhibiting immune 
suppressive mediators; (2) Inducing immunogenic cancer cell death either with radiation/
chemotherapy or targeted treatment; (3) Enhancing antigen presentation function via 
immune adjuvants; and (4) Potentiating effector T-cell and macrophage activity [10], 
further emphasizing the need for effective combination strategies to enhance the efficacy of 
immunotherapy (Table 3).

3. Combination with targeted treatment
There is growing evidence that oncogenic pathways in tumors can promote resistance to 
checkpoint blockade with activation of the PI3K-AKT pathway and/or phosphatase and tensin 
homolog (PTEN) loss in patients with melanoma [84] while preclinical studies observed 
oncogenic epidermal growth factor receptor (EGFR) signaling was able to remodel the TME 
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and trigger PD-1 activation as a mechanism of immune escape in EGFR driven lung tumors 
[85]. These observations indicate that combinatorial strategies of targeted inhibitors and 
immune checkpoint inhibitors may be able to potentiate the effects of checkpoint blockade 
(Table 3). More recently, it was observed in melanoma that intrinsic oncogenic pathway 
mediated through the WNT-β-catenin signaling pathway prevents T-cells from infiltrating 
tumors [86]. This could potentially be relevant for a cohort of EOCs that are driven by 
non-canonical Wnt/PCP pathway [87]. Thus, a combination of agents that inactivate the 
Wnt signaling pathway with anti-PD-1/PD-L1 agents could potentially improve outcomes in 
gynecologic cancers (Table 3). Several epidemiologic and meta-analysis have consistently 
shown metformin use was associated with decreased cancer risk and/or reduced cancer 
mortality [88,89]. Reports suggest metformin exerts its anti-tumor effects mainly through 
AMP-activated protein kinase (AMPK) activation and PI3K-AKT-mechanistic target of 
rapamycin (mTOR) inhibition [90]. Indeed, preclinical evidence showed synergistic anti-
tumor effects of metformin in combination with chemotherapeutic agents like carboplatin 
[91] and paclitaxel [92]. Recent reports have hinted that the mechanism may be immune-
mediated with preclinical evidence suggesting metformin protects CD8+ TILs from 
exhaustion and eventual apoptosis by restoring the exhausted PD-1-ve T-cell immunoglobulin 
and mucin protein 3 (TIM-3)+ CD8+ TILs via a shift from central memory T cells to effector 
memory T cell phenotype [93] thus potentiating the anti-tumor effects of immune 
checkpoint inhibitors (Table 3).

Recent data showed the addition of a vascular endothelial growth factor A (VEGFA) inhibitor, 
bevacizumab, in EOC [43,94,95] and cervical cancer [75] improved outcomes in a subgroup 
of patients. Certainly, VEGFA is best known for its angiogenic effects. However, this cytokine 
also exerts immunomodulatory effects that block the maturation of DC and promote 
expansion of myeloid derived suppressor cells (MDSCs) [96]. DC when loaded with myeloma 
cells containing VEGFA, were found to display lower levels of co-stimulatory molecules and 
a reduced ability to stimulate T cells compared to unloaded controls [97]. The suppressive 
effects of VEGFA was abrogated by the addition of bevacizumab [97], and sunitinib, a multi-
tyrosine kinase inhibitor that blocks VEGF receptor function [98] resulting in decreased 
MDSCs and Treg cell population and function. Furthermore, in the B16 melanoma model, 
a VEGFA antibody combined with adoptive T cell transfer intensified tumor infiltration, 
reduced tumor growth and prolonged survival compared with either monotherapy alone [99].

4. Combination with other immune checkpoint inhibitors
Co-targeting of CTLA-4 and PD-1 either in combination or sequential in advanced-stage 
melanoma patients resulted in significantly improved RRs of 53% [100]. The proposed 
mechanism of synergism is the amplification of T-cells in lymphoid organs and tumor 
tissue by anti-CTLA-4, whereas PD-1 inhibition overcomes immune suppression in tumor 
tissues [101]. Similar combination therapies are now being investigated in ovarian cancer 
(NCT02498600).

Other immune checkpoint receptors have been implicated in the induction of lymphocyte 
exhaustion, a state in which T or B cells remains alive but are unable to activate an immune 
response [1]. Blocking of these specific inhibitory receptors could potentially enhance anti-
tumor immunity. The lymphocyte-activation gene 3 (LAG-3) and TIM-3 are examples of other 
inhibitory receptors commonly expressed on exhausted PD-1+ T-cells and targeting these 
receptors either alone or in combination with other immune checkpoint inhibitors have been 
shown to enhance anti-tumor activity in preclinical models [102,103].
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5. Combination with conventional treatment (chemotherapy, radiotherapy)
Radiotherapy and chemotherapy are the treatment backbone in patients with gynecological 
cancer and have also been shown to modulate anti-tumor immune response [104]. Radiation 
and chemotherapeutics can lead to upregulation of neoantigens to activate the adaptive 
immune system and enhance tumor cell immunogenicity [105]. Agents like anthracyclines 
and oxaliplatin result in the release of tumor antigens and damage-associated molecular 
pattern molecules from tumor cells to induce immune cell death [106] by polarizing DCs 
towards a pro-inflammatory phenotype and increase priming towards TH1 anti-tumor T 
cells and away from Treg cells [96]. Additionally, some chemotherapeutic agents such as 
cyclophosphamide at low doses down regulate Treg cells and have been observed to provide 
a more favorable TME for cellular immunotherapy [107]. Indeed, preclinical evidence 
demonstrates improved efficacy with the combination of radiation and/or chemotherapeutics 
with immunotherapy, compared with the use of either agent alone [108].

There have been case reports highlighting a phenomenon in which local radiotherapy in 
combination with immune checkpoint blockade was associated with regression of metastatic 
cancer at a distance from the irradiated site, known as the abscopal effect [109]. The biologic 
characteristics underlying this effect is thought to be due to the release of clastogenic factors 
from irradiated cells into serum inducing chromosomal damage in un-irradiated cells 
[110]. Furthermore, recent preclinical evidence showed ablative radiation-initiated immune 
response and tumor reduction were greatly amplified by immunotherapy [110,111], with 
radiation observed to enhance recruitment of TIL and upregulate PD-L1 expression [111]. 
Recent conflicting evidence has emerged demonstrating increased subclonal (present only in 
a subset of tumor cells) neoantigens from previous cytotoxic treatment resulted in increased 
intratumoral heterogeneity and reduce response to checkpoint blockade [112]. Hence, more 
immunotherapy trials with robust translational framework will be required to further explore 
these observations while taking into account their inherent toxicities.

6. Combination with vaccines
Preclinical studies have observed dramatic synergy between tumor vaccines and the immune 
checkpoint inhibitors previously described in poorly immunogenic models [113,114]. 
Multiple vaccine interventions that activate de novo immune response may not appear to 
induce tumor regression because tumors up regulate immune checkpoint ligands as an 
escape mechanism [1]. Hence combining these two approaches may induce increase efficacy 
in patients that would not have responded to either therapy alone. GM-CSF is a potent 
immune adjuvant to DC maturation used in several tumor vaccine trials. When combined 
with CTLA-4 blockade, this vaccine combination was found to increase inflammatory 
infiltrates and tumor regression [66,67], suggesting that vaccine-induced anti-tumor T cells 
were present within the tumor but energized owing to CTLA-4 co-inhibition. Similarly, in a 
preclinical study combining vaccines and PD-1 blockade, mice receiving combination therapy 
had increased overall survival and decreased tumor growth compared to either therapy alone 
[113] proving that synergistic mechanisms exist with bolstering tumor antigen presentation 
and T cell priming with checkpoint immune blockade.

CONCLUSION

Promising preclinical and clinical data supports the further development of immune 
checkpoint inhibitors in gynecologic cancers. However, despite encouraging clinical 
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outcomes, only a proportion of patients benefit from this treatment. As such, concerted 
efforts to define biomarkers that can predict the groups of patients and the type of cancer 
that will respond to immune checkpoint blockade are urgently required. The challenges 
faced reflects the complex interplay of host immune-cell populations within tumor and TME 
which is further complicated by intra- and inter-tumoral heterogeneity [115]. As the era of 
immunotherapy dawns on the field of oncology, the ability to fully elucidate this complex 
network will be the crucial step in facilitating a personalized approach to target tumors on 
several fronts, and ultimately improving patient outcomes.
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