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Abstract

UVA/riboflavin corneal cross-linking (CXL) is a common used approach to treat progressive

keratoconus. This study aims to investigate the alteration of corneal stiffness following CXL

by mimicking the inflation of the eye under the in vivo loading conditions. Seven paired por-

cine eye globes were involved in the inflation test to examine the corneal behaviour. Cor-

nea-only model was constructed using the finite element method, without considering the

deformation contribution from sclera and limbus. Inverse analysis was conducted to cali-

brate the non-linear material behaviours in order to reproduce the inflation test. The corneal

stress and strain values were then extracted from the finite element models and tangent

modulus was calculated under stress level at 0.03 MPa. UVA/riboflavin cross-linked corneas

displayed a significant increase in the material stiffness. At the IOP of 27.25 mmHg, the

average displacements of corneal apex were 307 ± 65 μm and 437 ± 63 μm (p = 0.02) in

CXL and PBS corneas, respectively. Comparisons performed on tangent modulus ratios at

a stress of 0.03 MPa, the tangent modulus measured in the corneas treated with the CXL

was 2.48 ± 0.69, with a 43±24% increase comparing to its PBS control. The data supported

that corneal material properties can be well-described using this inflation methods following

CXL. The inflation test is valuable for investigating the mechanical response of the intact

human cornea within physiological IOP ranges, providing benchmarks against which the

numerical developments can be translated to clinic.

1. Introduction

Research in corneal cross-linking (CXL) has gradually developed a tool that became the first-

line treatment for treating keratoconus. The prevalence of this disease ranges from 1 in 375 in

the general population [1]). This technique creates new covalent cross-links between molecules

and extracellular matrix within stroma to strengthen and stabilize the structure of cornea.
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Collagen cross-linking using the conventional Dresden protocol is initially thought to affect

the mechanical properties, ultrastructure, hydrodynamic and enzymatic behavior of the cornea

[2–7]. To assess the effectiveness of this treatment, biomechanical characterization provides

quantitative measurements to assess the degree of cross-linking. Many studies reported a sig-

nificant increase in the corneal stiffness through experimental studies on cross-linked corneas

measured by tensile or inflation tests [6,8–10]. However, various range of stiffness is proposed

due to the variations in methodologies used for experimental settings. In addition, the esti-

mated tangent modulus using tensile test is considerably higher than the measurement from

inflation, which can vary by the order of magnitude. Therefore, in this study, a unique inflation

test rig was designed and developed which allowed characterisation of intact porcine eye

globes for more accurate measurement and predictability of CXL.

The stiffness of the cornea was determined by its nonlinear geometry and material behav-

ior. The material behavior was highly related to its micro- and ultra-structure, including the

hydration, spatial fibril density and arrangement [11]. Uniaxial tensile test is the most com-

monly used technique for the measurement of corneal stiffness. However, the mechanical

measurements may be inaccurate due to its technique destructive specimen preparation with

disrupted fibril orientations, inconsideration of corneal curvature, and non-uniform stress dis-

tribution while applied the stretching force along the corneal strip [12–14]. Therefore, inflation

test has been developed and attempted to address this issue by mimicking the in vivo loading

conditions of the eye, which is considered to be more reliable and closely related to in vivo con-

ditions than uniaxial tensile test. It is expected to produce the average behavior of intact cor-

neas due to the stromal anisotropy resulting from the preferred collagen fibril orientation.

Inflation test analyses the degree of extension of the cornea in response to the change in IOP.

During the test, a variety of monitoring techniques including the use of laser or DIC can be

applied to track displacements [15–17]. For post-test analysis, the finite element (FE) model-

ling technique is employed to construct numerical models of whole corneas or eye globes, and

the material stress-strain relationships can be adjusted until the predicted surface deformations

of the models matched those observed experimentally. This technique has provided an accu-

rate means of determining the tissue’s tangent modulus [18,19].

Due to the non-uniform curvature with variable thickness, both the external and internal

geometries of eye globe were obtained to generate the corneal model. A model developed for the

cornea using entire eye globe allowed appropriate realistic displacement at the limbus, the dis-

placements at the limbus were tracked during the experiment and then introduced at the bound-

ary of the corneal FE model. This approach of performing a cornel only model was to establish a

biomechanical model that can mimic the functional response of a real eye with the reduced geo-

metrical complexity and increased efficiency of the computational calculation. Paired eye globes

were used to examine the intact corneal behaviors, with one as the test sample with CXL treatment

and the other as its non-treated control in PBS. Through inverse analysis, non-linear material

behaviours were better understood with the effect of Dresden cross-linking protocol on stiffness

of the tissue. This study was also the first one to consider the stiffness of cornea as a whole follow-

ing CXL. These results may potentially supervise the further modelling of CXL treatment in order

for the accurate surgical prediction, which may allow clinicians to estimate the severity of kerato-

conus and accomplish the direct comparison with the refractive outcomes in practice.

2. Method

2.1. Specimen and preparation

Seven paired fresh porcine eyes were obtained from a local abattoir (Morphets, Tan house

farm, Widnes) and tested within 6–9 hours after death. Soft muscular tissue was removed with
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surgical scissors. The superior direction was marked and the eye globe was placed in a custom-

ized compartment for accurate needle insertion through the posterior pole. The internal eye

components were removed through the posterior pole using a 14G needle. The needle was

then lightly glued around the posterior pole and the intra-ocular cavity was washed with 5 to 6

ml PBS (Sigma, Dorset, United Kingdom). The outer surface of the globe was continually kept

hydrated by applying PBS every 2–5 minutes. Random speckles were applied on the globe by

lightly spraying a waterproof and fast drying black paint to facilitate deformation tracking in

post-analysis. The prepared specimen was then placed into a custom-designed eye chamber

filled with PBS, and transferred onto the inflation rig (Fig 1).

2.2. Dresden protocol

The right eyes of the pared specimens were prepared for CXL prior to inflation test. The proce-

dure was performed following conventional Dresden protocol [20], with the anterior surface

of the corneas applied with 5 mL of 0.1% riboflavin in dextran at 3-minute intervals treating

for 30 minutes. UVA (370 nm) illumination at 3 mW/cm2 (Opto Xlink; Mehra Eyetech Pvt.

Ltd., Delhi, India) was then performed for further 30 minutes. Topical dosing of riboflavin

drops was continued during the irradiation.

2.3. Test rig

The inflation test rig provides full-field observation of ocular response to uniform intraocular

pressure (IOP) changes. The physical test equipment is fully bespoke having been designed

and built in-house (Fig 1). The equipment features closed loop control software written in Lab-

VIEW (version 10.0.1, RRID:SCR_014325) to regulate IOP while collecting real-time data by

triggering cameras to take pictures of the globe. The obtained images are used for measure-

ment of deformation across the globe. The specimen was clamped in a horizontally placed eye

Fig 1. Inflation test equipment. (A) inflation setup with front cover removed, (B) camera array showing angles between cameras

and distance from cameras to eye chamber (placed in the centre).

https://doi.org/10.1371/journal.pone.0240724.g001
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chamber with high precision real-time laser (LK-2001, Keyence, UK) pointing towards the api-

cal displacement. An array of six high resolution digital cameras (18.0 megapixels, 550D,

Canon, Tokyo, Japan) surrounding the eye chamber and a pressure adjusting tank was placed

vertically to inflate the eye while taking synchronous images. The camera setup shown in Fig

1B allows an angle of 25˚ within each pair and an angle of 120˚ between each set.

2.4. Testing control and protocol

A custom-built LabVIEW software was used to tightly control the pressure. The experiments

started by 3 pre-conditioning cycles. The pre-conditioning cycles were to ensure the eye was

sitting comfortably on the needle, and the tissue behavior was repeatable [15] An initial pres-

sure of 2.5 mmHg was used to balance the external pressure applied by PBS in the pressure

chamber, and was therefore considered a zero-pressure point for the inflation test.

Specimens were loaded to a maximum internal load at a medium rate of 0.55 mmHg/s for

each cycle. During each cycle the eye was allowed to relax for a period of 2 minutes which was

obtained experimentally to allow tissue to fully recover to its relaxation state. The behavior of

specimen in the final loading cycle was used for post-analysis.

2.5. Thickness measurement

After the experiment was completed, the eye was removed from the test rig and dissected into

anterior and posterior parts. Eight meridian profiles of discrete thickness measurements were

selected as shown in Fig 2. The thickness at each desired point on each meridian line was

determined using an in-house developed Thickness Measurement Device (TMD) (LTA-HS,

Newport, Oxfordshire, UK) which was developed by the Biomechanical Engineering group to

measure the thickness of biological tissue. A vertical measurement probe was located at a

height of about 30 mm above the centre point of the support. The probe moved down with a

controlled velocity until it reached the surface of the tissue. By precisely knowing the original

distance between the initial position of probe and the surface of support, the measured value

was recorded as the thickness of the tissue.

2.6. Geometric modelling

To decrease the geometrical complexity and understand the effect of CXL treatment on cor-

neas where the application of interest is, we built up a corneal-only model by excluding the

sclera part from a whole globe model. In this corneal model, the orphan mesh of geometry was

constructed with Abaqus 6.13 (Dassault Systèmes Simulia Corp., Rhode Island, USA) using

bespoke software. The 2592 elements with 8611 total nodes adopted the hybrid and quadratic

Fig 2. Thickness measurement was performed on each sample along the eight meridian lines with four points

measured per line.

https://doi.org/10.1371/journal.pone.0240724.g002
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type with triangular cross-section (C3D15H), which were arranged in 12 rings across the cor-

nea surface and 3 layers through the thickness. Corneal apex was restrained against displace-

ment in X- and Y-directions, whereas limbus was restrained in the X-, Y-, and Z-direction.

The intraocular pressure was distributed on the posterior surface of the cornea. The apical dis-

placement of the entire cornea was extracted by the displacement of corneal apex minus the

average displacement of limbus in the anterior-posterior direction.

2.7. Deformation measurement by Digital Image Correlation (DIC)

The image profiles obtained were analyzed using a 2D DIC method named Particle Image

Velocimetry (PIV) to obtain deformations on the surface of the eye (Fig 3) [21,22]. PIV

compares an un-deformed and deformed image pairs of specimen surface which was speck-

led to present the local displacements within the selected subsets. Three discrete locations

including corneal apex and limbus were measured from each camera (Fig 3B). As only cor-

nea was considered in the study, the cornea deformation was calculated by subtracting the

average displacement of limbus in the anterior-posterior direction from the displacement of

corneal apex.

2.8. Determining the corneal material properties

An in-house built software that uses Particle Swarm Optimization (PSO) as an optimization

strategy was developed in Matlab (RRID:SCR_001622) to conduct the inverse analysis optimi-

zation due to its success in the engineering applications [23–25]. PSO evaluates the fitness of

the apical displacement between simulation and experiment and iterates over the different val-

ues of material parameters to decrease the error until the best fitness appears. The material

constitutive model chosen to demonstrate the material behavior of ocular tissue during load-

ing was Ogden model as presented in Eq 2.1, utilized in a number of previous studies on soft

tissues [26,27].

W l1; l2; l3ð Þ ¼
XN

i¼1

2mi

a2
i

�l
ai
1 þ

�l
ai
2 þ

�l
ai
3 � 3
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þ
XN

i¼1

1

Di
ðJ � 1Þ

2i
ð2:1Þ

where W is the strain energy density; �l i are the deviatoric principal stretches, �l i ¼ J � 1
3li; λi are

the principal stretches; J denotes the determinant of deformation gradient and describes the

Fig 3. A demonstration of Particle Image Velocimetry (PIV). (A) screen capture of the manual tagging of desired points. (B) result of

deformed tagged points (corneal apex and limbus). mm/pixel = 1.

https://doi.org/10.1371/journal.pone.0240724.g003
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change of material volume; the second term was ignored as the cornea tissue was incompress-

ible (J = 1). αi and μi are material parameters; N is the function order and N = 1 was used in

this study.

The Ogden material model order one relies on two parameters of μ (shear modulus) and α
(strain hardening exponent) to define the non-linear material behavior. The use of first order

material model (N = 1) reduced the complexity of optimization and thus the computational

cost as a result of less variables. The values of material parameters α and μ represented the out-

put of the inverse modelling process that resulted in the highest fitness of simulation against

inflation experiment. Therefore, the objective function was to minimize the root mean squared

(RMS) of deformation, which was calculated as shown in Eq 2.2:

RMS% ¼
1

M

XM

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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PN
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i;j Þ
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d
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X100 ð2:2Þ

where M is the number of measurement locations; N is the number of pressure levels; δi,j is the

deformation at each particular pressure level i and location j.
The design optimization process adjusts the value of μ and α within the constitutive model

while setting a wide lower and upper boundary range (lower boundary = [0.005, 50]; upper

boundary = [0.2, 200]). The error limit of RMS was set as 10%, which terminated the optimiza-

tion once the error is lower than the limit. With these parameters, stress and strain could then

be extracted from the numerical modelling results. The uniaxial-mode stress was calculated

through obtained μ and α in Table 2, based on the previously described method [28] and then

tangent modulus was calculated numerically from the gradient of the resulting stress-strain

curve by Eq 2.3:

E ¼
Ds

Dε
ð2:3Þ

Where σ is stress and ε is strain. The strain difference Δε in this study is 0.2%, the correspond-

ing stress values at each strain value were presented as shown in Fig 6.

2.9. Statistical analysis

The statistical evaluation was performed using SPSS software version 18.0 (IBM Corp. USA,

RRID:SCR_002865). Results are expressed as means ± standard deviation (SD) and significant

differences are calculated using one-way analysis of variance (ANOVA) with Turkey’s HSD

post-hoc test. Significance differences accepted where p< 0.05.

3. Results

By providing the pressures from posterior pole to the corneal apex with respect to IOP, the

measurements of displacement indicate the response of the eye globes. The thickness varia-

tions across the whole cornea were demonstrated in Table 1. Four points per line across the

Table 1. Average thickness measurements across the whole cornea at four different points. The thickness was measured after the inflation test.

Corneal regions No. of Samples Thickness of PBS Control Eye (mm) Thickness of Cross-linked Eye (mm) p value

Central cornea 7 1.34 ± 0.09 0.95 ± 0.08 0.003

Central-peripheral 7 1.19 ± 0.05 1.03 ± 0.07 0.02

Peripheral-limbus 7 1.17 ± 0.06 1.03 ± 0.06 0.02

Limbus 7 1.14 ± 0.02 1.07 ± 0.05 0.06

https://doi.org/10.1371/journal.pone.0240724.t001
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cornea were identified as the central cornea, central-peripheral, peripheral-limbus, and limbus.

The mean thickness measurements following CXL treatment from central to limbus were

0.95 ± 0.08 mm, 1.03 ± 0.07 mm, 1.03 ± 0.06 mm and 1.07 ± 0.05 mm. Comparing to the con-

trol eyes, the measurements were recorded as 1.34 ± 0.09 mm (central, p = 0.003), 1.19 ± 0.05

mm (central-peripheral, p = 0.02), 1.17 ± 0.06 mm (peripheral-limbus, p = 0.02) and

1.14 ± 0.02 mm (limbus, p = 0.06) accordingly. The result demonstrated a statistically signifi-

cant reduction in thickness in the central and peripheral areas (29±8% and 13±7%, respec-

tively) which were affected by CXL.

To compare the controlled and cross-linked specimens, the material representations have

been derived for corneal regions. It can be considered by the numerical parameters α and μ, in

which μ is relating to the initial shear modulus and α to the non-linearity. Material behavior

was compared firstly by the values of optimized material parameters α and μ which can repro-

duce the displacement curves of cornea apex. The inverse analysis resulted in a RMS error of

5.58 ± 1.79% (approximately 17 μm), which showed that the simulation closely matched the

experimental results. The values of material parameters α and μ for all specimens using the

inverse modelling procedure were generated and shown in Table 2. The average values of μ
were 0.02 ± 0.012 and 0.01 ± 0.002 (p = 0.157), and the average values of α were 94.3 ± 28.9

and 65.1 ± 15.9 (p = 0.037) in CXL and PBS control, respectively. The specimens following

CXL showed an increase of 45.4 ± 28.9% and 66.1 ± 110.9% in the values of α and μ. The

greater values of material parameters indicated a stiffer material behavior, resulting in 27.9 ±
9.5% less displacement of cornea apex in CXL (307 ± 65 μm) than PBS (437 ± 63 μm) speci-

mens at the IOP of 27.25 mmHg (Fig 4). The FE model provided a match of the displacements

obtained from the experiment. Experimental and numerical results were examined up to an

IOP of 27.5 mmHg, which demonstrated the progressive increase in corneal apex displace-

ment as shown in Figs 4 and 5.

The corneal stress and strain curves were then extracted from the FE models and tangent

modulus was calculated from the resulting stress-strain behavior. All specimens demonstrated

the nonlinear behavior with an initial low tangent modulus increasing gradually under higher

stress. The curve of tangent modulus (Et) versus stress (σ) for each cornea was shown in Fig

6A. The overall stiffening effect was demonstrated by the ratio of the tangent modulus larger

than 1 at all stress levels (Et Cross-linking / Et Control PBS) (Fig 6B). The average ratio values stayed

between 1.4 and 1.5 throughout the inflating with IOP. Comparisons performed on tangent

modulus ratios at a stress of 0.03 MPa close to the physiological level [29], a 43% ± 24%

increase in tangent modulus was observed in the corneas treated with the Dresden protocol

(Et Cross-linking: 2.48 ± 0.69 vs Et Control PBS: 1.73 ± 0.40, p = 0.029).

Table 2. Optimised material parameters α and μ obtained for all specimens from the corneal region using inverse

modelling procedure.

Parameters Control (left eye) CXL (right eye)

μ μ μ μ
EYE1 0.0102 96.07 0.0403 112.54

EYE2 0.0100 57.30 0.0139 73.31

EYE3 0.0091 64.69 0.0126 80.93

EYE4 0.0144 75.52 0.0112 151.22

EYE5 0.0082 57.65 0.0088 90.42

EYE6 0.0096 53.10 0.0085 84.40

EYE7 0.0133 51.36 0.0288 67.62

https://doi.org/10.1371/journal.pone.0240724.t002
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4. Discussion

In this study, porcine eyes were used to investigate the biomechanical behavior over the entire

cornea, whole eye globes were used in generating the corneal FE model. The inverse FE

method used to optimize material behavior parameters was found to provide an adequate fit

between the experimental and numerical pressure-displacement behavior following CXL treat-

ment. A significant increase was found in stiffness after CXL and a 29% reduction in corneal

apical rise with increase IOP during inflation.

It has been reported that CXL significantly increased the stiffness of porcine corneas by

about 42% when subjected to high pressure (300 mmHg) using inflation, but no significant dif-

ference was observed under physiological range of pressure (15 mmHg) [30]. A possible expla-

nation could be due to the too low loading stress to observe the changes in polar distribution

of fibril networks (reflecting straightening of crimp or reorientation of lamellae). The stiffen-

ing effect of cross-linked porcine cornea obtained using inflation in this study has been dem-

onstrated to be relatively small compared to that from tensile test [6,31]. The difference in

mechanical response depends on the experimental strain rate, the regions analyzed, tissues’

anisotropy, and the constitutive models presented. Due to the anisotropic nature of the corneal

tissue, the corneal strength is explained not only through the variations in the structure of

Fig 4. IOP-displacement curves of experimental and numerical results for each individual paired eye.

https://doi.org/10.1371/journal.pone.0240724.g004
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collagen and its interactions with extracellular matrix, but also through the orientation of col-

lagen fibrils according to the direction of the load. Collagen fibrils re-orientate themselves to

the direction of the applied load, which further stiffen the tissue behavior [32]. The procedure

involved in tensile test has some inherent deficiencies such as non-uniform stress distribution

across the curved corneal strips, which have reduced the reliability of this method [12]. It has

been reported that longitudinal fibrils are found in regions supporting tensile loads, and trans-

verse fibrils corresponds to regions under compressive loading or loading in orthogonal direc-

tion [32,33]. Tensile and inflation testing follow different loading orientations in measurement

of corneal mechanical properties. Tensile testing induces a change in collagen fibrils’ align-

ment towards the load direction while inflation testing ensures the tissue to behave closer to

the in-vivo conditions.

Additionally, the mathematical analysis of the present inflation testing was built on a num-

ber of assumptions of corneal material which was modelled as a homogenous and hyper-elastic

material properties. The analysis in the current study did not take into account the variation of

material stiffness between the corneal epithelium, endothelium and stroma [34], and the pre-

ferred orientation of collagen fibrils [35]. For these reasons, the analysis is expected to produce

the characteristic behaviors of intact corneas which were considered as a whole in numerical

simulations process.

Previous inflation study on trephination specimens which showed a rise in the apex as a

function of increased IOP was very similar to the observations in porcine corneas [12].

Although the current study cannot rule out a contribution of the entire eye motion to the api-

cal radius displacement, the behaviour which was observed in corneal apical rise was consis-

tent in 7 pairs of eye globes. It was reported that non-cross-linked corneas did not fully return

to the initial apical position after pressurized. However, cross-linked corneas tended to return

to the original values both for apical position and corneal thickness, showing a more elastic

behaviour than then non-cross-linked cornea [6]. The current study did not examine the hys-

teresis properties before and after CXL, but the results are consistent with the cross-linked cor-

nea being stiffer.

Limitations and future work

Although this study used a corneal model instead of a whole eye model, which was thought to

be crucial to establish a biomechanical model mimicking the refractive function of a real eye

[36–38]. The full parametric characterization of human corneal deformation as a function of

pressure will be valuable to enhance the predictability of FE modelling of the cornea and

Fig 5. Finite element model of a tested porcine cornea. Image viewed from the side of (A) control and (B) CXL eyes.

https://doi.org/10.1371/journal.pone.0240724.g005
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Fig 6. The ratio of tangent modulus of paired samples. (A) the tangent modulus vs stress behaviour of right and left eye from 7

paired eyes, (B) the ratio of tangent modulus between control and CXL (n = 7). Values from each individual pair eye tested are

indicated by gray lines. Average stiffening ratio (mean ± SD) indicated by the bold line and error bars. The red dashed line

represented the value of 1. Gray shaded region represents 0.03 MPa.

https://doi.org/10.1371/journal.pone.0240724.g006
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ultimately the predictability of the procedure. One limitation of the study was the boundary

condition put on the limbus as fixed. This condition restricted the expansion of limbus in the

simulation, which could underestimate the stiffness of cornea in both cross-linking treated

and untreated eyes due to the externally introduced stiffness of the boundary condition. As the

study chose the apex point in the calibration of material parameters, the effect of limbus expan-

sion was considered minor. However, it was suggested to quantify the effect in our further

study. Open questions such as the apparent anisotropy of the intact porcine cornea in the bio-

mechanical response and in response to treatment are yet to be confirmed in humans and of

interest in pathologic or keratoconic corneas.

Keratoconus is regarded as a degenerative disease affecting the corneal collagen networks,

in which a degeneration of the collagen fibril structure and an increased propensity of fibril

sliding could give rise to altered macroscopic morphology [39,40]. Therefore, using different

methodologies may have profound impacts on the mechanical outcome measured, especially

for the comparison of normal and diseased tissue. Further work will be needed to evaluate the

effects on keratoconic corneas instead of normal corneas.

5. Conclusion

The current study has provided experimental data of the significant changes in corneal thick-

ness and apical rise with increased IOP after CXL. The comparisons of stiffness and analysis of

inverse FE modelling presented in this study provided important information relating to the

effectiveness of CXL in biomechanical behavior across the corneas, which can be useful in

applications where the prediction of the modifications of CXL protocol in corneal material

stiffness is required. Although only corneal model was performed in this study, the experimen-

tal data are valuable input parameters in FE models that will allow a better understanding and

increased predictability of the CXL treatment.
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