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SUMMARY

Rain-on-snow (ROS) events are commonly linked to large historic floods in the
United States. Projected increases in the frequency and magnitude of ROS
multiply existing uncertainties and risks in operational decision making. Here,
we introduce a framework for quality-controlling hourly snow water content,
snow depth, precipitation, and temperature data to guide the development of
an empirically based snowpack runoff decision support framework at the Central
Sierra Snow Laboratory for water years 2006–2019. This framework considers
the potential for terrestrial water input from the snowpack through decision
tree classification of rain-on-snow and warm day melt events to aid in pattern
recognition of prominent weather and antecedent snowpack conditions capable
of producing snowpack runoff. Our work demonstrates how (1) present weather
and (2) antecedent snowpack risk can be ‘‘learned’’ from hourly data to support
eventual development of basin-specific snowpack runoff decision support sys-
tems aimed at providing real-time guidance for water resource management.

INTRODUCTION

Reliable hydrometeorological data in mountain regions benefit society when applied to decision support

tools at relevant scales, helping decision makers allocate valuable and limited resources to better prepare

for potential flooding in order to protect life and property (Uccellini and Ten Hoeve, 2019; White et al.,

2013; Ralph et al., 2014; Siirila-Woodburn et al., 2021). Agencies such as the National Weather Service (Uc-

cellini and Ten Hoeve, 2019; NWS, 2020), National Oceanic and Atmospheric Administration (NOAA, 2020),

andWorldMeteorological Organization (WMO, 2021) are transitioning fromdeterministic forecasts toward

probabilistic forecasts with risk thresholds that communicate uncertainty to enable targeted messaging for

their partners through impact-based decision support services. The National Weather Service provides

forecasts, briefings, and watches, warnings and advisories to inform decision makers and the public of po-

tential weather- and water-related hazards. Essential elements of information and impacts for probabilistic

hazard information decision support services consider specific hazards, timing, peak conditions, as well as

compounding and/or cascading impacts. Currently, there is no decision support service to provide situa-

tional awareness regarding the timing and peak conditions of changes in the snowpack during warm,

windy, and wet winter storms. To address the lack of operational guidance on whether mountain snowpack

will reduce runoff, act to enhance it, or have no effect (Brandt et al., 2022a), we propose the development of

a snowpack runoff decision support framework, which aims to add another link in the chain of essential in-

formation for agencies like the National Weather Service to examine the likelihood and impact of

midwinter rain-on-snow (ROS) runoff.

The snow-dominated Sierra Nevada is a major water source for California and western Nevada (He et al.,

2016; Sterle et al., 2019). Forming part of the western margin of the North American Cordillera, the Sierra

Nevada trends north-northwest to south-southeast and is approximately 640 km long and 110 km wide. It

receives about half of its annual 1,580 mm precipitation in the core Northern Hemisphere winter months

(December–February) (Chang et al., 2015) with over 70% falling as snow in the upper elevations (Lynn

et al., 2020). Spring snowmelt from snow accumulated during winter provides approximately one third of

California’s water supply (He et al., 2016) and is responsible for refilling reservoirs for domestic water supply

(Dettinger and Anderson, 2015), hydropower generation (Vicuna et al., 2008), irrigation (Godsey et al.,

2014), groundwater recharge (Jasechko et al., 2014), and recreation (Ligare et al., 2011).

The Sierra Nevada, like other maritime mountain ranges worldwide, is prone to ROS. ROS is an efficient

generator of runoff that can produce 50%–80% higher peak flows than spring snowmelt (Kattlemann,

1997; Kattelmann and Dozier, 1999; Hatchett and McEvoy, 2018). As a consequence, rainfall and snowmelt
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Figure 1. Correspondence between soil moisture change and streamflow response in nearby watersheds during

four ROS events

(1–4). Hourly soil moisture data (VWC%) at the Central Sierra Snow Laboratory for water year (WY) 2017 at 5 cm (light blue),

20 cm (medium blue), and 50 cm (dark blue) corresponds with stream flow response at three US Geological Survey gages:

(A) Truckee River at Reno, (B) Ward Creek, and (C) North Fork of the American River at North Fork Dam.
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together can produce greater floods than either rainfall or snowmelt alone (Harr, 1981; Kattlemann, 1997;

Singh et al., 1997; Marks et al., 1998). However, skillfully forecasting ROS events remains a significant chal-

lenge (Musselman et al., 2018; Henn et al., 2020). The lack of operational guidance creates a need for tools

to provide situational awareness and decision support in both transitional (ephemeral) and snow-domi-

nated regions (Siirila-Woodburn et al., 2021; Hatchett et al., 2020; Uccellini and Ten Hoeve, 2019).

This long-standing historic decision support need is accelerating with recent research suggesting ROS-

prone regions, including the Sierra Nevada, are approaching a period of ‘‘peak ROS’’. Peak ROS results

from the juxtaposition of a warming climate experiencing more precipitation falling as rain but before

warming induces a persistent decline in snowpack volumes (Siirila-Woodburn et al., 2021). More frequent

rainfall is projected to increase the magnitude and frequency of ROS events during the 21st century result-

ing in 20%– > 100% increase in runoff with the greatest ROS flood risk impacting the Sierra Nevada (Mussel-

man et al., 2018). The second signal is a continuation of a historical trend in declining snow volumes with

projected losses of 30%–85% by 2100 (Siirila-Woodburn et al., 2021). These warming-induced changes are

compounded by natural interannual snowpack variability (Dettinger and Cayan, 1995; Cayan and Georga-

kakos, 1995). Despite interannual changes, there is a trend across the western US of increased midwinter

snow melt (before peak SWE), but the role of ROS in midwinter snowmelt has not yet been analyzed (Mus-

selman et al., 2021). The numerous challenges facing water resource managers as the region approaches

‘‘peak ROS’’ will be further exacerbated by an increasing demand for consumptive water uses (OECD,

2012), emphasizing the timely need for midwinter snowpack runoff decision support to optimize water

resource management.

Effective flood forecasting benefits from accurate meteorological predictions but potential hazard also de-

pends on antecedent basin conditions (Oakley et al., 2017; Ralph et al., 2013; Georgakakos, 2006; Norbiato

et al., 2008). Observational networks are key components in providing antecedent basin information for

extreme event analysis to improve the understanding of physical processes linking hydrometeorological

forecasts to impacts as well as real-time information for decision support (Hatchett et al., 2020; Sumargo

et al., 2020; Ralph et al., 2013; Sterle et al., 2019; White et al., 2019). High temporal frequency resolution

data from these networks are particularly valuable in providing event-based information. For example,

hourly data from the US Department of Agriculture Natural Resource Conservation Service (NRCS)

SNOw TELemetry (SNOTEL) network provides critical event-based information such as terrestrial water

input (TWI) from the snowpack (Sutcliffe, 2014; Julander and Holcombe, 2005; Flint et al., 2008), snowmelt

(Jennings and Jones, 2015), and density changes (Avanzi et al., 2014). At the University of California, Ber-

keley’s Central Sierra Snow Laboratory (CSSL) SNOTEL station, midwinter TWI from the snowpack corre-

sponds not only with landfalling atmospheric rivers but also with increasing streamflow in nearby basins

(Figure 2) on both the windward and the leeward sides of the Sierra Nevada (Figure 1; (Sterle et al.,

2019; Hatchett et al., 2016)). The visible correlation between soil moisture and streamflow response is
2 iScience 25, 104240, May 20, 2022
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Figure 2. Study area location and climatological characteristics

(A) Map of the Central Sierra Snow Lab.

(B) Climograph based on water years 1988 through 2019 showing average (dark) and all-time (light) maximum (red) and minimum temperature (blue) on the

left y axis. The right y axis shows the distribution of monthly accumulated precipitation (green) and snow water equivalent (grey).
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the motivation for our primary research question: can we use hourly data from existing snow monitoring

networks to develop a decision support tool to aid in high-impact ROS events?

A knowledge gap in snow hydrology stems from a limited understanding of runoff timing and generation,

specifically during ROS events (Colbeck, 1972; Kattelmann, 1985; Schneebeli, 1995; Kattelmann andDozier,

1999; McCabe et al., 2007; Mazurkiewicz et al., 2008; Rössler et al., 2014). Midwinter ROS causes rapid grain

growth due to capillary action concentrating the flow of water at the flow finger, aiding in the formation of

preferential flow paths ahead of the leading edge of the newly wetted snow (wetting front) (Church, 1948;

Colbeck, 1976; Marsh and Woo, 1984; Kattelmann, 1985; Marsh, 1987, 1999; McGurk et al., 1988; Kattel-

mann and Dozier, 1999; Hirashima et al., 2010; Katsushima et al., 2013). Once formed, the size and spatial

extent of preferential flow paths varies depending on antecedent snowpack conditions and prior wetting

events, which makes ROS runoff generation difficult to model (Marsh and Woo, 1984; Wever et al., 2014b).

Current snowmelt models use a degree day algorithm (e.g. SNOW-17 (Anderson, 2006)), temperature in-

dex (e.g. HEC-HMS (Bartles et al., 2021), or more complex mass and energy balance equations (e.g.

ISNOBAL (Marks et al., 2001); SNOWPACK (Wever et al., 2014b, a); SNODAS (Cho and Jacobs, 2020)) to

calculate snowmelt. These models assume a uniform wetting front, do not account for preferential flow,

and require snowmelt to occur to calculate TWI as a product of snowmelt. Cold content is a key parameter

used in energy balance models to calculate the energy required to raise the temperature of the snowpack

to 0�C and transition to latent heat exchange in order to melt snow. However, the snowpack does not need

to become isothermal (0�C throughout) to transmit water during ROS (McGurk et al., 1988; Marsh andWoo,

1984). The dependency on these models to satisfy cold-content requirements could, in part, explain why

snowmelt models struggle to reliably estimate event-based TWI during ROS (McCabe et al., 2007; Rössler

et al., 2014; Clark et al., 2017; Hirashima et al., 2010).

To address the knowledge gap associated with during ROS events and support the generation of an

empirically based snowpack runoff decision support framework, three fundamental methods were

applied consecutively to build the snowpack runoff decision support framework (see STAR Methods

for full details). First, we developed a TWI identification algorithm, which uses SNOTEL soil moisture

data to classify periods of midwinter TWI (STAR Methods Terrestrial water input (TWI) identification al-

gorithm and Filtering Data for Midwinter Snow-cover). Second, we developed Quality Assurance (QA)

and Quality Control (QC) methods (STAR Methods Quality control (QC) and quality assurance (QA)

methods and Quality control (QC) methods by observation type) to prepare hourly data for event-based

learning as a key component of our exploration. Hourly SNOTEL data are not subject to the same quality

control procedures as daily data and a skillful tool requires quality input data. The third method used

decision tree classification (STAR Methods Quantification and statistical analysis) to simultaneously

test the feasibility of automated classification of TWI drivers as ROS or warm day melt and measure

the value of the QA/QC process by testing clean and raw data. Because we accurately classified TWI

drivers, we then performed a frequency analysis of present weather and antecedent snowpack conditions

for each TWI driver. This process aimed to demonstrate what can be learned about midwinter runoff gen-

eration from hourly data and develop the initial framework for a more broadly applicable snowpack

runoff decision support tool.

Using data fromCSSL spanning water years 2006–2019 (Figure 2), our paper aims to demonstrate how hour-

ly data aid understanding of event-based changes and help to improve decision support through (1) the

dissemination of runoff-relevant changes in the snowpack in real time, (2) pattern recognition of present

weather and antecedent snowpack conditions that contribute to midwinter TWI, and (3) the provision of

higher confidence validation data to advance the development of operational snowpack or hydrologic

models. We demonstrate the feasibility of snowpack runoff decision support by developing methods for

QA/QC, pattern recognition, and threshold identification at a single station as a testable framework for

regional development. We anticipate this framework could be applied beyond the ROS problem and

adapted for other environmental monitoring networks to aid the development of new or improved decision

support for other natural hazards.
4 iScience 25, 104240, May 20, 2022
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RESULTS

Our results are the outcome of cascading methods outlined in detail in the STAR Methods. The TWI iden-

tification algorithm (STAR Methods Terrestrial water input (TWI) identification algorithm), QA/QC of hourly

SNOTEL data (STARMethodsQuality control (QC) and quality assurance (QA) methods andQuality control

(QC) methods by observation type), and manual identification of TWI drivers as ROS or warm day melt

(STAR Methods Target variable: ROS or warm day melt TWI) were used in conjunction to test the feasibility

of automated decision tree classification of TWI driver and measure the value of data QA/QC (STAR

Methods Quantification and statistical analysis). The decision tree classification model proved accurate

and a frequency analysis was performed for over the midwinter training data (WYs, 2008–2019; STAR

Methods Filtering data for midwinter snow-cover) to aid in pattern recognition of present weather and

snowpack conditions for ROS and warm day melt TWI. Access to clean hourly data and the results from

these methods demonstrate what can be learned to minimize the ROS runoff knowledge gap. Finally,

the results from the frequency analysis were translated into the preliminary conceptual snowpack runoff de-

cision support framework. The successive results are described in detail in subsequent sections.
Soil moisture data can be applied to identify terrestrial water input (TWI)

The TWI identification algorithm developed with SNOTEL soil moisture data to identify periods of TWI

(STAR Methods Terrestrial water input (TWI) identification algorithm) resulted in a total of 782 h of TWI

with maximum soil moisture increases of up to 21% in 1 h (Feb 13, 2019). During one exceptional ROS event,

TWI occurred for up to 48 consecutive hours and soil was saturated at all three depths for 24 consecutive

hours (Jan 7–9, 2017). At least, 6 h of continuous TWI occurred on 25 days, all associated with ROS events. In

contrast to ROS, warm day melt-driven TWI lasted less than 3 h on average but not more than 5 h.

Periods of TWI identified by the algorithm were manually classified as ROS or warm day melt (STAR

Methods Target variable: ROS or warm day melt TWI). Of the 782 h of TWI, 499 h coincided with ROS,

264 h coincided with warm day melt, and 19 h could not be explained by ROS or warm day melt. Of the

anomalous 19 h, 16 h were misidentified by the algorithm and the remaining three instances could not

be explained by precipitation or temperature data. The 19 unidentifiable data points were excluded

from the study to address principal drivers of TWI from ROS and warm day melt. From the remaining

763 data points, ROS TWI accounted for 65.4% of all TWI events and warm day melt accounted for the re-

maining 34.6%.
Automated classification of TWI driver

Clean data improved model accuracy by up to 25.7% when classifying TWI drivers

The decision tree classification performed with raw and clean data quantified the added value the QA/QC

method had in classifying TWI drivers (STARMethodsQuantification and statistical analysis). The cross-vali-

dation of the model tested on each set of two consecutive water years and trained on remaining years for

clean and raw data (STAR Methods Decision Tree Classifier Criteria) demonstrates the value of the QA/QC

methods (STAR Methods Quality control (QC) and quality assurance (QA) methods and Quality control

(QC) methods by observation type) applied to the hourly data (Table 1). The model performance was

measured with accuracy (number of correct classifications) and F1 score (harmonic mean of the precision

and recall) (Pedregosa et al., 2011). On average, clean data were 95.5% accurate (standard deviation of

4.4%) with an average F1 score of 0.96 (standard deviation of 0.03). Raw data performed consistently worse

with an average accuracy of 84.0% (standard deviation of 5.3%) and an average F1 score of 0.859 (standard

deviation of 0.08). 2009 and 2010 performed the same because the data during TWI events did not need

significant correction and had a very small dataset to test on. On the other hand, WY 2018 and 2019

required extensive quality control during periods of TWI that improved the model accuracy by 25.7%.

On average for the study period, the clean data were 13.7% more accurate.

Our results demonstrate that randomized selection of test and training data for unbalanced data like is

collected at CSSL will not necessarily build the best model. The size of the test data is not consistent

between water years because the snow cover season is not consistent. Similarly, the results between

water years are variable because the number of ROS or warm day melt events is not consistent. Criteria

for the test and training data split benefits from a comprehensive understanding of the dataset (e.g.

length of the snow covered season, number of TWI events, number or ROS events, or warm day melt

events).
iScience 25, 104240, May 20, 2022 5



Table 1. Decision tree classification model cross-validation results

Test data parameters Clean data Raw data

Water years Data points Data size ROS data size Accuracy F1 score Accuracy F1 score

2006 & 2007 212 27.8% 62.3% 0.976 0.981 0.825 0.871

2007 & 2008 125 16.4% 36.8% 0.992 0.989 0.816 0.875

2008 & 2009 64 8.4% 40.6% 1.000 1.000 0.891 0.868

2009 & 2010 82 10.7% 40.2% 0.951 0.943 0.951 0.943

2010 & 2013 124 16.3% 26.6% 0.960 0.928 0.823 0.667

2013 & 2014 134 17.6% 45.5% 0.948 0.942 0.821 0.774

2014 & 2015 73 9.6% 80.8% 0.863 0.911 0.836 0.891

2015 & 2016 46 6.0% 91.3% 0.891 0.943 0.804 0.883

2016 & 2017 191 25.0% 88.5% 0.979 0.988 0.853 0.913

2017 & 2018 184 24.1% 90.2% 1.000 1.000 0.875 0.927

2018 & 2019 99 13.0% 80.8% 0.939 0.962 0.747 0.839

Amodel was built and testedon two consecutivewater years; the total test data side in number of points andpercent of data are

detailed along with the percentage of TWI events that were classified as ROS. Accuracy (number of correct classifications) and

F1 score (harmonic mean of the precision and recall) is provided as a measure of model improvement for clean versus raw data.
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Model results

The decision tree classification trained onWYs 2008–2019 and tested against WYs 2006 (wet year; four events)

and 2007 (dry year; two events) was selected to develop the framework model. The 2006 and 2007 test param-

eters had the highest number of test data points and the most representative distribution of ROS and warm

day melt events compared to the entire dataset; 62.3% (132 data points) were associated with ROS and 37.7%

(80 data points) were associated with warm day melt. The clean data model accurately classified 97.6% of TWI

drivers with an F1 score of 0.981 while the raw data model was 82.5% accurate with F1 score of 0.871 (Table 1).

The classificationmodel developed with clean data has four impure leaf nodes where a total of six warm day

melt events and three ROS events were incorrectly classified (Figure 3). The confusion matrix shows the

number of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) of the pre-

dicted values against the actual values with true identifying ROS and false identifying warm day melt TWI

for the model results and test data. The root node split identifies the variable that best splits the data and

themodel identified 12-h precipitation totals less than or equal to 0.75 mm for the root node. Following the

false classifications down the right-most side of the tree, the decision tree correctly classified 335 out of 338

samples as ROS by looking for and 6-h precipitation totals over 1.75mm. The first internal node to the left of

the root node correctly identified all 172 samples as warm day melt when 6-h maximum temperatures

greater than 0.45�C. The five samples classified as ROS when 12-h precipitation was less than 0.75 and tem-

peratures less than 0.45�C, the samples were manually identified as a lagged ROS release from the

February 13–14, 2019 ROS event.

Raw data are less reliable

The decision tree classification model was also built with raw data under the same criteria. The raw decision

treemodel has five impure nodes where 20 warm day melt samples and 10 ROS samples were incorrectly clas-

sified (Figure 4). There are three examples of data issues impacting themodel. Three leaves with negative pre-

cipitation values demonstrate the impact of diurnal flutter causing false decreases in precipitation. The classi-

fication of 12-h precipitation less than�67.5mmwas the result of the January 7–9, 2017 ROSevent that flooded

the station and damaged the pressure transducer. Events with 6-h maximum temperatures greater than 6.5�C
andmore than 7.5mmof precipitation in the last 2 h were classified as ROS, but this is an example of warmday

melt that caused a snow plug release (see STAR Methods 3.4.2 for information about snow plug releases).

Present weather and antecedent snowpack

Frequency analysis

The automated classification of TWI drivers as ROS or warm day melt (STAR Methods Decision Tree Clas-

sifier Criteria) derived from the TWI identification algorithm (STAR Methods Terrestrial water input (TWI)
6 iScience 25, 104240, May 20, 2022



Figure 3. Decision tree classification of ROS and warm day melt events from the cleaned data

Decision tree classification model (STARMethods Decision tree classification) for the cleaned data and confusion matrix for the results of the model and test

data illustrating the number of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) of the predicted values against the actual

values with true identifying ROS and false identifying warm day melt TWI. See STAR Methods Decision tree classification and Decision tree classifier criteria

for further detail.
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identification algorithm), QA/QC of hourly SNOTEL data (STAR Methods Quality control (QC) and quality

assurance (QA) methods and Quality control (QC) methods by observation type), and manual identification

of TWI drivers as ROS or warm day melt (STAR Methods Target Variable: ROS or Warm Day Melt TWI)

proved both feasible and reliable. Identifying TWI and classifying the driver as ROS or warm day melt fa-

cilitates pattern recognition of present weather and antecedent snowpack conditions with the potential

to generate runoff for each TWI driver. To build the snowpack runoff decision support framework, the fre-

quency of present weather and antecedent snowpack conditions were examined for the training data (WYs

2008–2019) using the manually classified TWI driver. The 6-h maximum temperature and 6-h precipitation

totals provide the distribution and frequency of present weather conditions while snowpack density as a

percent (NRCS, 2014) shows the distribution and frequency of antecedent snowpack conditions during pe-

riods of TWI. It is worth noting that warm day melt is correlated with incoming solar radiation, which is the

primary driver of snowmelt; however, as solar radiation is not commonly measured at SNOTEL stations,

temperature is used as a proxy (Painter et al., 2012). The ROS classification was subset to include ROS +

melt/drainage defined as all ROS events with at least a 2 mm loss of SWE in the last one hour. Of the

454 hours of ROS TWI, only 45 hours were coupled with SWE loss, accounting for 9.9% of ROS TWI and

5.8% of all TWI identified in this study. These results provide the first indication that snowmelt is not a pri-

mary source of midwinter runoff.

ROS-driven TWI events during the training data period had 6-h maximum temperatures ranging from

�3.6�C to 6.3�C with an interquartile range of 1.6�C–3.89�C (Figures 5A and 5B). The maximum 6-h temper-

ature for ROS + melt/drainage ranged from 2.0�C to 6.0�C with interquartile values of 3.4�C and 5.2�C.
Warm day melt had 6-h maximum temperatures range of 0.8�C–14.8�C and interquartile range of

6.3�C–11.0�C.
iScience 25, 104240, May 20, 2022 7



Figure 4. Decision tree classification of ROS and warm day melt events from the raw data

Decision tree classification model (STARMethods Decision tree classification) for the raw data and confusion matrix for the results of the model and test data

illustrating the number to true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) of the predicted values against the actual

values with true identifying ROS and false identifying warm day melt TWI. See STAR Methods Decision tree classification and Decision tree classifier criteria

for further detail.
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ROS events produced TWI when snowpack densities were as low as 13.3% and up to 51.1% with an

interquartile range of 26.4%–35.2% (Figure 5C and D). Snowpack density was also higher for ROS + melt/

drainage events, ranging from 23.5% to 50.0% with an interquartile range of 28.3%–40.5%. Density values

1-h prior to warmdaymelt-driven TWI ranged from17.3% to 45.9%with an interquartile range of 27.6%–37.5%.

ROS TWI only occurred with measurable precipitation when temperatures were greater than 0�C (Fig-

ure 5E). 6-h precipitation totals during ROS TWI ranged from 0 to 65 mm with an interquartile range of

5–24 mm (Figure 5F). When 6-h precipitation totals were 0 mm, TWI observations were associated with

lagged ROS TWI (February 14, 2019). During ROS + melt/drainage, 6-h precipitation totals ranged from

9 to 44 mm with an interquartile range of 23–38 mm.

Snowmelt is not a primary source of runoff in deeper snowpacks

Our findings are consistent with previous findings that snowmelt is not a primary source of runoff during ROS

events in deeper snowpacks (Mazurkiewicz et al., 2008; Singh et al., 1997; Whitaker and Sugiyama, 2005). At

least, 75% of 1-h, 3-h, 6-h, 12-h, and 24-h SWE changes resulted in an increase in SWE during ROS TWI (Fig-

ure 6A). Therefore, the snowpack can accumulate SWE while simultaneously producing runoff. Notably, only

16% (80 of 499 h) of ROS TWI occurred with 24-h SWE loss. 38.7% (31 of 80 h) of 24-h SWE loss occurred during

the January 2017 and February 2017 ROS events (Figure 6B). These events require additional analysis to differ-

entiate the draining of liquid water following snowpack charging—where water is transiently stored in the

snow matrix (Marsh and Woo, 1984; Brandt et al., 2022b)—from actual snowmelt.

Daily rainfall thresholds that produce TWI

There is a general relationship between precipitation phase and intensity with TWI. The CSSL manual ob-

servations includedaily precipitation phase values as percent rain andpercent snow. The percent rain values

were used to analyze hours of TWI as a function of daily total rainfall (precipitation andpercent rain; Figure 7).

TWI occurred if at least 22mmof precipitation fell as rain. This relationship was not observed when less than

25% of precipitation falls as rain. However, 24-h precipitation totals of at least 56 mm with at least 25% rain

produced a TWI signal in the soil moisture response. As storms include a greater fraction of precipitation

falling as rain, less total precipitation was required to produce TWI. Days with 50% rain required at least

38 mm to fall as rain whereas on days with 100% rain only 22 mm of precipitation was necessary.
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Figure 5. Distributions of present weather and snowpack conditions for rain-on-snow (ROS), rain-on-snow plus

snow water equivalent loss (ROS + melt/drainage), and warm day melt

(A) Histogram showing the distribution of 6-h maximum temperature (�C) for ROS (orange), ROS + melt/drainage (red),

and warm day melt (purple) events.

(B) Box-percentile plots showing the distribution of ROS, ROS + melt/drainage, and warm day melt events for varying

temperatures. Dashed lines represent first quartile, median, and third quartile values with first quartile in bold to draw the

connection to the development of the framework in Snowpack runoff decision support framework section.

(C and D) As in panels (A) and (B), but for density (%). (E) and (F) As in panels (A) and (B), but for 6-h precipitation (mm).
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Figure 6. Change in SWE from one to 24 h during ROS

(A) 1-h, 3-h, 6-h, 12-h, and 24-h total change in SWE (mm) during ROS events.

(B) 24-h change in SWE (mm) versus 24-h precipitation totals (mm) with the black 1:1 line indicating periods when the

snowpack accumulated all of the precipitation and a gray line when SWE was lost over 24 h.
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Snowpack runoff decision support framework

Preliminary snowpack runoff decision support framework

Wepresent a first-step, conceptual snowpack runoff decision support framework guided by the knowledge ac-

quired through thedevelopmentof a TWI identificationalgorithm,highconfidencehourly data viaQA/QCpro-

cedures, decision tree classification of ROS and warm day melt-driven TWI, and frequency analysis of present
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Figure 7. Duration of TWI as a function of total daily precipitation and percent rain

Daily total precipitation and precipitation phase as percent (%) rain from manual observations from the Central Sierra

Snow Laboratory and SNOTEL-derived cumulative hours of TWI per day and total precipitation.
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weather and antecedent snowpack conditions. TWI is the first indication of snowpack runoff. Identifying and

classifying periods of TWI lays the foundation for snowpack runoff decision support. To build upon this, we

selected first quartile values for 6-h maximum temperature (Figure 5B), 6-h precipitation (Figure 5F), and

snow density 1-h prior to TWI (Figure 5D) as preliminary indicators of potential TWI. These indicators were in-

tegrated into the conceptual three-dimensional snowpack runoff decision support framework (Figure 8). ‘‘Low

Potential’’ refers to values when TWI potential was below first quartile values. Warm day melt was defined by

non-ROS TWI as a result of 6-h maximum temperatures of at least 6.3�C and density of at least 27.6%. The po-

tential for ROS-induced TWI was established with as little at 5 mm of precipitation, maximum temperatures

greater than 1.6�C, and density of at least 26.4%. The potential for TWI during ROS events increases when

SWE loss can occur as a result of either snowmelt or drainage of transiently stored rainwater. The potential

for ROS +melt/drainage was defined when 6-h precipitation totals exceeded 23 mm, 6-h maximum tempera-

tures were greater than 2.0�C, and the snowpack density was at least 28.3%.

There was no evidence of midwinter precipitation occurring above 7.0�C during the period of study. A

midwinter ROS event when temperatures are greater than 7.0�C would be unprecedented in recent history

as the 1997 New Year’s event had daily maximum temperatures at or below 7.0�C (Osterhuber and

Schwartz, 2021). Though it is plausible for threshold to be crossed some day since the CSSL does experi-

ence rainfall in the fall months above 7.0�C, identifying the current precipitation ceiling is an important

metric. Crossing this threshold could produce greater runoff as the rainfall would carry more energy to

melt snow. This further emphasizes the value of reliable hourly data, which would make it possible to

analyze larger scale changes like an increase in the midwinter precipitation temperature ceiling.

We translated the conceptual snowpack runoff decision support framework into a decision tree with an in-

dex to simplify the identification of snowpack runoff potential for decisionmakers (Figure 9). This initial step

toward snowpack runoff decision support demonstrates how hourly data can be fed into a system to

improvemultidimensional situational awareness. Impactful decision support tools like the Air Quality Index

(Agency, 1999) include a quantitative color scale but only provide one-dimensional information (particulate

matter). Multidimensional advisories like the National Weather Service Heat Index (Hawkins et al., 2017)

and Avalanche Danger Scale (Statham et al., 2010) provide a cohesive measure of danger through qualita-

tive color scales. We applied qualitative and quantitative communication methods by including a color

scale for the TWI potential and values for each TWI indicator.

Example application of preliminary framework

As an example of the application of the preliminary snowpack runoff decision support framework, we

applied the decision tree thresholds to two periods with three ROS events fromWY2006 of the test dataset
iScience 25, 104240, May 20, 2022 11



Figure 8. Conceptual snowpack runoff decision support framework

Snowpack runoff decision support conceptual framework developed through the application of first-quartile 6-h pre-

cipitation, 6-hmaximum temperature, and density 1-h earlier as indicators of low, ROS, ROS +melt/drainage, or warm day

melt TWI potential.
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(Figure 10). From December 26, 2005 through January 3, 2006, two ROS events both produced TWI result-

ing in increases in soil moisture (Figure 10A). However, the ROS TWI potential was low because snowpack

density values were below 26.4% and therefore did not qualify as ROS potential. ROS TWI when the snow-

pack density is low could be an indication of the formation or preferential flow paths as a uniform wetting

front would increase the liquid water content to capacity prior to TWI (Marsh and Woo, 1984; Colbeck,

1976). This highlights an area to improve the framework since density may not be as critical in dictating

TWI potential as rainfall intensity and totals due to the formation of preferential flow paths. The 2006

New Year’s Day ROS event had widespread impacts in the American, Yuba, and Truckee watersheds

(CNRFC, 2021). The snowpack runoff decision support framework correctly indicated the potential to pro-

duce ROS TWI and later ROS +melt/drainage TWI. The second analysis period (February 20–March 2, 2006)

had a ROS event proceeded by five days with no precipitation and maximum temperatures over 6.3�C with

the potential for warm day melt (Figure 10B). By the second day of warm day melt potential conditions be-

ing met, the 5 cm soil moisture sensor registers diurnal melt from the snowpack. Knowing that the snow-

pack is at a state of active melt ahead of a potentially warm storm would indicate that snowpack is ready

to transmit water and potentially contribute to TWI. On February 27, 2006, a ROS event began at the

CSSL and within two hours of precipitation initiating, the soil moisture sensors registered increases. TWI

potential increases to ROS + melt/drainage and all three soil moisture sensors measure a period of satu-

ration when the TWI input rate is greater than the soil infiltration rate. While this example demonstrates the

utility of the approach to identify present weather and antecedent snowpack conditions that could produce

TWI, it also highlights the thresholds that miss TWI and can be used as guidance for further calibration of

the framework.
DISCUSSION

Development of a cascading workflow: data QA/QC, TWI identification algorithm, and

pattern recognition

The daily SNOTEL data product provides a valuable tool for advancing process-based knowledge of snow

runoff generation and timing resulting in improved model accuracy and remote sensing products (Lund-

quist et al., 2015; Chen et al., 2019; Song et al., 2021). Readily available, high confidence, and comprehen-

sive hourly data help streamline research efforts, allowing investigators to focus on results and analysis to

close the ROS runoff knowledge gap (Rössler et al., 2014; McCabe et al., 2007; Brandt et al., 2022a). The

semi-automated QA/QC approach represents a step forward in achieving this goal by reducing the time

required to clean data by leveraging automated processes during more predictable periods, allowing
12 iScience 25, 104240, May 20, 2022



Figure 9. Decision tree visualization of the snowpack runoff decision support framework developed at the Central Sierra Snow Laboratory with

color scale indicating TWI potential
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the data reviewer to focus on events and flagged data anomalies. While we will continue to apply the QA/

QC methods to the SNOTEL network, we recommend it also be applied to other observational networks

both to further improve it and to identify additional weaknesses.

Our research found soil moisture data to be useful for identifying the timing of TWI (Cardell-Oliver et al.,

2005; Julander and Holcombe, 2005; Flint et al., 2008; Bales et al., 2011; Sutcliffe, 2014). Because hourly soil

moisture data have already been reviewed by NRCS staff, expanding the application of the TWI identifica-

tion algorithm to other SNOTEL station could be implemented immediately. TWI identification could be

beneficial for NWS hydrologists and decision makers by notifying them of active TWI in near-real time,

especially when interpreted in tandem with data from other hydrometeorological networks (Hatchett

et al., 2020). With the addition of quality-controlled hourly data for the remaining parameters from other

stations (precipitation, snow depth, and snow water equivalent), applying the remaining methods could

improve the pattern recognition of antecedent snowpack conditions and present weather that produce

TWI regionally rather than at a single location.

Augmenting surface station-based data with information regarding present atmospheric conditions is an

important component of early warning or real-time information systems by providing situational awareness

(Hatchett et al., 2020) and contributing to impact-based decision support (Uccellini and Ten Hoeve, 2019)

ahead of forecasting extreme events. To show our identified ROS-induced TWI events have common ingre-

dients with ROS events, we created synoptic composites using daily averages from the National Center for

Environmental Prediction’s 36 km horizontal resolution North American Regional Reanalysis (Mesinger

et al., 2006). We selected 17 unique storm events (for multi-day events, the first day was used) with at least

six hours of continuous TWI. Anomalies were calculated by differencing each identified TWI day from the

average of the same calendar days calculated between 1981 and 2010.
iScience 25, 104240, May 20, 2022 13



Figure 10. Example applications of the preliminary snowpack runoff decision support framework

The decision tree TWI potential thresholds applied to (a) December 26, 2005 through January 3, 2006 and (b) February 20–March 2, 2006. The first subpanel of

each plot shows SWE (mm) colored by TWI potential as low potential (yellow), ROS (orange), ROS + melt/drainage (red), and warm day melt (purple). The

second subpanel shows the snowpack density (%) with corresponding TWI potential thresholds with representative colors. The third subpanel shows

observed (gray) and 6-h maximum (black) air temperatures (�C) with corresponding thresholds and the fourth panel shows 1-h (filled gray) and 6-h (filled

black) precipitations totals (mm) with the 6-h precipitation corresponding TWI potential thresholds. The fifth subpanel shows volumetric water content (%)

from the soil moisture sensors at 5 cm (light blue), 20 cm (medium blue), and 50 cm (dark blue) depths. The sixth subpanel shows streamflow (m3s�1) at two US

Geological Survey gages: North Fork of the American River at North Fork Dam (black) and Truckee River at Reno (gray).
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Figure 11. Composite synoptic conditions for events with at least six hours of TWI from ROS

Composite synoptic conditions from the North American Regional Reanalysis (Mesinger et al., 2006) for 17 unique events that produced at least six hours of

TWI. (A) Composite precipitable water (mm) and 500 hPa geopotential heights (m; contours). (B) Integrated vapor transport (IVT; kg m �1 s �1; relative

vectors); IVT anomalies (colored); and regions indicating atmospheric river conditions (> 250 kg m�1 s �1) or elevated moisture transport (> 400 kg m�1 s �1).

(C) 700 hPa air temperatures (contours) and 700 hPa air temperature anomalies (�C; filled contours) with IVT vectors overlaid (kg m�1 s �1). (D) 250 hPa winds

(vectors; m s �1); 250 hPa wind anomalies (m s �1; filled contours); 250 hPa winds exceeding 40 m s �1 (purple contours); sea level pressure (hPa; black

contours).
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The presence of an offshore trough at 500 hPa and a broad plume of precipitable water (integrated water

vapor) oriented in a southwest-northeast direction (Figure 11A) in conjunction with strong moisture flux

(Figure 11B) and anomalously warm mountain-top (700 hPa temperatures; (Figure 11C)) are key compo-

nents of storms producing heavy precipitation and high elevation snow levels in the Sierra Nevada

(O’Hara et al., 2009; Kaplan et al., 2009; Hatchett et al., 2017a). The broad plume of precipitable water (Fig-

ure 11A) and integrated vapor transport in exceedance of 250 kgm �1 s �1 (Figure 11B) originating from the

subtropics and extending northeastward into California are consistent with the typical genesis location of

costly flood-producing atmospheric rivers (Prince et al., 2021). The dual composite moisture plumes
iScience 25, 104240, May 20, 2022 15
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indicate two primary corridors along which moisture export from the midlatitude cycle occurs leaving

behind the footprint of concentrated water vapor (Dacre et al., 2015). The sustained liquid precipitation

at CSSL needed to generate TWI is consistent with the strong moisture transport created by a baroclinic

environment with anomalously cold air to the north and anomalously warm air to the south (Figure 11C).

The sea level pressure gradient between lower pressure in the Gulf of Alaska and higher pressure off

the coast of Baja California (Figure 11D) favors southwesterly winds blowing perpendicular to the Sierra Ne-

vada and enhancing orographic uplift. The sustained precipitation at CSSL is further enhanced by quasi-

geostrophic ascent occurring in the exit region of the broader 500 hPa trough (Figure 11A). The 0�C
isotherm at 700 hPa is located just south of CSSL (11C), suggesting mountain-top temperatures during

TWI events on average are near-to-slightly above freezing, leading to greater fractions of precipitation fall-

ing as rain. Favored by a poleward shifted and anticyclonically curved upper level jet (Figure 11D), the

anomalous warm temperatures (Figure 11C) indicate strong warm air advection and downstream geopo-

tential height building as latent heat is advected into the region via transport of moist subtropical air

(Figures 11A and 11B). These conditions are all broadly consistent with established synoptic patterns favor-

ing heavy and sustained precipitation with elevated rain-snow transition elevations producing ROS and

subsequent flooding (Hatchett et al., 2016, 2017a, 2020; Kaplan et al., 2009; O’Hara et al., 2009). This infor-

mation provides additional insight to the snowpack runoff decision support in two ways. First, a forecast

storm with some or all of these characteristics could prime the existing snowpack to actively produce runoff

in a subsequent event by establishing preferential flow paths or reducing cold content (Brandt et al., 2022a).

Second, regardless of the initial state of the snowpack, a forecast storm with these characteristics should

elevate situational awareness for the potential to produce typical winter storm impacts in addition to

TWI and subsequent runoff.

Our findings from the CSSL analysis suggest concerns about potential flooding should grow if more than

22 mm of precipitation as rain at the CSSL elevation is forecast for a 24 h period. By using higher confidence

data via the quality-controlled hourly data and the TWI identification algorithm frommore stations to iden-

tify historic circulation patterns to assess the potential for TWI, we both enhance confidence in our ability to

capture impactful storms but also move further toward integrating an ingredients-based forecasting

approach (e.g. Please adjust parenthesis: Doswell et al., (1996)) into the snowpack runoff decision support

framework.

Snowpack response to ROS

Our results, which show that midwinter storms can produce TWI from the snowpack while SWE increases

(Figure 6), contradicts the previously held assumption that the snowpack has three separate time periods

for warming (must become isothermal), ripening (maximum liquid water retention), and output (liquid water

release) (Kinar and Pomeroy, 2015). Studies have documented that liquid water can move through the

snowpack through the formation of preferential flow paths ahead of the wetting front though the dynamic

feedback between present weather and snowpack conditions is not well understood (Marsh, 1999; Kattel-

mann and Dozier, 1999; Eiriksson et al., 2013; Jennings and Jones, 2015; Brandt et al., 2022a). For example,

Berman et al. (2009) found isotope signatures transitioned from rain to snow, demonstrating the different

time travel for rain water that only needed to remain warm enough to progress as liquid water. In contrast,

snowmelt requires sufficient warming for the latent heat exchange within the snowpack. Consistent with

these findings, hourly observations made at the CSSL SNOTEL provide evidence that the snowpack can

release water while simultaneously accumulating SWE and increasing in density during ROS events. This

implies that ROS does not always lead to a decrease in SWE (Guan et al., 2016). Furthermore, the hourly

data demonstrated that liquid water content could increase as the snowpack charged with water and sub-

sequently drained from the snowpack, similar to a rising and falling limb of a hydrograph, but with a positive

net change in SWE. Therefore, decreases in SWE are not always synonymous with snowmelt during ROS

events (Fassnacht and Records, 2015; Musselman et al., 2017, 2021; Yan et al., 2018; Henn et al., 2020;

Brandt et al., 2022b). This highlights the value of using soil moisture as an indicator of TWI and that TWI

should be used in tandem with other parameters to improve the definition of snowmelt in research, espe-

cially in ROS-prone regions.

Value of the snowpack runoff decision support

With additional confidence in hourly data, we extracted information about present weather and ante-

cedent snowpack conditions that coincided with midwinter TWI. This facilitated the development of

the first iteration of a decision support framework indicating favorable snowpack runoff conditions for
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producing TWI (Figure 8). Leveraging observations to identify potential hazards is the first step to build

reliance through impact-based decision support for a Weather Ready Nation (Uccellini and Ten Hoeve,

2019). Advisories and early warning systems represent a proven technique for communicating hazards to

user communities. Operational examples in the United States are commonly provided by Federal

agencies intending to provide decision support to regional user groups. Some examples include United

States Forest Service avalanche forecasts (Statham et al., 2010), Environmental Protection Agency air

quality index forecasts (Agency, 1999), U.S. Geological Survey post-fire debris flows assessments (Force,

2005), and the National Weather Service heat risk tool (Hawkins et al., 2017). Inspired by these advisory

systems, and notably by the current lack of such a framework (to our knowledge) despite the known chal-

lenges and impacts for water management created by ROS in the western United States (e.g., McCabe

et al. (2007); Musselman et al. (2018); Siirila-Woodburn et al. (2021)), we created this initial iteration of

snowpack runoff decision support. We employed similar visualization strategies (e.g., color-coding

following an ordinal scale) for communicating levels of runoff hazard. Similar to decision support devel-

oped to track the location of landfall and intensity of atmospheric rivers (Ralph et al., 2019), identifying

regions with varying levels of risk for runoff based on antecedent snowpack conditions could increase the

lead time for decision making and confidence in choices made. Coupling observation that provides in-

formation about the current state of the snowpack with an improved understanding of ROS processes

(e.g. 22 mm of rainfall in 24 h at the CSSL always resulted in TWI) could provide more nuance to mete-

orological forecasts by better understanding the range of potential hydrological impacts ahead of the

event. Another example includes forecast-informed reservoir operations, which are demonstrating the

value of shifting from fixed flood control schedules toward risk-based ensemble forecasting to plan water

releases (Delaney et al., 2020). A risk-based approach of a snowpack runoff decision support could be a

valuable tool integrated into next-generation water resource management in transitional and snow-

dominated regions. The use of hourly data highlights this advisory is possible and ongoing research

aims to continue to develop the concept and address limitations as they are exposed through soliciting

stakeholder feedback.

Future work

This research aimed to identify present weather and antecedent snowpack patterns during

midwinter TWI. However, a decision support tool is only beneficial when the information provided can

reliably identify high-risk markers. Ongoing research will examine similar present weather and

antecedent conditions that did not produce runoff. Understanding the constraints of TWI is important

in order to disseminate low risk-markers to decision makers that need to conserve water resources

without increasing flood risk.

Future research should integrate additional SNOTEL stations to test the robustness of the approach

developed using the CSSL at a regional scale. Across the western US, midwinter snowmelt is increasing

(Musselman et al., 2021) and the methods in this work can immediately be applied to identify midwinter

snowmelt drivers as either ROS or warm day melt. Future work must refine the classification of ante-

cedent snowpack conditions and storm characteristics and provide a linkage to streamflow responses

to improve the prediction of runoff generation within a basin. The optimal result is dual-use data for

real-time situational awareness of rapid changing snowpack conditions that overcome the capabilities

of models and retrospective integration of high quality observational data for model validation and

improve pattern recognition. Producing a quality-controlled hourly dataset can further the understanding

of event-based snowpack dynamics, which could be valuable for forecast-informed reservoir operations

(Yuba and Steering, 2021), flood management (Hatchett et al., 2016), landslide early warning systems

(Baum and Godt, 2009), avalanche warning (Statham et al., 2010; Hatchett et al., 2017b), and design

criteria for infrastructure such as culverts, levees, bridges, and reservoirs (Verdhen, 2018). By identifying

TWI drivers and conditions leading to the greatest hydrometeorological impacts, we can develop a pro-

cess-based tool to improve hydrological forecast confidence at longer lead times with the integration of

meteorological forecasts through improved decision support (Uccellini and Ten Hoeve, 2019; Hatchett

et al., 2020) that both improves protection of life and property and optimizes increasingly scarce water

resources.

Limitations of the study

While we have provided the initial steps toward operational snowpack runoff decision support, this study is

limited in scope by only investigating one station, resulting in thresholds specific to the CSSL that have not
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yet been tested regionally. Caution should be exercised before the model and conceptual framework es-

tablished at the CSSL is applied to other stations. However, the methods developed in this study can be

applied to other SNOTEL stations and provide a testable framework to continue the research toward

snowpack runoff decision support. Our approach would benefit greatly by subsequent engagement and

iterative development activities in tandem with water management or other natural hazard-focused stake-

holders as well as the incorporation of additional stations and data including, but not limited to streamflow,

wind speed, solar radiation, and relative humidity for validation or to refine thresholds. Lessons learned and

useful strategies from the development forecast-informed reservoir operations may facilitate this

threshold-refining process.

The TWI identification algorithm will likely require calibration at other stations and will not work at stations

without well-draining soil where soil is saturated throughout the winter. The algorithm developed for this

study was intended to identify prominent periods of TWI but could not capture small increases in soil mois-

ture without also capturing normal fluctuations during other periods not related to TWI.

Identifying each hour of TWI during ROS shows 6-h precipitation and temperature values that can be

misleading. Once a precipitation event ends, the rolling 6-h precipitation total slowly decreases, but the

snowpack could still release water. Some rainfall events turn to snow with cold frontal passage and errone-

ously associate the TWI with precipitation falling as snow (e.g. February 13–14, 2019). Precipitation phase

classification from either in situ instrumentation such as disdrometers (Sumargo et al., 2020) or citizen sci-

ence (Arienzo et al., 2021), would help further constrain ROS magnitude, TWI classification, and indicators

of potential TWI.
Conclusions

The motivation for our work was to investigate potential value that hourly data has to (1) improve process-

based understanding of midwinter runoff generation and (2) provide real-time information to decision

makers when rapid changes in the snowpack overcome the capability of the model. The SNOTEL network

provides near real-time information valuable to the analysis of midwinter runoff and exceptional events, like

the initiation and duration of ROS TWI from soil moisture sensors. These observations can be leveraged to

develop a snowpack runoff decision support system by connecting observations to potential outcomes in

order to mitigate risk (Uccellini and Ten Hoeve, 2019). We found value in the QA/QC hourly observations

from a SNOTEL station, as these data can be used as input to decision support tools for pattern recognition

and improve model accuracy by up to 25.7%. We then showed how this data can be applied to ingredients-

based forecasting (Doswell et al., 1996) and could help to establish the framework for a regionally specific

snowpack runoff decision support. In addition, our approach provided quantitative values of liquid precip-

itation required to produce a soil moisture response. Without a soil moisture response, runoff and subse-

quent flooding is unlikely. We also showed consistency between atmospheric conditions and identified

ROS events using our framework, which provides additional confidence in the skill of the approach at

correctly identifying physically consistent events.

Our efforts here represent a first step toward operational snowpack runoff decision support that is appli-

cable across management scales and adjustable depending on flood management infrastructure. With

increasingly frequent ROS and decreasing water availability projected in a warming climate (Musselman

et al., 2018; Siirila-Woodburn et al., 2021), runoff advisories may become valuable tools to inform decision

support for adaptive water management strategies such as forecast-informed reservoir operations (Dela-

ney et al., 2020) or managed aquifer recharge (Steinschneider and Brown, 2012) intended to better capture

and retain water to meet consumptive and ecosystem demands. By continuing to integrate the initial snow-

pack runoff decision support framework system with existing long-term hydrometeorological observa-

tional networks (e.g., Hatchett et al. (2020)) and by incorporating feedback from water managers, our

approach can be continuously developed to provide increasingly useful impact-based decision support

(Uccellini and Ten Hoeve, 2019) information in snow-dominated watersheds where water is managed as

both a hazard and a resource.
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STAR+METHODS

KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Quality controlled hourly data This Paper https://github.com/aeheggli/SRAmethods

Manually classified terrestrial water input This Paper https://github.com/aeheggli/SRAmethods/

blob/main/df_ML_ROSidentified.csv

Software and algorithms

Python Python Software Foundation https://www.python.org/

Decision Tree Classifier SciKit-Learn https://scikit-learn.org/

Automated quality control and quality

assurance

This Paper https://github.com/aeheggli/SRAmethods/

blob/main/CSSL_AutomatedQC.py

Manual quality control procedures This Paper https://github.com/aeheggli/SRAmethods/

blob/main/CSSL_ManualQC.py

Decision tree classification (clean data) This Paper https://github.com/aeheggli/SRAmethods/

blob/main/R2_DecisionTree_CSSL_QC.py

Decision tree classification (raw data) This Paper https://github.com/aeheggli/SRAmethods/

blob/main/R2_DecisionTree_CSSL_Raw.py

Other

SNOTEL hourly and daily data NRCS Report Generator Data Search Tool https://wcc.sc.egov.usda.gov/

reportGenerator/

10-minute Geonor Precipitation gauge data Desert Research Institute Western Regional

Climate Center

https://wrcc.dri.edu/cgi-bin/rawMAIN.pl?

cacssl

Daily manual observations University of California Central Sierra Snow

Laboratory

https://doi.org/10.6078/D1941T
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Anne Heggli (anne.heggli@dri.edu or aeheggli@gmail.com).
Materials availability

Not applicable.
Data and code availability

� Comparative data from the Central Sierra Snow Lab (CSSL) was accessed from three locations for wa-

ter years 2006–2019:

� NRCS Report Generator Data Search Tool: https://wcc.sc.egov.usda.gov/reportGenerator/

� Desert Research Institute’s Western Regional Climate Center: https://wrcc.dri.edu/cgi-bin/

rawMAIN.pl?cacssl

� University of California Central Sierra Snow Laboratory: https://cssl.berkeley.edu/

� The data files used in thesemethods have been deposited to https://github.com/aeheggli/SRAdata.

These data are publicly available as of the date of publication.

� Quality Controlled and Quality Assured hourly SNOTEL data generated in this study have been

deposited to https://github.com/aeheggli/SRAmethods and are publicly available as of the date

of publication.
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� Code used for the first step of automated quality control and quality assurance has been deposited

to https://github.com/aeheggli/SRAmethods/blob/main/CSSL_AutomatedQC.py and is publicly

available as of the date of publication.

� Code used for the manual quality control procedures has been deposited to https://github.com/

aeheggli/SRAmethods/blob/main/CSSL_ManualQC.py and is publicly available as of the date of

publication.

� Code used for the decision tree classification has been deposited to https://github.com/aeheggli/

SRAmethods/blob/main/DecisionTree_CSSL_QC.py and https://github.com/aeheggli/SRAmethods/

blob/main/DecisionTree_CSSL_raw.py and is publicly available as of the date of publication.

� Manually classified terrestrial water input data has been deposited to https://github.com/aeheggli/

SRAmethods/blob/main/df_ML_ROSidentified.csv and is publicly available as of the date of publi-

cation.

� Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Not applicable.
METHOD DETAILS

Study location

Our study location is the University of California, Berkeley Central Sierra Snow Laboratory (CSSL; 2). The

CSSL was established in 1946 and is currently co-located with a US Department of Agriculture Natural

Resource Conservation Service (NRCS) SNOw TELemetry (SNOTEL) station at 2,100 m elevation approxi-

mately 2 km west of the Sierra Nevada crest in Soda Springs, California (Figure 2). The CSSL SNOTEL sta-

tion (#428) began collecting data in 1982 with a precipitation gauge, a snow pillow to monitor snow water

equivalent (SWE), and an air temperature sensor. In 2005, the station was upgraded with an ultrasonic snow

depth sensor and soil moisture and temperature sensors at 5, 20, and 50 cm depths (https://wcc.sc.egov.

usda.gov/nwcc/site?sitenum=428). The CSSL provides a unique opportunity to inform conditions in three

highly managed watersheds in California and Nevada. While it sits in the headwaters of the westward-

draining South Fork of the Yuba River, it is 3 km north of the westward-draining North Fork of the American

River and 2 km east of the headwaters of the eastward-draining Truckee River watershed. The terrain sur-

rounding the CSSL is predominantly exposed Jurassic to Cretaceous granitic bedrock overlaid with tertiary

volcanic deposits. The surrounding forest is comprised of Lodge Pole Pine (Pinus murrayana), Red Fir

(Abies magnifica), and Whitebark Pine (Pinus albicaulis) with timberline occurring at approximately

2,500 m (Osterhuber, 2009). Using the Köppen climate classification system, the CSSL experiences a Humid

Continental Climate with a Dry Cool Summer (Dsb). The region west of the crest is characterized by aWarm

SummerMediterranean climate (Csb) while the region to the east is characterized by a Cold Desert Climate

(BWk).

Data for this study was selected for water year 2006, when the SNOTEL station was upgraded, through

2019. Water years 2011 and 2012 were not included in the analysis because the 20 cm soil moisture sensor

stopped reporting. The median annual precipitation for the period of study was 1,576 mm and median

maximum SWE was 946 mm. The period of study captures the highest (2017) and second lowest (2014) pre-

cipitation totals as well as the second largest (2017) and lowest SWE totals since 1983 when the SNOTEL

record began. Additionally, there were several significant ROS events within this period that produced

floods in the region (Hatchett et al., 2016). The most notable of these were January 2006 and February

2017 (Underwood et al., 2009; Henn et al., 2020).
Instrumentation

This section intends to provide the reader with an understanding of the instrumentation used to collect

data and the limitations of each. An important aspect of quality control procedures is understanding lim-

itations and functionality of the instrumentation. For example, a tipping bucket rain gauge, an all-weather

storage gauge, and a weighing precipitation gauge all experience different data issues, and each requires

unique quality control procedures to address those even though all measure precipitation.
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Snow water equivalent

The CSSL SNOwpack TELemetry (SNOTEL) station monitors snow water equivalent (SWE) with a four panel

1.2 3 1.5 m stainless steel snow pillow array. Snow pillows measure applied weight; complex snowpack

structures including crust layers and changes in applied weight caused by snow creep and thermal differ-

ences at the snow-sensor-soil interface can cause over and under reading (Serreze et al., 1999; Johnson and

Schaefer, 2002; Johnson, 2004; Johnson and Marks, 2004; Julander, 2007). Snow pillow data errors include

over- and under-reading, temperature-impacted diurnal flutter, and bladder leaks causing a steady

decrease in SWE.

Manual SWE observations are taken at the discretion of the CSSL staff with a Federal sampler or from a

snow pit. Federal sampler measurements typically over measure in deep snowpacks by 7–12% and can un-

der-measure in lower density snow or when depth hoar is present (Work et al., 1965; Peterson and Brown,

1975; Farnes et al., 1980, 1982). The accuracy of the measurement is impacted by the skill of the snow sur-

veyor and by the snowpack conditions. The Federal sampler is well-correlated (R = 0.94) when analyzed

against snow pillows with a correlation of 0.98 for the period of study at the CSSL (Cox et al., 1978).
Precipitation

The SNOTEL automated all-season storage gauge measures the volume of water via a pressure transducer

that measures the change in hydro-static pressure in the column of the collector. The SNOTEL gauge is

7.3 m tall, has a 730 cm2 orifice, and has an Alter shield. During snowfall events snow can collect on the in-

side of the catch-can causing a ’’plug’’ in the gauge (Goodison et al., 1998; McGurk, 1986). Diurnal temper-

ature swings can cause the fluid and the SNOTEL gauge itself to expand and contract, resulting in a change

in hydro-static pressure applied to the pressure transducer and negative precipitation values that interfere

with data analysis (NRCS, 2014).

The Geonor T-200B is a weighing precipitation gauge with a vibrating wire that changes frequency as pre-

cipitation is collected. The T-200B has a 200 cm2 orifice and an Alter shield installed. The T-200B measures

the change in vibrating wire frequency, which is related to the precipitation accumulated, not the hydro-

static pressure. Diurnal flutter could still slightly impact the observations made by the T-200B, but none

were identified during this project. The Geonor T-200B is the preferred gauge for the CSSL manual obser-

vations, but manual precipitation observations were made at the discretion of the CSSL manager. Devia-

tions in manual observations from the T-200B data appears to indicate time periods where the Geonor

sensor may have had issues.
Snow depth

SNOTEL stations utilize Judd ultrasonic snow depth sensors, which are acoustic sensors that emit a sound

wave and measure the travel time with an integrated retry algorithm as an attempt to minimize the data

issues during precipitation events (Anderson and Wirt, 2008). When conditions prevent a sensor from mak-

ing a measurement, the sensor retries 10 times before outputting a full-scale value. Snowpack observations

with ultrasonic sensors include two main issues: (1) diurnal fluctuation due to the dependence on temper-

ature at the sensor and throughout the column of air and (2) inaccurate readings during precipitation events

from the reflection from falling hydrometeors rather than the snowpack surface (Hauptmann et al., 2002).

However, once the snow accumulation season starts and between snow storms, the ultrasonic snow depth

sensors obtain reliable measurements when properly maintained (NRCS, 2014). The metadata for the ultra-

sonic snow depth sensor at the CSSL SNOTEL verified regular maintenance fromwhen the Judd sensor was

installed in 2005 and replaced in 2012 and 2017.

Snow depth observations are made daily at 9 am local Pacific time (1700 or 1800 UTC, depending on time of

year) from the snow stake. The snow stake is approximately 35 m from the location of the SWE measure-

ments. The manual snow depth observations were not used with manual SWE observations to calculate

density since they are not taken from the same location. Ultrasonic snow depth sensors and manually

observed snow depth typically have high correlation of 0.96–0.99 (Anderson and Wirt, 2008; Bergman,

1989; Goodison et al., 1998). The CSSL has high correlation of 0.989 between SNOTEL daily QC product

and the manually observed snow depth from snow stake for the period of this study. This demonstrates

the utility of daily snow depth data to verify magnitudes of events, but not to correct absolute values.
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Air temperature and soil moisture

An extended range YSI temperature sensor was installed in 2005. A calibration concern was discovered for

the SNOTEL air temperature sensors and a correction is required (Brown et al., 2019). The air temperature

data has been corrected with the preliminary equation to be updated when the NRCS completes the final

review. There were no further quality control procedures required. The NRCS monitors soil moisture and

temperature at 5, 20, and 50 cm depths with a Steven’s HydroProbe. Soil moisture data for this period

of study was independently quality controlled at the hourly time-step by the NRCS, and therefor did not

require additional quality control procedures or editing for this study (Sutcliffe and Clayton, 2021).
Quality control (QC) and quality assurance (QA) methods

Data was acquired from publicly available sources and can be located in the key resources table. Hourly

SNOTEL data was used for all parameters as the dataset of focus for the application of QA/QC methods.

The proposed QC procedure for SWE, precipitation, and snow depth consists of three levels: Level 1: a

range check; Level 2: an inter-sensor comparison; and Level 3: using human expert judgement (Kondra-

gunta and Shrestha, 2006; Oakley et al., 2018). Auxiliary data was downloaded to use for Level 2 QC.

SNOTEL daily data is subject to quality control procedures outlined in detail in the National Engineering

Handbook Part 622: Snow Survey andWater Supply Forecasting (NRCS, 2014). Daily observations made by

the stationmanager at the Central Sierra Snow Lab and 10-min precipitation data from theWRCCwere also

collected for Level 2 QC.

The NRCS QA and QC flagging system was adapted for the development of these methods (Table 2). QA

flags designate the level of review that the data has passed: Raw (R) for data that has not undergone any

review, Flagged (F) to identify data that passed the automated data flagging, Provisional (P) for data

that has undergone preliminary human review, and Approved (A) indicating that a final review was

completed to archive the data. QC flags indicate if any measures were taken to improve the quality of

the data. Three of the NRCS QC flags were applied to these methods: Valid (V) for data that passed pre-

liminary QC checks, Edited (E) for data that was edited, and Suspect (S) for data that does not pass QC

checks, requires further review, or cannot be edited to reliably improve the quality of the data.
QA and QC flagging system adapted from NRCS Snow Survey andWater Supply Forecasting National Engineering

Handbook

Quality Assurance (QA) Flags

R Raw No Human Review

F Flagged Automated QC Flag Assigned

P Provisional Preliminary Human Review

A Approved Processing and Final Review Completed

Quality Control (QC) Flags

Flag Name Description

V Valid Validated data

E Edit Edit existing value
Data was corrected with a semi-automated approach developed by A. Heggli (Python code available from

the repository information) to limit subjective editing and encourage a more repeatable workflow that di-

rects the data reviewer to the sensor or time periods that require human review. The Level 1 QC range

check values were identified using the NRCS station profiles that outline maximum and minimum daily

values and maximum and minimum daily changes for each observation type. Precipitation, snow water

equivalent, and snow depth sensors are impacted by temperature changes that result in diurnal flutter in

the data. Rolling median calculations for 6, 12, or 24-h windows are used as guides to minimize diurnal

flutter and outlined in detail by observation type in Value of the snowpack runoff decision support section.

Once the automated QA/QC procedure was completed, the data was saved as a separate preliminary file

for the second phase of QA/QC using Level 2 (inter sensor comparison) and Level 3 (human-expert

S Suspect Suspect data
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judgment). Preliminary data was manually reviewed using the CSSL_ManualQC code, which provides inter-

active visualization to aid in the manual editing of Excel files saved as .csv format file. Rolling median cal-

culations mute peaks and delay the signal response, therefore events were manually retained, and calcu-

lations were applied so the automated guide was centered on the observation and any slight delay was

considered negligible on an hourly time step (Figure S1). If data quality could not be verified, then raw

data was retained and flagged as suspect. Once all parameters had gone through full preliminary review,

the QA flags were changed to P (provisional) and saved as a separate provisional file. The QA flag can be

updated to A once the reviewer is confident that the data has attained the highest accuracy possible. The

QC flags will be retained as indication of the quality of the data. Level 2 and Level 3 QC procedures are

sensor dependent and outlined independently for each observation in Future work section.
Quality control (QC) methods by observation type

Snow water equivalent

Data is first filtered with the QC Level 1 range check to identify outliers, which are then classified as suspect.

Negative values are replaced with a zero and values over the maximum are set to null and flagged as sus-

pect to be reviewed against the original data and edited as necessary. A 6-hr median was used as the guide

to reduce diurnal noise. Hourly SWE data deviating from the daily QC product and not following the trend

of the manual observations was reviewed against temperature, precipitation, and soil moisture data to

either correct the data and retain it or set it as suspect. Bridging of the snow pillow was identified through

inter-sensor comparison (Level 2 QC) with precipitation and temperature data for evidence of rain-on-snow

(ROS) or a prolonged period of above freezing days followed by below freezing temperatures that could

lead the formation of a crust layer prior to the erratic data from the pillow (Figure 3). Potential bridging

was flagged as suspect.

Soil moisture was used to validate suspect SWE data (Figure 2A). Between February 12–15, 2019 an excep-

tionally strong atmospheric river made landfall in California (Hatchett et al., 2020) and impacted the CSSL

(Figure 2B). Abrupt increases in soil moisture validates the SWE data, which responded to the ROS event by

increasing 140mm before decreases in SWEwere observed. The snowpack began to release water approx-

imately four hours after the precipitation occurred with temperatures above 0�C but 11 hours before the

decline in SWE. This could be an indication of the formation of preferential flow paths since a uniform wet-

ting front would result in SWE accumulating until the wetting front reaches the base of the snowpack at

which point SWE would begin to plateau or decrease (Marsh and Woo, 1984). Peak SWE increases also

correspond with increase of soil moisture as the snowpack transitions from the midwinter accumulation

and ripening period to the ablation period (Figure 2C).

SWE QC summary

� Level 1 range check: Identify data outside of the bounds of the profile and set to suspect. Set nega-

tive values to zero and positive exceeding values as null.

� Level 2 inter-sensor comparison: SNOTEL Daily QC product - Check for deviation and set abnormal

values to suspect.

� Level 2 inter-sensor comparison: Diurnal fluctuation - review against temperature.

� Level 2 inter-sensor comparison: Bridging - review against temperature and precipitation.

� Level 2 inter-sensor comparison: ROS signatures - review against precipitation, rainfall, and soil

moisture.

� Level 2 inter-sensor comparison: Peak SWE jumps - review against temperature and soil moisture.

� Level 3 human expert judgement: Flag level 2 data accordingly. Review all ’’S’’ flags to verify they

were flagged appropriately. Use expert judgement to edit SWE data and change QC flag to ’’E’’

or leave raw data values and retain the ’’S’’ QC flag. Unedited data that passed the QC check is

flagged as ’’V’’.
Precipitation quality control (QC) methods

After the Level 1 check, hourly SNOTEL data was verified against the SNOTEL daily QC product, WRCC

Geonor data, and the CSSL observations. The Geonor weighing rain gauge and snow pillow were used
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to identify the initiation and termination of precipitation events to correct for snow plug formation and

release. When the daily QC products showed no increase in precipitation, diurnal variation in data between

events were removed manually.

The release of snow plugs is identified when there is an abnormal increase in the hourly data. A the CSSL

precipitation of 10 mm/h or more should be manually reviewed to validate the precipitation event or cor-

rect for a snow plug. After snow plug releases were identified, hourly SWE data and the weighing rain

gauge data were used to identify the initiation of the event. Since snow pillows can provide accurate pre-

cipitation data during snowfall, hourly increases of SWE were added to the precipitation values until the

snow plug released and precipitation measurements resumed accurately from the SNOTEL station (Fig-

ure 3). The 24-h changes in precipitation were checked against the SNOTEL daily QC product and the

manual observations.

Precipitation QC summary

� Level 1 range check: Identify all hourly data outside of the bounds of the profile and set to suspect.

Set negative values to zero and positive exceeding values as null.

� Level 2 inter-sensor comparison: Diurnal flutter - review against daily QC product to eliminate diurnal

variation when no precipitation occurs.

� Level 2 inter-sensor comparison: Snow plugs - review against snow pillow and daily QC precipitation

product to verify plug formation.

� Level 3 human expert judgement: Review all ’’S’’ flags to verify they were flagged appropriately. Use

expert judgement to refer to snow pillow data to fill data until the snow plug releases. If the storm

starts as rain and turns to snow, use temperature data as a reference of when it was likely that the

plug began to form. Edit data and change QC flag to ’’E’’ or leave raw data values and retain the

’’S’’ QC flag. Unedited data that passed the QC check is flagged as ’’V’’.
Snow depth quality control (QC) methods

Snow depth data first was subjected to Level 1 QC range check. Suspect values that were verified to be full-

scale readings during snowfall events were set to null and linear interpolation was used to fill in values. To

reduce the flutter in the data, a 6-hr and 12-hr rolling median was used as a guide for snow accumulation

periods, the 24-hr rolling median was used as a guide during compaction, and peak snowpack was manu-

ally retained (Figure 1). The SNOTEL daily QC snow depth values were used to verify edited values. The

CSSL snow depth observations were used to verify changes in snow depth and the general trend of the

data throughout the water year. The final check was to make sure SWE and snow depth reached zero on

the same day.

Snow depth QC summary

� Level 1 range check: Identify all hourly data outside of the bounds of the profile and set to suspect.

Set negative values to zero and positive exceeding values as null.

� Level 2 inter-sensor comparison: Missing data - verify full-scale readings occurred during snowfall

events by reviewing precipitation, SWE, and temperature changes. Apply a linear interpolation.

� Level 2 inter-sensor comparison: Diurnal flutter - review against temperature changes and apply roll-

ing median to reduce temperature educed gains and losses.

� Level 3 human expert judgement: Review all ’’S’’ flags to verify they were flagged appropriately. Use

expert judgement to edit data and change QC flag to ’’E’’ or leave raw data values and retain the ’’S’’

QC flag.
Terrestrial water input (TWI) identification algorithm

Terrestrial water input (TWI) is water input to the land surface from either precipitation ormelting snow. TWI

can be identified from shallow soil moisture observations ((Flint et al., 2008; Sutcliffe andClayton, 2021). TWI

was identified when soil moisture increased 0.5% in one hour or 1.0% in two hours at 5 cm and 20 cmdepths.

The soil moisture data has a resolution of 0.1%; a threshold of 0.4% identified 200 additional TWI events as a

result of normal variation in the sensor. A 0.6% increase over one hour identified 30 less TWI events, so the
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0.5% threshold was selected to capture the majority of events while reducing misidentified TWI events trig-

gered by noise. A threshold of 1.0% aided in identifying events that had a slower initial increase while main-

taining the same rate of change. Saturation was identified through observations of soil moisture values dur-

ing spring snowmelt where each sensor asymptotes at a value of 39%. TWI was classified using the rate of

change identification parameters or when all three sensors were saturated. The soil at the 5 and 20 cm

depths at the CSSL is well-draining and soil moisture begins to recede when TWI ceases. The TWI identifi-

cation algorithm will likely require calibration for other locations due to site specifics like soil properties.

QUANTIFICATION AND STATISTICAL ANALYSIS

Decision tree classification

The Decision Tree Classifier is a supervised machine learning algorithm selected to aid in pattern recogni-

tion of midwinter snowpack TWI drivers (Pedregosa et al., 2011). The decision tree can handle continuous

and categorical data, does not require the normalization or scaling of data, and can automatically handle

missing values. Decision trees present a series of questions that split data into branches using the Gini Im-

purity where a value of 0 is a pure classification split and 0.5 is an impure split that incorrectly classified half

of the samples.

The decision process begins by identifying the initial ro node by calculating the weighted sum of the Gini

Impurity from all the possible sub-nodes. This is repeated on each impure internal node creating branches

until the tree is complete with only pure leaf nodes. Growing the tree until all pure leaf nodes are achieved

often causes over-fitting of the model. Decision trees are sensitive to noise in the data (Pedregosa et al.,

2011) meaning small changes to the data can result in large changes to the structure of the tree. The

learning process of the Decision Tree Classifier was designed with these limitations in mind. The maximum

depth of the tree is limited to reduce over-fitting, data was hand-cleaned to reduced noise and increase

stability, and the application of the tree as an aid in pattern recognition allows flexibility to address any

changes in the tree structure. The Python code for the clean and raw data can be found in the repository

information in Data and code availability section.

Feature engineering

There are a total of four native features in the hand cleaned data: precipitation, SWE, snow depth, and air

temperature. Soil moisture at all three depths were used to develop the TWI target variable and therefore

not included in feature engineering or feature selection. Machine learning algorithms compare data from a

single point in time. However, the evolution and state of the snowpack is dependent on weather, which is

transient by nature. Features were engineered to include information from the current time for up to 12

hours before TWI was identified. To identify TWI related to present weather, the following features were

engineered: 1–6 h precipitation totals, 12 h precipitation total, and 6 h maximum temperature.

Filtering data for midwinter snow-cover

Midwinter is defined in this paper to include snow cover when SWE was greater than 100 mm before the

ablation period melt begins following peak SWE (median date 24 March). Shallow snow, defined in this

study when SWE is less than 100mm, requires less energy input than deeper snow tomelt and initiate runoff

and therefore considered to be perpetually at higher risk of melting (Berris and Harr, 1987; Colbeck, 1976;

Harr, 1981; Marks et al., 1998, 2001).

SWE at the CSSL does not always follow a typical SWE accumulation pattern with a defined peak leading

into the ablation period. Some water years (WY), such as WY2013, present a plateau before the initiation of

the spring ablation period while other years, such as WY2014, display two peaks (Figure 5). Midwinter abla-

tion periods identified in 2014 and 2015 were filtered out of the training data for this study. Data qualified as

suspect during the QC process were also filtered out of the training data.

Target variable: ROS or warm day melt TWI

The TWI driver was manually identified at each data point through inter-sensor comparison and human

expert judgement (Kondragunta and Shrestha, 2006) and is available in the repository information in

Data and code availability section. Warm day melt was assigned a value of 0. Warm day melt was manually

identified when there was no recent precipitation, a maximumdaily temperature that peaked above at least

5�C with TWI typically initiating in the late afternoon (around 13:00 local time) and stopping in the evening
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(around 17:00 local time). This TWI cycle follows the lag of diurnal temperature and is consistent with ex-

pected the outcome of warm day melt. ROS was assigned a value of 1 if there was active or recent precip-

itation that correspondedwith above freezing temperatures. It is not yet possible to identify TWI drivers with

numeric thresholds as changes in snowpack depth, density, and prior wetting can inhibit TWI under some

meteorological conditions but not others; identifying these patterns is one of the objectives of this study.
Decision tree classifier criteria

The decision tree classifier was trained on data fromWYs 2008–2019 and tested againstWYs 2006 (wet year;

four events) and 2007 (dry year; two events). WY2011 and WY2012 were missing soil moisture data and not

included in the training data. The manually identified TWI driver was used as the target variable. A

maximum depth of the decision tree was set to four to assure the model did not over fit and provide a

comprehensible tree. The model was run using the clean data and the raw data to measure the model

improvement achieved with cleaned data. A cross-validation of model performance was also performed

for each set of two consecutive years (eg. 2008 & 2009, 2009 & 2010, 2010 & 2013, etc.) for both clean

and raw data.
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