
ORIGINAL RESEARCH
published: 07 February 2022

doi: 10.3389/fmed.2021.812857

Frontiers in Medicine | www.frontiersin.org 1 February 2022 | Volume 8 | Article 812857

Edited by:

D. Thirumal Kumar,

Meenakshi Academy of Higher

Education and Research, India

Reviewed by:

Rajasekhar Chikati,

Yogivemana University, India

Nuzhath Fatima,

Jazan University, Saudi Arabia

*Correspondence:

Babajan Babanaganapalli

bbabajan@kau.edu.sa

Noor Ahmad Shaik

nshaik@kau.edu.sa

Venkatesh Vaidyanathan

v.vaidyanathan@aukland.ac.nz

Specialty section:

This article was submitted to

Precision Medicine,

a section of the journal

Frontiers in Medicine

Received: 10 November 2021

Accepted: 20 December 2021

Published: 07 February 2022

Citation:

Alsulaimany FA, Zabermawi NMO,

Almukadi H, Parambath SV, Shetty PJ,

Vaidyanathan V, Elango R,

Babanaganapalli B and Shaik NA

(2022) Transcriptome-Based

Molecular Networks Uncovered

Interplay Between Druggable Genes

of CD8+ T Cells and Changes in

Immune Cell Landscape in Patients

With Pulmonary Tuberculosis.

Front. Med. 8:812857.

doi: 10.3389/fmed.2021.812857

Transcriptome-Based Molecular
Networks Uncovered Interplay
Between Druggable Genes of CD8+ T
Cells and Changes in Immune Cell
Landscape in Patients With
Pulmonary Tuberculosis
Faten Ahmad Alsulaimany 1, Nidal M. Omer Zabermawi 1, Haifa Almukadi 2,

Snijesh V. Parambath 3, Preetha Jayasheela Shetty 4, Venkatesh Vaidyanathan 5*,

Ramu Elango 6,7, Babajan Babanaganapalli 6,7* and Noor Ahmad Shaik 6,7*

1Department of Biology, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia, 2Department of Pharmacology

and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia, 3Division of Molecular Medicine, St.

John’s Research Institute, Bangalore, India, 4Department of Biomedical Sciences, College of Medicine, Gulf Medical

University, Ajman, United Arab Emirates, 5 Auckland Cancer Society Research Centre (ACSRC), Faculty of Medical and

Health Sciences (FM&HS), The University of Auckland, Auckland, New Zealand, 6 Princess Al-Jawhara Al-Brahim Center of

Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia, 7Department of Genetic

Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia

Background: Tuberculosis (TB) is a major infectious disease, where incomplete

information about host genetics and immune responses is hindering the development

of transformative therapies. This study characterized the immune cell landscape and

blood transcriptomic profile of patients with pulmonary TB (PTB) to identify the potential

therapeutic biomarkers.

Methods: The blood transcriptome profile of patients with PTB and controls were

used for fractionating immune cell populations with the CIBERSORT algorithm and then

to identify differentially expressed genes (DEGs) with R/Bioconductor packages. Later,

systems biology investigations (such as semantic similarity, gene correlation, and graph

theory parameters) were implemented to prioritize druggable genes contributing to the

immune cell alterations in patients with TB. Finally, real time-PCR (RT-PCR) was used to

confirm gene expression levels.

Results: Patients with PTB had higher levels of four immune subpopulations like

CD8+ T cells (P = 1.9 × 10−8), natural killer (NK) cells resting (P = 6.3 × 10−5),

monocytes (P = 6.4 × 10−6), and neutrophils (P = 1.6 × 10−7). The functional

enrichment of 624 DEGs identified in the blood transcriptome of patients with PTB

revealed major dysregulation of T cell-related ontologies and pathways (q ≤ 0.05). Of

the 96 DEGs shared between transcriptome and immune cell types, 39 overlapped

with TB meta-profiling genetic signatures, and their semantic similarity analysis with

the remaining 57 genes, yielded 45 new candidate TB markers. This study identified 9

CD8+ T cell-associated genes (ITK, CD2, CD6, CD247, ZAP70, CD3D, SH2D1A, CD3E,
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and IL7R) as potential therapeutic targets of PTB by combining computational

druggability and co-expression (r2 ≥ |0.7|) approaches.

Conclusion: The changes in immune cell proportion and the downregulation of T

cell-related genes may provide new insights in developing therapeutic compounds

against chronic TB.

Keywords: Mycobacterium tuberculosis, gene express profile, drug target, CD8+T cells, immune pathways

INTRODUCTION

Tuberculosis (TB) is a chronic infectious lung disease caused
by pathogenic Mycobacterium tuberculosis (MTB) belonging
to the Mycobacteriaceae family. Despite the widespread use
of antibiotics and live attenuated vaccine, TB remains to be
the major cause of morbidity and death among all bacterial
diseases (1). This is primarily due to the rapid emergence of
drug-resistant MTB strains and the incomplete knowledge of
complex host-pathogen interactions (2). In the initial stages of
infection, MTB invades and replicates in the macrophages after
reaching the alveolar air sacs of the lungs (3). Granulomas,
hallmark of TB, are formed around the infected macrophages
by the organized aggregation of immune cells (like T and
B lymphocytes), multinucleated giant cells, dendritic cells,
and fibroblasts. Granulomas also suppress the host immune
responses, as dendritic cells and macrophages were unable
to present antigen to lymphocytes (4). It is noteworthy to
mention that mycobacteria can induce distinct host responses
from asymptomatic conditions to severe pulmonary illness (5).
However, underlying immune cell types and their association
with the differentially expressed genes in TB and how they
contribute to severe infection are not yet fully explored.

Over the past few decades, microarray-based genome-wide
RNA profiling has evolved as a powerful approach to investigate
the host transcriptional response (of∼19,000 genes) in infectious
diseases (6). However, differences in the type of clinical
samples, array platforms, and statistical approaches used, created
a discordance in interpreting massive transcriptomics data.
Advances in statistical modeling and bioinformatics approaches
have accelerated the identification of disease-centric genes by
employing gene networking methods based on graph topological
parameters for many infectious diseases (7, 8). Moreover, the
new bioinformatic methods like estimating relative subsets of
RNA transcripts (CIBERSORT), Tumor Immune Estimation
Resource (TIMER), and Estimating the Proportions of Immune
and Cancer cells (EPIC) are developed to characterize immune
cell composition using large-scale gene expression data (9, 10).
These bioinformatic methods implement functional enrichment
scores based on the presence of the query genes over reference
gene sets. They perform variety of biological analyses including
immune responses based on the defined gene sets. Exploring
abnormal immune cell infiltration is critical for developing
novel transformative therapies to combat diseases such as
cancer, myocarditis, and TB (11, 12). Therefore, in order to
characterize alterations in immune cell proportion landscape
and transcriptomic profile, and to identify new molecular

therapeutic targets, this study applied statistical and knowledge-
based systemic investigations (such as semantic similarity,
gene correlation, and graph theory parameters) to the blood
transcription data of patients with TB.

MATERIALS AND METHODS

Study Design and Global Expression Data
The genome-wide gene expression dataset (GSE83456) (13) was
imported in raw format from the Gene Expression Omnibus
(GEO) database (www.ncbi.nlm.nih.gov/geo). This dataset has
expression profiles of 45 pulmonary TB (PTB) and 61 control
blood samples generated on the Illumina Human HT-12 V4.0
expression bead chip (Illumina, Inc, USA). The detailed sample
information is given in the Supplementary Material Table 1.
Figure 1 depicts the overall work design employed in the current
research analysis.

Global Data Preprocessing and Screening
of Differentially Expressed Genes
R/Bioconductor packages were used to analyze microarray gene
expression data. Raw data was fed into the R package limma (14)
for the standardization and noise reduction of the probe data,
and the raw signal levels for each probe set were standardized.
The Quantile method was used to normalize the microarray
datasets. The t-statistic was used to detect statistically significant
differentially expressed genes (DEGs) between the PTB and
control samples. To eliminate false positives, the Benjamini and
Hochberg false discovery rate (FDR) with p < 0.05 was used as
a cut-off point for gene data. Thereafter, probes were matched to
Entrez Gene IDs, and duplicates (with the highest fold change
difference) and unmatched transcripts were filtered out. In the
final stage, all the DEGs were classified as up- and downregulated
genes based on the fold change threshold (FC ≥ |1.5|).

Identification of Immune Cell Composition
From Gene Expression Profiles
The fractions of 22 immune cell types in the PTB transcriptome
profile were estimated using the CIBERSORT algorithm (15).
This program employs linear support vector (SVR) regression to
perform feature selection and to deconvolve the cell mixture from
the gene expression profile. In this study, gene expression profiles
of PTB and control samples were fed into the CIBERSORT
algorithm where the algorithm converts the gene expression
matrix into the immune cell-matrix and applies the filtering
criteria of 1,000 permutations and significant p value set at≤ 0.05.
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FIGURE 1 | Study workflow. The gene expression profiles of patients with tuberculosis (TB) and controls were used to deconvolute immune cell fractions. Differentially

expressed genes (DEGs) were mapped to functional pathways and then correlated with immune cell and TB meta-analysis gene signatures. The overlapping genes

showing semantic similarity were explored by druggability and protein interaction analysis to identify novel candidate therapeutic targets/biomarkers for combating TB

infection.

MTB Meta-Profiling Genetic Signatures
We obtained 380 genetic signatures identified from the modular
analysis and meta-profiling of 16 publicly available gene
expression datasets (16) (Supplementary Material Table 2). We
compared the overlapping genes between these 380 TB genetic
signatures, DEGs, and genes associated with immune cell
populations for downstream analysis.

Identification of Immune Pathways From
Gene Expression Profiles
The functional enrichment analysis of the DEGs was performed
using g:Profiler (17), a webserver to interpret the function
of gene lists (https://biit.cs.ut.ee/gprofiler/gost). This server
matches a queried gene list to established functional data
sources and uncovers gene ontologies as well as pathway terms
that are significantly enriched at q ≤ 0.05. Immune-related
pathways were screened from the functional enrichment list. The
DEGs which are contributing to immune-associated pathways
were mapped to the known signature of TB and immune
signature genes in the CIBERSORT to identify unreported
genes in TB.

Identification of Semantic Similarity
Using encoded evidence in the Gene Ontology (GO) hierarchy,
the functional similarity between unreported genes and known
TB signatures is assessed. In this study, we usedWang’s similarity
metric to compare the biological process (BP) hierarchy. To
quantify the semantic similarity between gene pairs, we used the
R tool GoSemSim (18).

We employed Resnik’s measure of Best-Match Average (BMA)
method, which combines the semantic relationship scores of
numerous GO terms and produces the average of all maximal
similarities in each row and column because a gene can be
annotated by many GO terms (19). Following that, gene pairs
were selected based on a semantic score of ≤0.5, with a larger
score indicating a stronger relationship. The following formula
was used to calculate the semantic similarity among gene pairs:

SGO (A,B) =

∑

t∈TA∩TB
(SA (t) + SB(t))

∑

t∈TA
SA (t)+

∑

t∈TB
SB(t)

(1)

where TA designates the contribution of t ∈ TA term to the
semantics of A based on the relative positions of t and A in
the graph, and SA (t) implies the role of t ∈ TA term to the
semantics of A.
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FIGURE 2 | The immune cell proportion landscape between pulmonary TB (PTB) and controls. (A) The relative proportion of immune cell subpopulations in

GSE83456 dataset. (B) The difference of immune infiltration between PTB and normal controls (the control group was marked in blue color and the PTB group was

marked in red color. P < 0.05 were considered as statistically significant).

Druggability Analysis
The Drug–Gene Interaction Database (DGIdb) (20) was used to
assess the druggability of the genes. DGIdb is a central resource
for drug-gene interaction data and the potential druggability
of each query gene based on different databases. We included
approved drugs, antineoplastic drugs, and Immunotherapeutic
drug interactions filters and in advance filters, we selected 9
Disease-Agnositic sources databases, 43 gene categories, and
31 interaction types. We used drug target interaction with
interactions score ≥0.03 to search the DEGs, which could act as
potential drug target genes for MTB.

Correlation Among the Druggable Genes
The correlation between the druggable genes in PTB was
investigated using Pearson’s correlation method. The correlation
(r) between each pair of genematrices was ranked using Pearson’s
correlation coefficient (PCC). The formula used for computing
the PCC existing between two genes is given below.

PCC (r) =

∑n
i=1 (xi − x̄) (yi − ȳ)

√

∑n
i=1 (xi − x̄)2

√

∑n
i=1 (yi − ȳ)2

(2)

where x̄ and ȳ are the average of sample’s gene expression signal
in PTB of the two genes, respectively. The gene co-expression was
confirmed using the Search Tool for the Retrieval of Interacting

Genes (STRING) (21), an online protein interaction database,
with high confidence interaction score of ≥0.7.

Real Time-PCR (RT-PCR) Validation of
Druggable Genes
In order to verify our bioinformatics findings, we validated the
expression of 9 druggable genes by the RT-PCR method. In brief,
the RNA collected from THP-1 cell lines infected with the MTB
strain (H37Rv) was collected after the post-incubation period
as previously described (22). In brief, total RNA was reverse
transcribed as complementary DNA (cDNA) and then amplified
by the RT-PCR method using gene-specific oligonucleotide
primers. The relative expression level of potentially druggable
genes between the control and test cell lines was estimated by
the 2−11CT formula after normalizing their expression levels
with the GAPDH internal reference gene. A p < 0.05 under the
standard two-tailed t-test was considered a significant value.

RESULTS

Immune Cell Proportion Analysis of PTB
Gene Expression Profile
The immune cell proportion landscape of PTB is not yet
fully revealed, particularly in low abundant cell subpopulations.
In this study, the CIBERSORT algorithm has identified the
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FIGURE 3 | Graphical distribution of differentially expressed genes. (A) Volcano plot representing the distribution of fold change and p-value significance. (B) The

distribution mean intensity of differentially expressed genes in the PTB and control samples. (C) Red and green nodes represent up and downregulation of genes and

black nodes are the immune cell types. (D) The Venn diagram represents the overlap of DEGs with immune and TB signatures. (E) Semantic similarity of pairs of genes

between differentially expressed immune signatures and TB signatures. The selected gene pairs with higher functional similarity (≥0.5) are highlighted in green color.
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enrichment of genes associated with 10 types of adaptive immune
cells like B cells naive, plasma cells, T follicular helper cells,
CD8+ T cells, resting memory CD4+ T cells, T cells, CD4+

memory T cells activated, memory B cells, naive CD4+ T
cells, regulatory T cells (Tregs), and Gamma-delta (γδ) T cells.
On the other hand, DEGs associated with 12 innate immune
cell type categories were NK cells resting, macrophages M2,
monocytes, macrophagesM1, macrophagesM0, resting dendritic
cells, eosinophils, dendritic cells activated, mast cells resting, NK
cells activated, mast cells activated, and neutrophils were also
found be enriched. The immune cell proportions of adaptive
immune cells and innate immune cells are represented in
Supplementary Material Figure 1.

The genes associated with four immune cells; NK cells
activated, T follicular helper cells, dendritic cells resting, and
eosinophils, were not significantly enriched in both groups. The
proportion plot of the enriched immune cell types is represented
in Figure 2A. We observed higher relative proportion of genes
enriched for cell types like CD8+ T cells (P = 1.9 × 10−8), NK
cells resting (P = 6.3 × 10−5), monocytes (P = 6.4 × 10−6), and
neutrophils (P= 1.6× 10−7) in the PTB samples compared to the
control samples (Figure 2B, Supplementary Material Figure 1).
Among the 4 cell types with a higher relative proportion of
enriched genes from DEGs, the genes of CD8+ T cells and
NK resting cells were found to be downregulated in PTB when
compared to the control samples. On other hand, monocytes
and neutrophil-associated genes were highly active in PTB when
compared to control samples.

Identification of DEGs From Gene
Expression Profile
The standardized gene expression data of “PTB vs. controls”
was used to identify the differentially expressed genes. The
volcano plot representing the distribution of fold change and the
significant p-value is given in Figure 3A. The PTB vs. control
group analysis revealed 624 DEGs (FC |1.5|, adj p-value of 0.05),
with 393 upregulated and 231 downregulated genes. The top 10
DEGs obtained from PTB vs controls are given in Table 1. The
mean distribution of intensity of differentially expressed genes in
PTB and control samples is represented in Figure 3B.

Functional Enrichment Analysis of DEGs
The differentially expressed genes enriched using g:Profiler
with the statistical significance of q value ≤ 0.05, generated 309
ontologies of Biological Process (BP), 17 ontologies of Molecular
Function (MF), 42 ontologies of Cellular Component (CC),
and 85 terms in pathways (Supplementary Material Table 3).
Overall, the enrichment analysis has shown the overlap
with immune-related ontologies and pathways. We pooled
immune-related pathways from enrichment terms to check
how DEGs affect the immune system pathways. We observed
the upregulation of pathways such as interferon signaling (q =

9.16 × 10−27), cytokine signaling in the immune system (q =

2.34 × 10−21), neutrophil degranulation (q = 3.13 × 10−11),
viral genome replication (q = 2.47 × 10−7), and response
to biotic stimulus, etc. (Supplementary Material Figure S1).
On the other hand, pathways like T-cell antigen receptor

TABLE 1 | The top 10 differentially expressed gene list in pulmonary tuberculosis

(PTB).

Symbol FC Gene name Adj P value

SERPING1 7.75 Serpin family G member 1 2.08E−36

ANKRD22 7.58 Ankyrin repeat domain 22 9.83E−35

FCGR1A 7.51 Fc fragment of IgG receptor Ia 1.00E−28

FCGR1C 7.04 Fc fragment of IgG receptor Ic, pseudogene 3.79E−30

FCGR1B 6.02 Fc fragment of IgG receptor Ib 2.75E−28

LRRN3 −2.91 Leucine rich repeat neuronal 3 4.35E−13

FCGBP −2.60 Fc fragment of IgG binding protein 1.03E−12

NELL2 −2.27 Neural EGFL like 2 6.95E−17

GZMK −2.20 Granzyme K 2.19E−10

CCR7 −2.19 C-C motif chemokine receptor 7 1.15E−16

signaling, antigen receptor-mediated signaling, NF-kappa
B signaling, T cell activation, T cell receptor signaling,
leukocyte differentiation, leukocyte activation, alpha-beta T
cell activation, and T cell differentiation, were downregulated
(Supplementary Material Figure S1). Overall, our functional
enrichment analysis points to a major downregulation of T
cell-related ontologies and pathways.

Mapping DEGs to Immune Cell Proportions
in PTB
Here we investigated the genes overlapping between the
CIBERSORT signature and DEGs. There are about 96 DEGs
(Figure 3C) contributing to different immune cell types
(Supplementary Material Table 4). Interestingly, we found
that 31.25% of DEGs were contributing to the immune cell
type “CD8+ T cells.” We also observed that all those genes
contributing to the “CD8+ T cells” were downregulated in PTB
samples, as shown in Figure 3C. The findings from the mapping
of DEGs to immune cell proportions are consistent with
functional enrichment analysis, where T cell-related pathways
have shown major dysregulation.

Comparison of DEGs, Immune Cell
Signatures With TB Meta-Analysis
Signatures
The differentially expressed immune signatures in the sample
of patients with TB were compared with the known signatures
of TB (Supplementary Material Table 4). Here, we observed 39
(40.6%) differentially expressed immune signatures overlapping
with TB meta-analysis gene signatures and 57 novel genes
(59.3%) contributing to the immune cell proportion (Figure 3D).
Further, semantic similarity (functional association) of these
57 novel genes with 39 overlapping with TB signatures was
performed to identify the most predominant genes. The semantic
similarity score of ≥0.5 among the gene pairs was considered
as a highly significant score implying a stronger association.
The semantic similarity of 45/57 genes has shown a stronger
functional association with overlapping with TB signatures
(Figure 3E). Again, it is important to pinpoint that 20 out of 45

Frontiers in Medicine | www.frontiersin.org 6 February 2022 | Volume 8 | Article 812857

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Alsulaimany et al. Tuberculosis and Druggable Genes

FIGURE 4 | The druggable targets with their expression, interaction and co-expression (A) The network depicts the drug-target interaction where black and pink

nodes represent target and drugs respectively. (B) The co-expression (a similar pattern of gene expression) among the druggable genes where red and blue represent

the positive and negative correlation. (C) The pattern of gene expression of druggable genes in control and PTB patient samples clearly depicts a distinction between

the control and PTB groups.

genes (44%) were contributing to the immune cell type “CD8+
T cells.”

Druggability and Co-expression Analysis
Druggability analysis was performed on the 45 genes
that had shown higher functional similarity to the
known TB signature. We found that 21 druggable genes
(Supplementary Material Figure S2) (46%) with an interaction
score ≥ 0.03, were enriched against terms like an antibody,
binder, inhibitor, antagonist, agonist, modulator, and activator.
Of all the druggable genes, ITK and FCGR3B genes were
observed to have the highest number of drug interactions
(19 drugs) followed by PTGDR (13 drugs), TLR7 (12 drugs),
and CD3E (10 drugs). The drug-target interaction network is
represented in Figure 4A. Next, we checked the association
of druggable targets to the immune cell types. Among the 21
druggable targets, 48% were contributing to the immune cell
type “CD8+ T cells” followed by monocytes (9%), naïve B
cells (9%), and neutrophils (9%) (Figure 4B). Interestingly, the
expression patterns of these 21 druggable genes have shown
a clear distinction in PTB when compared to control samples
(Figure 4C).

To check the correlation of these 21 druggable targets
in patients with PTB, we performed Pearson’s correlation

analysis (Figure 4B). The correlation analysis performed between
druggable targets in PTB samples resulted in 15 genes (ITK,
CD2, CD6, CD247, CD27, CD3D, ZAP70, SH2D1A, IL2RB,
CEACAM3, IL7R, TLR2, CD3E, PTGDR, FCGR3B) with higher
Pearson correlation coefficient (r2 ≥ |0.7|). The co-expressed
genes are shown in Table 2. Among the 15 co-expressed genes,
12 and 3 were down and upregulated respectively (Figure 5A).
Upregulated genes were contributing to the immune cell types
“Monocytes” (TLR2) andNeutrophils (FCGR3B andCEACAM3).
Again, 10 downregulated genes were contributing to “T cells
CD8” and 1 each for “T cells regulatory” and “B cells memory”
(Figure 5B).

Interestingly, we noticed a cluster of 12 co-expressed genes
ITK, CD2, CD6, ZAP70, CD247, CD3D, SH2D1A, CD27, CD3E,
IL2RB, IL7R, and PTGDR. To validate the co-expression among
the 12 downregulated genes we queried them in the STRING
database with a high confidence score of ≥ 0.7. The STRING
database identified strong interaction among the 11 genes except
for PTGDR (Figure 5C). Co-expression and protein interaction
network from the STRING database has shown the mutual
influence of the 11 genes in the expression and functional
activities. Nine genes (expect CD27, PTGDR, and IL2RB) were
contributing to “CD8+ T cells.” All the genes were predicted
to be targeted by different drug molecules, most of which are
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TABLE 2 | List of co-expressed genes and the druggable targets.

Gene Immune cells Regulation Co-expressed genes PCC range

ITK CD8+ T cells DOWN CD2, CD3D, ZAP70, CD247, SH2D1A, CD3E, TLR2, CD6, CD27 0.72–0.91

CD2 CD8+ T cells DOWN CD3D, SH2D1A, ZAP70, CD247, TLR2, CD3E, ITK, CD6, CD27 0.74–0.91

CD6 CD8+ T cells DOWN ITK, ZAP70, CD2, CD3D, CD247, SH2D1A, TLR2, CD3E, CD27 0.74–0.89

ZAP70 CD8+ T cells DOWN TLR2, CD247, CD3E, SH2D1A, CD6, CD2, ITK, CD3D, CD27 0.76–0.88

CD247 CD8+ T cells DOWN SH2D1A, IL2RB, TLR2, CD2, CD3D, ITK, ZAP70, CD6 0.79–0.87

CD3D CD8+ T cells DOWN CD247, SH2D1A, ZAP70, TLR2, CD2, ITK, CD6, CD27 0.72–0.90

SH2D1A CD8+ T cells DOWN IL2RB, TLR2, CD2, CD247, CD3D, ITK, CD6, ZAP70 0.73–0.88

TLR2 Monocytes UP ZAP70, CD247, CD6, CD2, SH2D1A, ITK, CD3D 0.72–0.82

CD27 B cells memory DOWN CD6, ITK, CD3D, CD2, ZAP70, IL7R 0.71–0.85

CD3E CD8+ T cells DOWN ZAP70, ITK, CD6, CD2 0.74–0.80

IL2RB T cells regulatory DOWN SH2D1A, CD247, PTGDR 0.79–0.82

CEACAM3 Neutrophils UP FCGR3B 0.71

IL7R CD8+ T cells DOWN CD27 0.71

PTGDR CD8+ T cells DOWN IL2RB 0.79

FCGR3B Neutrophils UP CEACAM3 0.71

#PCC, Pearson correlation coefficient.

FIGURE 5 | The interaction networks of druggable targets. (A) co-expressed network of druggable targets where red and green colored nodes represent up and

downregulated genes. The red edge represents the association of targets to immune cells and the blue edges depict the interaction among the target genes. (B) The

pie chart represents the composition of immune cell types with the co-expressed druggable targets. (C) The interaction of the co-expressed druggable targets in the

STRING database.

monoclonal antibodies (Table 3). Hence, the integrated analysis
has depicted predominant deregulation of “CD8+ T cells” as the
key genetic signatures for active PTB.

RT-PCR Validation of Druggable Genes
The real-time PCR gene expression results showed that the
relative expression levels of 9 potential druggable genes (ITK,
CD2, CD6, CD247, ZAP70, CD3D, SH2D1A, CD3E, and IL7R)
were consistent with the findings of microarray hybridization.
All the genes were differentially expressed between treated
and untreated cell lines (p ≤ 0.01). These results confirm the
dysregulated “CD8+ T cell signaling” plays important role in
establishing TB infection (Supplementary Material Figure S3).

DISCUSSION

Host genetic factors are known to play an important role in
regulating the initial TB infection and determining the disease
progression in the lungs (37). Genome-wide association studies
have underlined the relevance of numerous polymorphisms in
immune response-related genes in contributing to susceptibility
or resistance to TB (38). However, polymorphism studies were
unable to provide full insight into the complex molecular
crosstalk between thousands of host genes involved in innate and
adaptive immune responses. In this context, high throughput
transcriptome approaches have shown great promise in
dissecting the host-pathogen interactions thereby helping to
develop a novel vaccine and therapeutic targets for several
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TABLE 3 | The list of drugs shows direct interaction with 9 genes associated with CD+T cell functioning.

Gene Drug Interaction type and

directionality

Sources PMIDs Query

Score

Interaction

Score*

ITK CHEMBL2179805 – DTC (23) 8.77 6.71

CD2 ALEFACEPT Inhibitor (inhibitory) TdgClinicalTrial (24–26) 21.92 106.32

ChemblInteractions TEND (27, 28)

GuideToPharmacology (29)

SIPLIZUMAB Inhibitor (inhibitory) TdgClinicalTrial – 13.15 63.79

ChemblInteractions TTD

CD6 ITOLIZUMAB Antibody (inhibitory) GuideToPharmacology TTD – 8.77 63.79

ONCOLYSIN CD6 – ChemblInteractions – 4.38 31.9

CD247 MUROMONAB-

CD3

– TdgClinicalTrial (30, 31) 9.86 15.95

ZAP70 TRIDOLGOSIR – DTC (32) 2.92 21.26

ALOISINE Inhibitor (inhibitory) GuideToPharmacology – 1.46 10.63

CD3D MUROMONAB-

CD3

Inhibitor (inhibitory) TdgClinicalTrial (30, 31) 13.15 9.11

ChemblInteractions

BLINATUMOMAB Activator (activating) TdgClinicalTrial – 5.85 6.08

ChemblInteractions

SH2D1A EMAPALUMAB – PharmGKB FDA – 1.1 15.95

CD3E MUROMONAB-

CD3

Binder, inhibitor

(inhibitory), antibody

(inhibitory)

TdgClinicalTrial (33, 34) 26.31 12.76

ChemblInteractions TEND

GuideToPharmacology TTD OTELIXIZUMAB Antibody (inhibitory) TdgClinicalTrial – 8.77 6.38

ChemblInteractions

GuideToPharmacology

IL7R RUXOLITINIB – CGI (35, 36) 1.1 15.95

*Drug molecules showing >5 interaction score is shown here.

infectious diseases (39–41). Therefore, we explored host immune
system response through integrated systems biology approach
based on immune cell subtyping and differential gene expression
profiles of patients with PTB to normal controls.

The cellular and molecular background of TB-induced
systemic immunological dysregulation is poorly understood.
Therefore, we screened the DEGs in PTB and deciphered
their contribution to immune cell proportion alterations.
Traditionally, host transcriptomics studies have relied on whole
blood to characterize TB gene signatures by aggregating
transcriptomic signals from many different cell types but were
unable to identify specific immune cell type signatures (42). To
overcome these constraints, we used a powerful computational
technique called CIBERSORT to define the range of immune
cell states in the blood of patients with TB. This method
relies on linear support vector regression (SVR), a machine
learning approach to deconvolute the gene expression signatures,
known as “signature matrix” for determining the relative fraction
of immune cell proportions in blood or tissues (15). The
CIBERSORT method has been widely used to infer immune cell
types from transcriptomics data to predict outcomes of different
cancers (9, 43, 44) and infectious diseases (45–47). In this study,
the CIBERSORT output identified the downregulation of “CD8+

T cells” in patients with PTB.

The GO functional enrichment analysis of gene expression
profile revealed the upregulation of interferon signaling, cytokine
signaling in the immune system, neutrophil degranulation,
and response to biotic stimulus pathways. The MTB infection
of primary human macrophages is shown to induce type
I IFN signaling and limit the expression of IL-1β, which
imparts immunity against the infection (48). Additionally,
the downregulation of major pathways associated with T
cells function like T-cell antigen receptor signaling, leukocyte
differentiation, leukocyte activation, T cell activation, T cell
differentiation, T cell receptor signaling, alpha-beta T cell
activation, NF-kappa B signaling, and antigen receptor-mediated
signaling pathway were noted in PTB samples.

Majority of the DEGs contributing to the immune cell type
“CD8+ T cells” were clearly downregulated in the PTB samples
indicating their potential roles in defense against TB. These cells
are also known as killer or cytotoxic T lymphocytes, as they
potentially destroy the infected cells by recruiting cytokines and
other immune cells to the site of infection. The low abundance of
blood CD8+ T lymphocytes may impair the effective immunity
against pathogens, as they lack a sufficient cytotoxic T cells to
recognize the MHC class I-restricted epitopes of MTB antigens,
in the site of infection (49). A recent RNA transcriptome study
used the positron emission tomography (PET) data collected
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from recovered patients with TB, at 4th and 24th weeks has
also reported that genes associated with the overexpression of
B cells and down expression of T cells and platelets confirms
our findings (50). Thus, the downregulation that contribute to
immune cell type is concordant with the pathway enrichment
analysis findings of lower expression of T cell-related ontologies
and pathways.

The druggability potential of any protein is attributed to its
binding specificity with small compounds following Lipinski’s
rule-of-five for drug likeliness (51). Numerous bioinformatic
and empirical methods which consume less time and provide
faster prescreening of druggability of candidate proteins than
conventional methods have been developed (52, 53). There are
a variety of computational methods available, which can predict
druggability and protein-binding sites by using energy dynamics
to geometrical topological estimations, and from flexible to rigid
proteins (54, 55).

By applying druggability and co-expression features we
identified 9 CD8+ T cells associated genes (ITK, CD2, CD6,
CD247, ZAP70, CD3D, SH2D1A, CD3E, and IL7R) as potential
therapeutic targets of PTB. However, it is pivotal to carefully
prioritize the drug molecules based on their mode of action,
whether activator or inhibitor based on the gene expression
status. For example, over-expressed genes can be targeted by
inhibitory molecules, and downregulated genes can be targeted
by activator molecules (56). From the above 9 genes, the
therapeutic potential of ITK and IL7R has been characterized
by experimental methods. ITK is a tyrosine kinase expressed
on T-cells, which regulates its T-cell development and function.
Human lungs with ITK deficiency impair early protection
against MTB in vivo (57). Improving ITK signaling pathways
could become an alternative approach for combating MTB
infection. One study reveals the role of IL7R on T-cell immunity
in human TB (58). The authors reported that patients with
TB had lower IL7R concentrations and lower IL7R expression
in T cells than healthy controls, indicating that patients with
TB have impaired T-cell sensitivity. In addition, due to post-
transcriptional processes, patients with TB had reduced amounts
of IL7R in T cells. In vitro experiments revealed that MTB-
specific T lymphocytes from patients with TB have reduced IL-
7-induced STAT5 phosphorylation and IL-7-promoted cytokine
production (59). The role of the remaining 7 genes (CD2, CD6,
CD247, ZAP70, CD3D, SH2D1A, and CD3E) in T-cell signaling
and modulation of host immune responses in mycobacterium
infections is also supported (60–64).

Our results highlight the dysregulation of CD8+ T cells and
the associated genes in PTB patients. These findings are exciting
not just from the fact that CD8+ T cell-associated genes have
the potential to act as potential therapeutic targets but prove
that their role is not less important than CD4+ T cells in
controlling MTB infection. We acknowledge that our strategy
has some technical constraints. CIBERSORT was a convenient
computational tool for determining infiltrating immune cell
fractions, but it was still less precise than immunohistochemistry

or flow cytometry, which could lead to inaccuracies in
immune cell fractions. However, to overcome this limitation
to some extent, we have linked gene expression profiles of
immune signatures followed by functional enrichment, semantic
similarity, druggability, and co-expression among the identified
key signatures.

CONCLUSION

In this study, by coupling computational deconvolution
algorithms and high throughput blood transcriptomics
data, we identified the difference in T-cell-related immune
cell populations among patients with PTB. The functional
enrichment of 624 DEGs (393 over-expressed and 231 under-
expressed) identified in the blood transcriptome of PTB patients
revealed the major dysregulation of T cell-related ontologies and
pathways. By linking DEGs against immune cell populations and
TB gene signature, this study identified 9 CD8+ T cells associated
genes (ITK, CD2, CD6, CD247, ZAP70, CD3D, SH2D1A, CD3E,
and IL7R) as potential therapeutic targets of PTB. The expression
levels of these 9 genes in MTB infection in cell lines were assessed
by RT-PCR-based expression assay, confirming the experimental
validation. However, further in vitro and in vivo studies are
needed to establish the role of these genes in PTB infection,
progression, and treatment.
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