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A B S T R A C T

The cytochrome P450 enzymes are ubiquitous heme-thiolate proteins performing regioselective and stereo-
selective oxygenation reactions in cellular metabolism. Due to their broad substrate scope and catalytic versa-
tility, P450 enzymes are also attractive candidates for many industrial and biopharmaceutical applications. For
particular uses, enzyme properties of P450s can be further optimized through directed evolution, rational, and
semi-rational engineering approaches, all of which introduce mutations within the P450 structures. In this re-
view, we describe the recent applications of these P450 engineering approaches and highlight the key regions
and residues that have been identified using such approaches. These “hotspots” lie within critical functional
areas of the P450 structure, including the active site, the substrate access channel, and the redox partner in-
teraction interface.

1. Introduction

The cytochrome P450 (CYP or P450) enzymes are a superfamily of
heme-thiolate proteins found in most living systems from bacteria to
humans [1]. Named after their peculiar spectroscopic absorption
maximum at 450 nm when the ferrous heme binds carbon monoxide,
P450s have been extensively studied for over 50 years since their first
discovery from the mouse liver in 1940 [2,3]. By the incorporation of
one oxygen atom from molecular oxygen into an organic substrate,
P450s catalyze a variety of reactions including hydroxylation, epox-
idation, dehydrogenation, dealkylation, desaturation, nitration, and
CeC/CeN bond formation [1,3].

In a typic catalytic cycle, P450s utilize redox proteins or domain to
mediate electron transfer from NAD(P)H to the heme iron, allowing the
binding and activation of molecular oxygen to form a heme iron (IV)
oxo species, referred to Compound I, which in turn carry out various
oxygenation reactions [4]. The P450s widely participate in the meta-
bolism of xenobiotics, such as environmental compounds, antibiotics,
and various drugs, and are also involved in the biosynthetic pathways
of endogenous molecules including sterols, fatty acids, prostaglandins
and many specialized metabolites [1,4].

Due to their breadth of substrate range and the catalytic versatility,
P450s are of high interest for pharmaceutical and chemical applications

(Fig. 1) [5]. Compared with chemical catalysts, P450s offer the sig-
nificant advantage of being able to regio- and stereo-specifically acti-
vate and modify inert substrate groups under mild conditions. One of
the most successful industrial applications is the production process of
pravastatin, a cholesterol-lowering drug used for preventing cardio-
vascular disease [6]. Pravastatin could be obtained by a two-step pro-
duction process, in which compactin is first produced by the fermen-
tation of Penicillium citrinum and followed by stereoselective
hydroxylation of compactin at the C-6 position by Streptomyces carbo-
philus containing P450sca-2 (CYP105A3) [7,8]. Recently, a single-step
production process was also achieved by fusing a newly-discovered
compactin-hydroxylating CYP105AS1 to a redox partner and expressing
the construct in the compactin-producing Penicillium chrysogenum,
leading to a titer of 6 g/L for pravastatin at a pilot production scale [9].

Despite the huge potential, the industrial application of microbial
and other P450s is limited by several technical bottlenecks including
low enzyme activity, the need for electron transfer partners, and the
requirement for the expensive cofactor NAD(P)H [10]. For solutions,
P450s engineering, redox partner and host cell screening, redox partner
engineering, regeneration of NAD(P)H are often performed. In recent
years, the number of P450 crystal structures has increased dramatically,
providing crucial aid to structure-function relationship studies, as well
as rational and semi-rational engineering of P450s for various
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applications.
Recent reviews have covered the function, structure, and applica-

tions of P450s [5,10–16]. Besides, studies on P450 engineering for
novel chemistry were also recently summarized [17–19]. Here, we
mainly focus on the P450 engineering approaches for biotechnological
applications, pay special attention to rational and semi-rational design,
highlighting the critical residues in the hotspot areas including the
substrate recognition sites, the substrate-access channel, and the redox
partner interaction interface.

2. Structure of P450

P450cam (CYP101A1) from Pseudomonas putida, catalyzing the
regio- and stereospecific hydroxylation of camphor to 5-exo-hydro-
xycamphor, was the first P450 to be investigated in great detail, with its
crystal structure first reported in 1985 [20]. The heme domain structure
of another well-characterized P450, P450BM3 (CYP102A1), a fatty acid
hydroxylase from Bacillus megaterium, was determined in 1993 [21]. An
increasing number of available P450 structures now showed that the
overall P450 structure is quite conservative and generally consists of an
α-helix-rich region (αΑ-αL) and a β-sheet-rich region (β1-β10) (Fig. 2a)
[22,23]. The heme prosthetic group is located almost within the center
of the structure and does not contact with the solution. A conserved

cysteine residue is present on the proximal side of the heme, to which it
is coordinated with a binding distance of 2.2–2.3 Å. The distal side of
the heme contains a ligand-binding site that binds water, oxygen, and
substrate molecules. The I helix is the most structurally conserved re-
gion in the P450s and passes through the entire P450 structure above
the heme plane. The F and G helices are located above the I helix and
form a V-like shape architecture. Although the overall protein structure
is very similar among the different P450s, the N terminal loop, the B-C
loop (the loop between the B and C helices), and the F-G loop (the loop
between the F and G helices) show significant differences. Furthermore,
the Bʹ helix and F-G loop are highly flexible and are responsible for
substrate recognition and substrate binding. This structural diversity
confers the high level of functional diversity observed for the P450s.

3. Engineering of the P450s

Protein engineering of enzymes is a process of modifying protein
structures for desired properties, such as improved regio- and stereo-
selectivity, catalytic activity, thermostability, and solvent tolerance
[24]. Generally, P450 engineering approaches include directed evolu-
tion, rational and semi-rational design. Directed evolution, a process
that mimics natural evolution by introducing artificial random muta-
tions and followed by screening for desired properties, is widely used

Fig. 1. Examples of cytochrome P450 enzymes involving in the production of pharmaceuticals mentioned in this review.

Fig. 2. (a) Structure of CYP105D7 (PDB ID: 4UBS, the li-
gand is removed for cleanness) from Streptomyces avermitilis
as a representative of P450s. (b) Conserved arginine re-
sidues on the substrate entrance area of CYP105D7-diclo-
fenac complex structure. The BC loop, FG region, I helix,
SRS5 region and SRS6 region are shown in blue, magenta,
yellow, cyan and green, respectively. Heme is shown as red
stick. The ligand molecule in CYP105D7 (DIF-1, DIF-2, PGE)
is shown as an orange sphere. Arg70, Arg81, A88 and
Arg190 are shown as cyan sticks.
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for investigating the structure-function relationships of both unknown
P450s and well-characterized P450s [5,12,25]. Particularly, directed
evolution has been frequently carried out on the full heme domain-
coding regions of the wild-type P450BM3 gene and its mutants. For
instance, in order to improve the catalytic activity of a drug-metabo-
lising P450BM3 mutant (R47L/F87V/L188Q) toward substrates dex-
tromethorphan and 3,4-methylenedioxymethylamphetamine, random
mutagenesis by error-prone PCR was performed, and mutants with 200-
fold increased turnover were obtained [26]. As another example, to
evolve mutants with required regioselectivity for P450BM3 (F87A) that
initially hydroxylates testosterone to give a 1:1 mixture of the 2β- and
15β-hydroxylated products. Reetz and co-workers carried out iterative
saturation mutagenesis to the 20 residues lining the substrate-binding
pocket, affording mutants that are 96–97% selective for either of the
two regioisomers [27]. More recently, preparative-scale oxidation of
aniline to 4-aminophenol was achieved by screening a library of
P450BM3 variants containing mutations at the active site [28]. By using
triple code saturation mutagenesis and iterative saturation mutagen-
esis, Reetz and co-workers obtained evolved P450BM3 mutants that
could be combined with selected alcohol dehydrogenases to achieve
one-pot, regio- and stereoselective conversion of cyclohexane to cy-
clohexane-1,2-diol [29]. Furthermore, Fasan et al. successfully im-
proved the stability of the reductase domain of P450BM3 by using
consensus-guided mutagenesis, a method that based on the idea that
introduction of ancestral/consensus residues could contribute to the
protein stability [30].

Unlike directed evolution, rational engineering usually uses site-
directed mutagenesis to obtain mutants, but in this case, it is usually
limited to the enzymes whose tertiary structure and structure-activity
relationships are well-characterized. Rational design could effectively
reduce the number of variants generated, which in turn significantly
reduce the screening workload. Generally, P450 engineering by rational
design starts with the identification of critical residues responsible for
ligand binding based on the co-crystal structure of enzyme-ligand
complex or molecular docking analysis, which is very helpful to the
prediction of mutations that could be targeted to alter the catalytic
activity or substrate specificity. For example, CYP260A1 from
Sorangium cellulosum catalyzes the unique, 1α-hydroxylation of pro-
gesterone, a steroid whose hydroxylated derivatives have different
medical applications [31]. To improve its selectivity, molecular docking
of progesterone into the crystal structure of full-length CYP260A1 (PDB
entry 5LIV) was first performed to identify potential selectivity-de-
termining residues. Randomization of the three serine residues in active
site and followed by analysis of progesterone conversion lead to the
generation of two highly regio- and stereoselective mutants, S276N and
S276I. The S276N mutant predominant produce 1α-hydroxy-proges-
terone, while the S276I mutant gave 17α-hydroxy-progesterone. Sub-
sequent structural characterization of the S276N and S276I showed
alternative binding mode of progesterone in the active site, providing a
rationale for their regioselectivity.

In the case of the P450s without any crystallographic data, their
structures could also be predicted using homology modeling. For ex-
ample, the CYP17A1 is known to catalyze the 17α-hydroxylation of
pregnenolone and progesterone as well as the subsequent C17-C20
bond cleavage, providing important precursors for different pathways
[32,33]. To study the reaction of progesterone with bovine CYP17A1, a
homology model was first created based on the crystal structures of
human CYP17A1 (PDB codes: 4NKW, 4NKY, and 5IRQ), Danio rerio
CYP17A1 (PDB code: 4R1Z) and CYP17A2 (PDB code: 4R20), and was
then used a guide for alanine scanning of conserved active-site residues
by site-directed mutagenesis, revealing that L206A, V366A, and V483A
mutations alter regioselectivity, increasing the formation of the side-
product, 16α-hydroxyprogesterone, up to 40% of the total product
formation [34].

Semi-rational design is a combination of rational design and di-
rected evolution, and it is a powerful method for acquiring useful

variants by mutagenesis of specific amino acid(s) that was identified
through the analysis of a crystal structure or homology model, and
followed by mutant library screening [20]. This approach is also fre-
quently applied for P450 engineering. For instance, P450sca-2 is known
for its ability to stereoselectively hydroxylation of compactin to yield
pravastatin. Based on a homology model, a more active P450sca-2
(CYP105A3) variant was subjected to site-directed saturation muta-
genesis and three rounds of iterative saturation mutagenesis, focusing
on the five sites that were presumably located in substrate-binding site,
substrate access entrance and redox partner interaction interface. These
efforts result in a mutant that showed increased whole cell bio-
transformation activity (7.1-fold) and overall apparent kcat (10.0-fold),
compared to that of the starting template [35]. Another example is the
engineering of CYP153AM.aq.-CPRBM3, a functional chimera consisting
of the CYP153A heme domain from Marinobacter aquaeolei and the
P450BM3 reductase domain, for improved terminal hydroxylation ac-
tivity towards fatty acids. Semi-rational design based on a homology
model of the CYP153AM.aq heme domain and subsequent mutagenesis
of the selected residues in the substrate-binding pocket and substrate
access channel was carried out. Combination of the promising variant
results in a double mutant G307A/S233G showed increased activity for
fatty acids with different chain length and released substrate/product
inhibition effect [36].

4. “Hotspots” for rational and semi-rational engineering

When conducting rational and semi-rational design, the target re-
sidues for mutagenesis are often located within the substrate-binding
active site, the substrate access channel, the redox partner interaction
regions, as well as the various substrate recognition sites (SRSs). The
SRSs were first identified during the experimental characterization of
the CYP2 family and in the first crystal structure of P450cam [37–39].
SRS1 is located in the B-C loop (this loop can contain one to three small
helices in different P450s). SRS2 is located on the C-terminal side of the
F helix, SRS3 is located on the N-terminal side of the G helix, SRS4 is on
the I helix, SRS5 is located in the region starting from the conserved
EXXR motif to the β1-4 strand, while SRS6 spans between the β-strands
4–1 and 4–2 (Fig. 3).

4.1. Substrate-binding active site

The substrate-binding active site usually consists of the B-C loop
region (including SRS1), I helix (including SRS4), and the SRS5 region.
Systematic sequence-based literature mining analysis showed that re-
sidue of standard position 87, located within SRS1, is the most fre-
quently investigated residue position for all CYPs [37]. This position
(F87) is especially well-known from P450BM3, for which substitutions
of F87 cause significant changes in the substrate spectrum towards
unnatural substrates that include aromatic compounds, alkanes, and
pharmaceuticals, with enhanced regio- and stereoselectivity, improved
catalytic rates, and increased total turnover [40–43].

The I helix region of the active site has also been the focus of ra-
tional engineering. For instance, G248A substitution in a P450cam
variant further improved its oxidation activity and coupling efficiency
for the conversion ethane to ethanol, likely by decreasing the active site
volume and facilitating the binding of small molecules [44].

CYP154E1 from Thermobifida fusca YX showed activity of converting
(E)-stilbene to (E)-4,4′-dihydroxystilbene by double hydroxylation [45].
Substition of G239 at the corresponding position of CYP154E1 with
alanine leads to a six-fold increase in activity. The CYP74 family en-
zymes include allene oxide synthase (AOS), divinyl ether synthase
(DES) and hydroperoxide lyase (HPL), and conserved residues in the I
helix central domain appeared to play a key role in their catalytic ac-
tivities [46,47]. Both single mutants F295I and S297A of tomato AOS
LeAOS3 dramatically alter its original enzymatic activity, and possessed
new HPL activity [47]. Mutants of DES, V379F of tobacco CYP74D3 and
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E292G of flax (CYP74B16), converted their activity to AOS [46].
Another hotspot residues of P450s were identified by Seifert and

Pleiss, who carried out a systematic analysis of SRS5 [48]. They showed
that 98.4% of all SRS5 sequences contain a preferentially hydrophobic
residue located at the fifth position after the EXXR motif and is critical
for substrate specificity and regioselectivity for different P450s.

Furthermore, 27% of all P450s are thought to contain a second se-
lectivity-determining residue located at the ninth position after the
EXXR motif. Despite their high sequence (43%) and structural simi-
larity, CYP105P1 and CYP105D6 from S. avermitilis catalyze the hy-
droxylation of filipin at different positions, being C26 and C1ʹ, re-
spectively [49]. The residues at the fifth and ninth position after the

Fig. 3. Sequence alignment analysis of P450cam, P450nor, CYP105P1, CYP105D6 and CYP105D7. Red boxes indicate six substrate recognition sites (SRS). Red small
triangles indicate EXXR motif. Blue small triangles indicate 5th and 9th position after EXXR motif.
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EXXR motif in CYP105P1 are Gly284 and Gly288, are replaced by the
bulky residues Ser290 and Ile293 in CYP105D6 [44] (Fig. 4). Structure
analysis of these two P450s clearly showed that CYP105D6 lacks a
pocket within the SRS5 region for the alkyl side chain of filipin. For
canine CYP2B11, substitution of residue L363 at the fifth position after
the EXXR motif, with valine (L363V), drastically shifts its regioselec-
tivity, generating a specific progesterone 16α-hydroxylase [50]. In
P450BM3, the substitution of alanine at the equivalent position with
phenylalanine (A328F) influences its regioselectivity towards alkanes
[42]. Futhermore, CYP153A from Marinobacter aquaeolei has been
shown to be a fatty acid ω-hydroxylase with a broad substrate range,
the G307A mutant is 2- to 20-fold more active than the wild-type [51].

4.2. Substrate access channel

In the P450 structure, the substrate access channel is generally
formed by β strand 1–2, the B-C loop (includes SRS1), the F-G loop
(includes SRS2 and SRS3), and the C-terminal region (includes SRS6).
Altering residues along the substrate access channel is also a major
component of P450 engineering. The residue Arg47 in P450BM3 lies on
the B-C loop within the access channel and is one of the most frequently
mentioned residues with regards to P450BM3 engineering. The crystal
structures of P450BM3 bound to different substrates have showed that
this residue is positioned closely to the entrance of the substrate access
channel. Interestingly, the side chain of Arg47 actually faces away from
the active site and has not been observed to form a hydrogen bond with
the substrate in the N-palmitoylglycine-bound, N-palmitoylmethionine-
bound or C7-L-Pro-L-Phe (a decoy molecule)-bound crystal structures
[52–54]. However, Arg47 is undoubtedly important for substrate
binding, as the R47S mutation has been shown to enhance the binding
selectivity of this enzyme towards N-acyl homoserine lactone and its
derivatives by nearly 250-fold [55,56]. As another example, although
wild-type P450BM3 exhibits low activity in the oxidation of the

polycyclic aromatic hydrocarbons (PAHs) such as phenanthrene,
fluoranthene, and pyrene, the double mutant R47L/Y51F increases PAH
oxidation activity by up to 40-fold [57].

Besides for P450BM3, studies on many other P450s have also re-
ported key arginine residues located along the substrate access channel.
It has been shown that CYP105A1 from Streptomyces griseolus is capable
of catalyzing a two-step hydroxylation of vitamin D3 to afford 1α, 25-
dihydroxyvitamin D3 [58]. The crystal structure of CYP105A1 indicated
that three arginine residues, Arg73 (B-C loop), Arg84 (SRS1), and
Arg193 (SRS3) are important for substrate binding and hydroxylation
[59]. Site-directed mutagenesis experiments showed that Arg193 play a
vitol role in catalysis, while the R73A and R84A display both increased
1α- and 25-hydroxylation activities. The co-crystal structure of R84A
with 1α, 25-dihydroxyvitamin D3 suggested that this mutation in-
creases the adaptability of the B′ and F helices. Further rational en-
gineering of this P450 by focusing on Arg73 and Arg84 generates a
double mutant R73V/R84A that displayed approximately 400- and 100-
fold higher kcat/Km values for the 25-hydroxylation of 1α-hydro-
xyvitamin D3 and the 1α-hydroxylation of 25-hydroxyvitamin D3, re-
spectively [60]. In addition, this double mutant was also capable of
converting vitamin D2 to 1α,25-dihydroxyvitamin D2 via 25-dihy-
droxyvitamin D2 [61].

Interestingly, CYP105D7 from S. avermitilis, which catalyzes the
hydroxylation of 1-deoxypentalenic acid, diclofenac, naringenin, and
compactin [62–65], also has four arginine residues (Arg70, Arg81,
Arg88, and Arg190) along the substrate access channel at a similar
position based on crystal structure analysis (Fig. 2b). Among these,
Arg70 directly recognizes the carboxylate of the distal diclofenac [65].

In early studies of the human P450s, crystal structure-function re-
lationships demonstrated that these access channel arginine residues
are also involved in substrate recognition, especially in the drug-me-
tabolizing P450s. In the human CYP2C9, Arg108 is located within the
substrate access channel and forms a salt bridge with the substrate

Fig. 4. Conserved arginine/lysine residues in the human drug metabolizing P450s. BC loop is shown as blue. Substrate or inhibitors are shown as green sticks.
Conserved arginine/lysine residues are shown as yellow sticks.
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flurbiprofen (PDB code: 1R9O) [66]. In CYP2C5, Lys108 is located in an
“outside” position similar to that in CYP2C9 in complex with S-warfarin
(PDB code: 1OG5) [67]. A basic residue (Arg or Lys) is highly conserved
at position 108 in various mammalian drug-metabolizing P450s, in-
cluding CYP2C5, CYP2C9, CYP2C19, CYP2E1, and CYP2R1 (Fig. 4)
[65]. Thus, these Arg/Lys residues located within the substrate access
channel could be key targets for rational engineering using site-directed
mutagenesis.

4.3. P450-redox partner interaction

In recent years, P450 engineering has not only focused on residues
located within the active site and substrate access channel, but also on
residues involved in P450-redox partner interactions. For instance,
based on the docking and sequence alignment analysis, the residue
Asp77 of CYP119 from Salfolobus solfatarious is predicted to be un-
favourable for the interaction of CYP119 with its heterologous redox
partner putidaredoxin (Pdx), due to charge repulsion [68]. The D77R
mutation was expected to alleviate the charge repulsion, improving the
electrostatic interaction between CYP119 and Pdx. Indeed, the D77R
mutant increased both the Pdx binding (4-fold) and reaction rate (13-
fold). P450moxA from Nonomuraea recticatena NBRC 14525 catalyzes
the hydroxylation of substrates including fatty acids and steroids [69].
The T115A mutant of P450moxA, obtained after directed evolution for
enhanced activity, is thought to affect the interaction of Arg107 or
Arg108 with Pdx, accelerating the electron transfer. The corresponding
residue involved in the interaction with ferredoxin P450cam is Arg109
or Arg112 [70]. Based on homology modeling and structural com-
parision, two residues (T119 and N363) of a more active P450sca-2
variant, located at the presumed Pdx interaction interface, were chosen
for semi-rational engineering. Mutants T119N and N363Y exhibited
improved whole cell biotransformation activity, which are 2.5- and 1.7-
fold that of the starting template [35].

5. Engineering of P450-associated electron transfer systems

Redox partners are generally required to sequentially transfer two
reducing equivalents from NAD(P)H to the P450. Classically, there are
five major P450-associated redox partner systems (Fig. 5) [71]. Class I
is a three-component system consisting of a FAD-containing reductase
coupled with a small iron-sulfur redoxin, and is used by most bacterial
and mitochondrial P450s. Representative of this class is putidaredoxin
reductase (Pdr)/putidaredoxin (Pdx) electron transfer complex from P.
putida. Class II is a two-component system comprising a single FAD- and

FMN-containing cytochrome P450 reductase (CPR), whereas Class III,
as exemplified by P450BM3, is a single-component system that is a
natural fusion of P450 with CPR. Class IV systems are also single-
component systems and consist of a natural fusion of P450 to an FMN-
and Fe2S2-containing redox partner. One example from this category is
the P450 RhF from the Rhodococcus sp. NCIMB 9784 [72,73]. Class V
systems transfer electrons directly from NAD(P)H to P450 and are
therefore also classed as single-component systems. For example,
P450nor (cytochrome P450 nitric oxide reductase) was first isolated
from Fusarium oxysporum MT811 and reduces nitrite to nitrous oxide
[74,75].

Electron transfer is often the rate-limiting step in catalysis. In the
attempt to enhance the electron transfer efficiency of P450s, a sig-
nificant number of protein engineering studies have been conducted. As
it is often difficult to find the native redox partner, a surrogate redox
partner could be used instead. Studies have revealed that these alter-
native redox partners are sometimes even more efficient than their
native ones. For instance, co-expression of Pdx and Pdr from P. putida in
the host cell is a useful strategy for mediating catalytic activity and
enhancing the conversion yield [76,77].

In recent years, class III and class IV systems have received in-
creasing attention due to their self-sufficiency. The reductase domain of
P450BM3 (and its homologs) has been used to construct functionally
active chimeric proteins [78,79]. Kim and co-workers constructed a
self-sufficient daidzein hydroxylase using the reductase domain of
CYP102D1 from S. avermitilis. This construct catalyzes the hydroxyla-
tion of daidzein more efficiently than a three-component system
[80,81]. Moreover, Li et al. generated the first self-sufficient PikC-
RhFRED fusion system consisting of P450 PikC fused with the P450
reductase domain (RED) of P450RhF. This fusion protein exhibited
enhanced catalytic activity that was approximately four-fold greater
than that of the PikC-Fdr-Fdx three-component system towards both
YC-17 and narbomycin [82]. Subsequently, this P450-RhFRED design is
also applied to engineer other P450s such as P450cam and P450 MycG
[83–87].

6. Conclusions

To date, structure-function relationship and protein engineering
studies of P450 enzymes have been extensively conducted, especially
for the mammalian P450s, P450BM3, and P450cam. New microbial
P450 genes are frequently discovered and exploited in the biosynthesis
of fine chemicals and in xenobiotic metabolism. These studies have
contributed a significant amount of knowledge regarding the structure-

Fig. 5. Diversity of P450 redox systems.
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function relationships of these P450s and P450s in general. Here, we
reviewed recent examples of P450 engineering studies for various ap-
plications, and described several hotspot residues/areas for engineering
in P450 structures. These residues affect enzyme properties, such as
substrate selectivity, catalytic activity, and thermostability. Although
rational and semi-rational engineering of the P450s has become in-
creasingly attractive due to the rapidly expanding number of crystal
structures, directed evolution is still a valuable approach, especially for
identifying useful residues located outside hotspot areas, and for de-
veloping poorly-characterized proteins into useful catalysts.
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