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OBJECTIVES: Develop and compare separate prediction models for ICU and 
non-ICU care for hospitalized children in four future time periods (6–12, 12–18, 
18–24, and 24–30 hr) and assess these models in an independent cohort and 
simulated children’s hospital.

DESIGN: Predictive modeling used cohorts from the Health Facts database 
(Cerner Corporation, Kansas City, MO).

SETTING: Children hospitalized in ICUs.

PATIENTS: Children with greater than or equal to one ICU admission 
(n = 20,014) and randomly selected routine care children without ICU admis-
sion (n = 20,130) from 2009 to 2016 were used for model development and 
validation. An independent 2017–2018 cohort consisted of 80,089 children.

INTERVENTIONS: None.

MEASUREMENT AND MAIN RESULTS: Initially, we undersampled non-ICU 
patients for development and comparison of the models. We randomly assigned 
64% of patients for training, 8% for validation, and 28% for testing in both clin-
ical groups. Two additional validation cohorts were tested: a simulated children’s 
hospitals and the 2017–2018 cohort. The main outcome was ICU care or non-
ICU care in four future time periods based on physiology, therapy, and care in-
tensity. Four independent, sequential, and fully connected neural networks were 
calibrated to risk of ICU care at each time period. Performance for all models in 
the test sample were comparable including sensitivity greater than or equal to 
0.727, specificity greater than or equal to 0.885, accuracy greater than 0.850, 
area under the receiver operating characteristic curves greater than or equal to 
0.917, and all had excellent calibration (all R2s > 0.98). Model performance in 
the 2017–2018 cohort was sensitivity greater than or equal to 0.545, specificity 
greater than or equal to 0.972, accuracy greater than or equal to 0.921, area 
under the receiver operating characteristic curves greater than or equal to 0.946, 
and R2s greater than or equal to 0.979. Performance metrics were comparable 
for the simulated children’s hospital and for hospitals stratified by teaching status, 
bed numbers, and geographic location.

CONCLUSIONS: Machine learning models using physiology, therapy, and care 
intensity predicting future care needs had promising performance metrics. Notably, 
performance metrics were similar as the prediction time periods increased from 
6–12 hours to 24–30 hours.

KEY WORDS: criticality index; dynamic modeling; machine learning; pediatric 
intensive care unit; pediatrics; severity of illness

More than 2 million children are hospitalized each year, and more 
than 200,000 are cared for in ICUs. Approximately 20% of these 
children are hospitalized in free-standing children’s hospitals, in 
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which 25–50% of the beds are ICU-level care (1–3). 
Importantly, approximately 20% of PICU patients are 
transferred from non-ICU care areas, often after clin-
ical deterioration (4). Pediatric inpatients requiring 
transfer to ICU care are more likely to develop new 
morbidity and more likely to die than postoperative 
admissions (2).

It is often difficult for clinicians to predict which 
patients will respond favorably to medical interven-
tions and which will deteriorate (5). Early identifi-
cation of patients responding to therapies and those 
at substantial risk for clinical deterioration could 
allow for earlier discharge or more aggressive inter-
ventions that might alter their clinical course, re-
duce morbidities, and, in severe cases, prevent death. 
Predicting future clinical events ideally includes the 
timing of change based on a consideration of the 
current physiologic state as a measure of severity of 
illness, the milieu of therapies and therapeutic inten-
sity, and assessment of the trajectory of these vari-
ables. Recently, we validated a new severity measure, 
the Criticality Index, based on the physiology, thera-
pies, and therapeutic intensity, which accounts for 
changes in these variables over time. The Criticality 
Index is calibrated to the probability of receiving ICU 
care and demonstrated large Criticality Index differ-
ences among high-intensity ICU care, ICU care, and 
routine care (4, 6). Therefore, predicting changes 
in severity of illness for pediatric inpatients can be 
operationalized in a single model as predicting the 
care area.

A major goal of clinical outcome prediction has 
been to predict changes in severity of illness to iden-
tify patients who will either need ICU care, continue 
their current care needs, or transition out of intensive 
care with sufficient temporal warning to allow for clin-
ical interventions that might alter the clinical course. 
This goal can be operationalized in a single model by 
predicting severity changes at specified, future time 
periods based on the Criticality Index that use the out-
come of ICU or non-ICU (routine) care. There were 
three goals for this analysis. First, we developed and 
compared separate machine learning models for pre-
diction of care location (ICU or non-ICU) for hospi-
talized children in future time periods of 6–12, 12–18, 
18–24, and 24–30 hours. This analysis used a research 
database with a distribution of ICU and non-ICU 
patients that enhanced model development. Second, 

we assessed performance in an independent dataset 
from 2017 to 2018. Third, we assessed potential clin-
ical applicability by assessing performance in a simu-
lated children’s hospital, determining the accuracy of 
predicting ICU admission, and assessing the potential 
influence of institutional characteristics on model per-
formances. We focused on a 24-hour time frame di-
vided into discrete 6-hour time periods because this 
time frame and organization could have substantial 
implications for patient safety, clinical outcomes, and 
resource utilization.

MATERIALS AND METHODS

Sample

The model development dataset was derived from the 
Health Facts database (Cerner Corporation, Kansas 
City, MO) that collects comprehensive deidentified 
clinical data on patient encounters from hospitals 
in the United States with a Cerner data use agree-
ment. Data are date- and time-stamped including 
admission and demographic data, laboratory results, 
medication data derived from pharmacy records, di-
agnostic and procedure codes, vital signs, respiratory 
data, and hospital outcome. Cerner Corporation has 
established HIPAA compliance operating policies 
to establish deidentification of Health Facts. Not all 
data are available for all patients. Health Facts has 
been assessed as representative of the United States 
(7) and used in previous care assessments including 
the Acute Physiology and Chronic Health Evaluation 
score (8) and medication assessments for children in 
ICUs (9, 10).

Details on preparing data have been published, in-
cluding data cleaning and data definitions, medica-
tions and medication classification, laboratory data, 
and vital signs and respiratory data (6). Medication 
data were determined from pharmacy records using 
start and discontinuation times. Drugs were cat-
egorized by Multum (North Kansas City, MO) (11). 
Diagnoses were categorized based on the International 
Classification of Diseases (ICD), 9th Edition and ICD, 
10th Edition classifications (12, 13). The primary di-
agnosis was used for descriptive purposes but not for 
modeling because it was determined at discharge.

Inclusion criteria included age less than 22 years 
(14), laboratory, vital signs, and medication data and 
care in non-ICU care units or ICUs from January 



Predictive Modeling Report

Critical Care Explorations www.ccejournal.org     3

2009 to June 2016. Exclusion criteria included hos-
pital length of stay greater than 100 days, ICU length 
of stay greater than 30 days, or care in the neonatal 
ICU. For model building, we included all patients re-
ceiving ICU care and a randomly selected sample of 
patients receiving only non-ICU care, approximately 
equal in size to the ICU sample. Therefore, we under-
sampled the non-ICU patients to enhance modeling.

The hospital course was discretized into consecutive 
6-hour time periods because data acquisition for non-
ICU care children is relatively infrequent compared 
with ICU patients. Each time period was categorized 
into the mutually exclusive categories of ICU care or 
non-ICU care; we excluded time periods when the pa-
tient was in both the non-ICU and the ICU.

Independent Variables

The variables, definitions, and statistics for each var-
iable used for modeling are shown in Supplemental 
Digital Content 1 (http://links.lww.com/CCX/A736). 
The variables are those in the Criticality Index and 
consist of six routine vital signs, 30 routinely meas-
ured laboratory variables, and parenterally admin-
istered medications. The machine learning methods 
required laboratory and vital sign measurements in 
each time period, requiring imputation for missing 
data. Consistent with other machine learning models, 
we imputed laboratory results and vital signs using the 
last known result because, in general, physicians use 
the last measured values and repeat measurements 
when required for clinical care or when results are 
acquired routinely (15, 16). If during the first 6-hour 
time period there were missing values, these values 
were set to the median of the first 6-hour time peri-
ods using nine age groups (4, 6). These imputed values 
have been reported (4, 6). All were either in the normal 
range or had only minor deviations from normal. This 
imputation scheme is similar to other severity scores 
which assume normal values for unmeasured variables 
(2, 17), with the improvement that specific estimates 
for ICU patients are used rather than normal data. 
The imputed values were identified in the modeling 
(below) by setting the count equal to zero. The possi-
bility that imputation induced a systematic biased was 
exploring using pairwise comparison of distributions 
of laboratory and vital signs with and without imputa-
tion (18, 19). No bias was evident.

Machine Learning Methodology and Statistical 
Analysis

We randomly assigned 64% of patients for training, 8% 
for validation, and 28% for testing for the ICU and non-
ICU patient groups. This distribution was chosen to 
maximize the test sample. Random selection was at the 
patient level. The training set was used for model de-
velopment, and the validation set was used to fine-tune 
variables to avoid overfitting. The training and valida-
tion sets were combined for calibration of each of the 
models. The test sample and a 2017–2018 cohort were 
used to evaluate model performance and calibration.

Independent neural networks calibrated to risk of 
ICU care were developed for four future times: 6–12, 
12–18, 18–24, and 24–30 hours. Therefore, predic-
tions of ICU or non-ICU care were based on a single 
model for each time period. The models are sequen-
tial, and layers are fully connected. Each model had 
seven hidden dense layers, an output layer with one 
node, and logistic activation. Inputs for the models 
included variables of the present and immediate past 
time period. Our model architecture is the result of se-
quential efforts to maximize the Mathew Correlation 
Coefficient (MCC). Initially, models with one hidden 
layer were considered. We sequentially increased the 
number of internal nodes in combination with the pro-
portion of dropout nodes. This process along with L2 
norm regularization and monitoring MCC values be-
tween training and validation sets determined the final 
number of nodes for the first hidden layer. We stopped 
increasing the number of nodes when the MCC of the 
validation and trainings sets converged to a common 
value. The architecture of this hidden layer was frozen, 
and additional hidden layers proceeded similarly. We 
stopped adding hidden layers when they did not sig-
nificantly increase the MCC of the training and valida-
tion sets. Overfitting was avoided by keeping the MCC 
of the training and validation sets at a difference of no 
more than 0.05 as well as maintaining the stability of 
the other performance metrics. Each model was in-
dependently calibrated to the respective future risk of 
ICU care (20). These model outputs predict future care 
areas of non-ICU and ICU care (4, 6).

The performance of the four models was first assessed 
in the test sample. Initially, the models were assessed 
with confusion matrices at the decision cut point of 
0.5 (21–23) and areas under the receiver operating 
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characteristic curves (AUROC) and precision-recall 
curves (PRAUC) with their 95% CIs (24). The number 
needed to evaluate is not shown but can be calculated as 
1/precision. Accuracy, precision, and negative predic-
tive value for the test sample were assessed for sensitiv-
ities (true positive rate) and specificities (true negative 
rate) of 0.85, 0.90, 0.95, and 0.99 for the approximate 
lower boundary of the 95% CI. Prediction of true pos-
itive indicates the patient is expected to be transferred 
to the ICU or remain in the ICU for the outcome time 
period, whereas prediction of a true negative indicates 
the patient is expected to remain in a non-ICU care 
area or be transferred out of the ICU to a non-ICU care 
area. For those patients correctly predicted to be trans-
ferred from non-ICU to ICU care, we computed the 
percentage of those receiving either mechanical venti-
lation or vasoactive agents within 24 hours of transfer. 
Second, we assessed the calibration of each model over 
the full range of risk intervals using the differences be-
tween the observed and expected proportions of ICU 
outcomes within the intervals. The numbers of cali-
bration intervals for the four models were greater than 
2,900 (Fig. 1, Supplemental Digital Content 3, http://
links.lww.com/CCX/A738). We used multiple metrics 
to assess calibration. We computed the regression line 
for the predicted proportions for comparison to the 
ideal and assessed the R2 from the regression lines as 
measure of tightness around the regression lines. We 
also computed the differences between observed and 
predicted ICU proportions within each calibration in-
terval and report the percentage of intervals with no 
evidence for difference. Third, we assessed the accu-
racy, precision, and negative predictive value for sensi-
tivities and specificities of 0.85, 0.90, 0.95, and 0.99 for 
the approximate lower boundary of the 95% CIs.

Since the models were developed in a sample con-
structed to enhance model development but not assess 
“real-life” performance, we also assessed performance 
in an independent January 2017 to June 2018 Health 
Facts cohort without ICU sample enhancement in a 
similar manner as the test sample. We also assessed the 
potential clinical utility in three ways. First, we con-
structed a simulated children’s hospital by random se-
lection from the test sample such that 20% of the total 
sample were cared for in the ICU and 20% of the ICU 
patients were initially admitted to non-ICU care areas 
prior to transfer to the ICU. These population esti-
mates were obtained from previous analyses (3, 4) and 

a query of Children’s Hospital Association database 
(MM Pollack, unpublished data, 2020). In addition, we 
created three additional sets of randomly selected test 
patients with prevalences of 10%, 15%, and 30% for the 
ICU patients. Second, since the most valuable poten-
tial utility is the prediction of transfer from non-ICU 
to ICU care, we assessed the accuracy of each model in 
patients who changed their care areas from non-ICU 
to ICU care in both the test sample and independent 
cohort. The accuracy was assessed if any of the pre-
diction models were correct. The first 6-hour time pe-
riod after transfer into the ICU had predictions from 
all four models, the second 6-hour period had predic-
tions from three models, the third 6-hour period had 
predictions from two models, and the fourth period 
had predictions from one model. We also assessed the 
accuracy for the first, second, third, and fourth 6-hour 
time periods after transfer but only when the predic-
tion was done prior to the transfer. Finally, we assessed 
the influence of institutional characteristics on model 
performances in institutions with different charac-
teristics including teaching, geographical region, and 
hospital bed size determined from the Health Facts 
database.

RESULTS

There were 20,014 patients with an ICU stay and 
20,130 patients cared for in non-ICU care areas only 
in the 2009–2016 test sample. Demographic data are 
in Table  1. Details of this sample have been previ-
ously published (4, 6). Compared with patients with 
ICU stays, non-ICU care patients were older (median 
132.2 vs 28.0 mo; p < 0.0001), had shorter median hos-
pital stays (71 vs 110 hr; p < 0.0001), and had a lower 
mortality rate (0.1% vs 3.2%; p < 0.0001). Most di-
agnostic categories differed between the two groups  
(p < 0.0001). The numbers of patients and 6-hour time 
periods in the ICU and non-ICU care locations in the 
training, validation, and testing samples for each of the 
prediction models are shown in Supplemental Digital 
Content 2 (http://links.lww.com/CCX/A737). Overall, 
there were greater than 325,000 6-hour time periods 
for each future time period.

The performances of all four models predicting the 
future care location were similar in the test sample 
(Table 2A). At a decision threshold of 0.5, the sensitivity 
for the 6–12-hour time period was 0.797 and decreased 
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TABLE 1. 
Population Characteristics

Characteristics All ICU Non-ICU

Transfers  
Non-ICU  
to ICU

Transfers  
ICU to  

Non-ICU

Simulated  
Children’s  
Hospital

2017–2018  
Pediatric  

Inpatients

n 40,144 20,014 20,130 6,181 15,336 7,054 80,089

Age (mo), median  
 (25–75th percentile)

96 (16–201) 28 (0–188) 132 (53–209) 109 (8–210) 26 (0–186) 120 (37–207) 107 (11–215)

Female, n (%) 19,599 (48.8) 8,913 (44.5) 10,686 (53.1) 2,851 (46.1) 6,804 (44.4) 3,600 (51.0) 43,512 (54.3)

Race, n (%)        

 Black 9,354 (23.3) 5,256 (26.3) 4,098 (20.4) 1,659 (26.8) 4,032 (26.3) 1,531 (21.7) 17,565 (21.9)

 Caucasian 19,048 (47.5) 10,335 (51.6) 8,713 (43.3) 3,247 (52.5) 7,942 (51.8) 3,195 (45.3) 46,139 (57.6)

 Other—unknown 11,742 (29.3) 4,423 (22.1) 7,319 (36.4) 1,275 (20.6) 3,362 (21.9) 2,328 (33.0) 16,385 (20.5)

Hospital LOS (hr), median  
 (25–75th percentile)

87 (47–174) 110 (55–237) 71 (44–125) 121 (65–236) 118 (60–247) 74 (46–140) 59 (41–96)

ICU LOS (hr), median  
 (25–75th percentile)

0 (0–74) 75 (33–169) 0 (0–0) 65 (30–138) 73 (33–171) 0 (0–0) 0 (0–0)

Hospital mortality, n (%) 657 (1.6) 631(3.2) 26 (0.1) 91 (1.5) 384 (2.5) 57 (0.8) 238 (0.3)

Positive pressure  
 ventilation, n (%)a

6,131 (15.3) 5,313 (26.6) 818 (4.1) 1,281 (20.7) 4,037 (26.3) 604 (8.6) 1,128 (1.41)

Diagnostic group, n (%)        

 Respiratory 3,614 (13.8) 1,563 (14.3) 2,051 (13.5) 529 (15.3) 1,220 (14.3) 691 (13.6) 10,572 (13.2)

 Endocrine, nutritional,  
 metabolic, and  
 immune disorders

3,158 (12.1) 1,624 (14.8) 1,534 (10.1) 325 (9.4) 1,255 (14.7) 584 (11.5) 8,810 (11.0)

 Gastrointestinal 2,556 (9.8) 503 (4.6) 2,053 (13.5) 215 (6.2) 403 (4.7) 591 (11.6) 7,608 (9.5)

 Infectious and parasitic 2,377 (9.1) 962 (8.8) 1,415 (9.3) 368 (10.7) 759 (8.9) 458 (9.0) 6,327 (7.9)

 Injury and poisoning 2,261 (8.6) 1,390 (12.7) 871 (5.7) 491 (14.2) 1,070 (12.5) 349 (6.6) 5,766 (7.2)

 Neurologic 1,856 (7.1) 788 (7.2) 1,068 (7.0) 293 (8.5) 634 (7.4) 345 (6.8) 7,208 (9.0)

 Neoplasms 1,636 (6.3) 231 (2.1) 1,405 (9.2) 137 (4.0) 179 (2.1) 439 (8.6) 8,249 (10.3)

 Circulatory 1,196 (4.6) 735 (6.7) 461(3.0) 264 (7.6) 548 (6.4) 197 (3.9) 3,043 (3.8)

 Not otherwise  
 specified/otherb

7,527 (18.6) 3,147 (15.7) 4,380 (21.8) 834 (13.5) 2,480 (16.2) 1,440 (20.4) 17,700 (22.1)

LOS = length of stay.
aCriteria for positive pressure were continuous positive airway pressure, positive end-expiratory pressure, peak inspiratory pressure.
bOther = genital-urinary, musculoskeletal, mental, skin and subcutaneous tissue, and hematology disorders.
The population (n = 40,144) includes all patients used in any of the four models and the special samples. The demographics for the ICU 
patients (n = 20,014) and non-ICU patients (n = 20,130) are shown in the second and third columns. ICU patients had a stay at any time 
during their hospitalization. ICU and non-ICU patients were statistically different (p < 0.001) except for respiratory system conditions (p 
= 0.059), infectious and parasitic diseases (p = 0.176), and nervous system conditions (p = 0.567). Patients in the two transfer groups 
(non-ICU to ICU: n = 6,181; ICU to non-ICU: n = 15,336) and the simulated children’s hospital sample were not mutually exclusive and 
were not compared statistically. The transfer groups pertains to analyses reported in Table 4 (Supplemental Digital Content 5,  http://
links.lww.com/CCX/A740). The simulated children’s hospital sample (n = 7,054) was randomly selected such that 20% of patients were 
ICU patients and 20% of the ICU patients were initially admitted to non-ICU areas prior to transfer to the ICU. The 2017–2018 pediatric 
inpatients dataset (n = 80,089) is an independent Health Facts cohort without ICU patient enhancement with 5,561 ICU admissions 
(6.94%).

http://links.lww.com/CCX/A740
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TABLE 2. 
Performance Metrics for the Test Sample, Independent 2017–2018 Cohort, and Simulated 
Children’s Hospital and at a Decision Threshold of 0.5 for Prediction of ICU Care During 
the Future Time Period

Metrics 6–12 hr 12–18 hr 18–24 hr 24–30 hr

A. Test sample 2009–2016a

 AUROC 0.917 (0.916–0.917) 0.917 (0.916–0.917) 0.919 (0.918–0.919) 0.920 (0.919–0.920)

 AUPRC 0.867 (0.865–0.869) 0.867 (0.865–0.869) 0.866 (0.864–0.868) 0.864 (0.862–0.866)

 Sensitivity 0.797 (0.795–0.799) 0.780 (0.777–0.782) 0.749 (0.746–0.751) 0.727 (0.724–0.73)

 Specificity 0.885 (0.883–0.886) 0.896 (0.895–0.898) 0.907 (0.906–0.909) 0.916 (0.915–0.918)

 Precision (PPV) 0.783 (0.781–0.786) 0.797 (0.795–0.799) 0.809 (0.806–0.811) 0.820 (0.817–0.822)

 Negative prediction value 0.893 (0.892–0.894) 0.886 (0.885–0.888) 0.874 (0.872–0.875) 0.865 (0.864–0.867)

 Accuracyb 0.855 (0.853–0.856) 0.856 (0.855–0.857) 0.853 (0.852–0.854) 0.851 (0.850–0.853)

 F1 scorec 0.790 (0.788–0.792) 0.788 (0.787–0.790) 0.778 (0.776–0.779) 0.771 (0.769–0.772)

 False discovery rate 0.217 (0.214–0.219) 0.203 (0.201–0.205) 0.191 (0.189–0.194) 0.180 (0.178–0.183)

B. Independent cohort January 2017 to June 2018a

 AUROC 0.948 (0.947–0.948) 0.948 (0.948–0.949) 0.946 (0.945–0.946) 0.947 (0.946–0.947)

 AUPRC 0.726 (0.725–0.728) 0.742 (0.740–0.743) 0.736 (0.734–0.737) 0.741 (0.739–0.742)

 Sensitivity 0.590 (0.589–0.591) 0.545 (0.544–0.546) 0.570 (0.569–0.571) 0.571 (0.569–0.572)

 Specificity 0.972 (0.972–0.972) 0.977 (0.977–0.977) 0.973 (0.973–0.973) 0.973 (0.973–0.973)

 Precision (PPV) 0.748 (0.747–0.749) 0.771 (0.770–0.772) 0.757 (0.756–0.758) 0.760 (0.759–0.762)

 Negative prediction value 0.944 (0.944–0.944) 0.937 (0.937–0.937) 0.939 (0.939–0.939) 0.938 (0.938–0.939)

 Accuracyb 0.925 (0.925–0.925) 0.923 (0.922–0.923) 0.922 (0.921–0.922) 0.921 (0.921–0.921)

 F1 scorec 0.660 (0.659–0.661) 0.639 (0.638–0.640) 0.650 (0.649–0.651) 0.652 (0.651–0.653)

 False discovery rate 0.252 (0.251–0.253) 0.229 (0.228–0.230) 0.243 (0.242–0.244) 0.240 (0.238–0.241)

C. Simulated children’s hospitala

 AUROC 0.971 (0.970–0.971) 0.969 (0.968–0.969) 0.966 (0.965–0.966) 0.967 (0.966–0.967)

 AUPRC 0.857 (0.853–0.862) 0.843 (0.838–0.847) 0.827 (0.823–0.832) 0.816 (0.811–0.821)

 Sensitivity 0.833 (0.829–0.837) 0.829 (0.825–0.834) 0.797 (0.792–0.802) 0.791 (0.786–0.796)

 Specificity 0.952 (0.951–0.953) 0.951 (0.950–0.952) 0.956 (0.955–0.957) 0.956 (0.955–0.957)

 Precision (PPV) 0.740 (0.735–0.745) 0.724 (0.719–0.729) 0.728 (0.723–0.733) 0.719 (0.713–0.724)

 Negative prediction value 0.972 (0.971–0.973) 0.973 (0.972–0.974) 0.969 (0.969–0.970) 0.970 (0.969–0.971)

 Accuracyb 0.935 (0.934–0.937) 0.934 (0.933–0.935) 0.935 (0.934–0.936) 0.936 (0.934–0.937)

 F1 scorec 0.784 (0.780–0.787) 0.773 (0.770–0.777) 0.761 (0.757–0.765) 0.753 (0.749–0.757)

 False discovery rate 0.260 (0.255–0.265) 0.276 (0.271–0.281) 0.272 (0.267–0.277) 0.281 (0.276–0.287)

AUPRC = area under the precision-recall curve, AUROC = area under the receiver operating characteristic curve, PPV = positive pre-
dictive value.
aData in parenthesis are the 95% CIs.
bAccuracy = (true positives + true negatives)/(positives + negatives).
cThe F1 score is a measure of accuracy with a maximum score of 1. It is the harmonic mean of precision and sensitivity.
The population demographics are shown in Table 1. The following components of the confusion matrix are not shown since they can be 
computed from other data: false-negative rate = (1–sensitivity), false-positive rate = (1–specificity), false omission rate = (1–negative 
predictive value), and number needed to evaluate = 1/precision.
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with lengthening prediction time intervals to 0.727 for 
the 24–30-hour time period. Specificity for the 6–12-
hour time period was 0.885 and increased to 0.917 for 
the 24–30-hour time period. Accuracy was greater than 
0.85 for all time periods. AUROCs were all 0.92 (Fig. 1, 
Supplemental Digital Content 3, http://links.lww.com/
CCX/A738). The PRAUCs for the four time periods 
were similar (Fig. 2, Supplemental Digital Content 3, 
http://links.lww.com/CCX/A738) with the PRAUCs 
ranging from 0.864 to 0.867. The calibration plots (Fig. 
3, Supplemental Digital Content 3, http://links.lww.
com/CCX/A738) show the observed and expected pro-
portions of patient in each of the risk intervals were 
closely matched. The regression lines shown in each 
plot have very small constants (range, –0.02 to –0.03), 
the slopes are very close to identity (range, 1.05–1.06), 
and the R2s from the regressions between the observed 
and expected proportions were all greater than 0.98. 
The percent of the calibration intervals with the 95% 
CIs crossing zero ranged from 93.96% to 95.49%. There 
was a small tendency in all models to underpredict ICU 
care in the lower risk ranges consistent with care of 
stable patients in the ICU receiving primarily monitor-
ing and a smaller tendency to overpredict in the middle 
and upper ranges consistent with some sicker patients 
being cared for in non-ICU care areas.

The accuracy, precision, and negative predictive 
value for the whole test sample were assessed for sen-
sitivities and specificities of 0.85, 0.90, 0.95, and 0.99 
(Table 1, Supplemental Digital Content 3, http://links.
lww.com/CCX/A738). Overall, the performance met-
rics did not significantly decrease as the prediction 
time interval increased. The precisions decreased as 
the sensitivity increased from greater than 0.73 for a 
sensitivity of 0.85 to greater than 0.47 for a sensitivity 
of 0.99. Accuracies for the sensitivities in ascending 
order for the four prediction models were greater than 
0.84, greater than 0.82, greater than 0.77, and greater 
than 0.61. The assessment of negative predictive value 
and accuracy for specificities of 0.85, 0.90, 0.95, and 
0.99 was similar with negative predictive values of 
greater than 0.91, greater than 0.87, greater than 0.82, 
and greater than 0.73 for the prediction models. All 
accuracies were greater than 0.76.

The performance of the models was also assessed 
in the independent 2017–2018 Health Facts dataset. 
Demographic data are shown in Table 1, the number 
of time periods are shown in Supplemental Digital 

Content 2 (http://links.lww.com/CCX/A737), and per-
formance data are shown in Table 2B. Overall, the per-
formance of the models slightly decreased compared 
with the test sample for AUPRC (0.867–0.726), sensi-
tivity (0.797–0.590), precision (0.783–0.748), F1 score 
(0.790–0.660), and false discovery rate (0.217–0.252) 
and increased for accuracy (0.855–0.925), AUROC 
(0.917–0.948), specificity (0.885–0.972), and negative 
predictive value (0.893–0.944). The calibration plots 
are shown in Figure 1. The regression lines have very 
small constants (range, –0.01 to –0.02), the slopes are 
close to identity (all 0.94), and the R2s all are 0.98. The 
AUPRCs are shown in Figure 2 with all values greater 
than 0.725. The AUROC curves are all greater than 
0.945 (Fig. 1, Supplemental Digital Content 4, http://
links.lww.com/CCX/A739).

The accuracy, precision, and negative predictive 
value for the independent cohort were also assessed 
for sensitivities and specificities of 0.85, and 0.95 for 
the lower boundary of the 95% CI (Table 3). Overall, 
performance metrics were stable as the prediction time 
interval increased. For a sensitivity of 0.95, accuracies 
for the four models varied from 0.780 to 0.800, preci-
sions ranged from 0.362 to 0.377, specificities ranged 
from 0.755 to 0.779, and negative predictive values 
ranged from 0.990 to 0.991. For a specificity of 0.95 
for the four models, accuracies for the four models 
varied from 0.921 to 0.924, precisions ranged from 
0.676 to 0.684, sensitivities ranged from 0.722 to 0.733, 
and negative predictive values ranged from 0.958 to 
0.962. The number needed to evaluate (= 1/precision) 
was always less than three patients for a sensitivity and 
specificity of 0.95 (data for sensitivities and specifici-
ties of 0.85, 0.90, 0.95, and 0.99 are shown in Table 1, 
Supplemental Digital Content 4, http://links.lww.com/
CCX/A739).

Potential clinical utility was first assessed in a sim-
ulated children’s hospital sample with varying preva-
lences of ICU patients. Demographic data are shown in 
Table 1, and performance data are shown in Table 2C 
for the sample composed of 20% ICU patients. Overall 
for the sample with 20% ICU patients, there were 
improvements in AUROC, sensitivity, specificity, 
negative predictive value, and accuracy and small 
decreases in AUPRC, precision, and false discovery 
rate. Changing the percent of ICU patients (Table 1,  
Supplemental Digital Content 5, http://links.lww.com/
CCX/A740) changed the performance metrics by 
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small amounts with all AUROCs greater than 0.95, all 
PRAUCs greater than 0.80, all sensitivities greater than 
0.8, all specificities greater than 0.93, and all accura-
cies greater than 0.90. Second, we assessed the accu-
racies of transfers from non-ICU to ICU care if any 
of the models correctly predicted the transfer, in both 
the test sample and the 2017–2018 cohort (Table 2,  
Supplemental Digital Content 5, http://links.lww.
com/CCX/A740). The percentages for correct predic-
tions were similar in both samples. For example, for 

sensitivities of 0.95, the percentage of correct ICU care 
predictions in the first 6-hour period was 92.7% and 
88.7% for the test sample and 2017–2018 cohort and 
ranged from 88.7% to 95.8% for the four models in the 
two samples. The timing of correct prediction by one 
or more predictors in the first four 6-hour time periods 
after ICU admission is shown in Table 3 (Supplemental 
Digital Content 5, http://links.lww.com/CCX/A740). 
For a 0.95 sensitivity, all accuracies were greater than 
or equal to 0.85 in the test sample and greater than or 

Figure 1. Model calibration for the 2017–2018 independent cohort. The y-axis shows the expected proportion of ICU care areas for 
the time periods based on the risk intervals, and the x-axis shows the observed proportion of ICU care areas in the time periods. The 
line of identity is the dashed line. The limits of the risk intervals were initially defined by 1,100 equally spaced empirical quantiles. Some 
intervals were combined to have a larger number of risk values but ensuring 99% of the intervals were smaller than 0.007 resulting in all 
intervals containing at least 1,770 time periods and 1,063, 1,026, 1,034, and 1,028 risk intervals in the four models. Within each interval, 
we compute the average expected risk of ICU admission and the observed risk of ICU admission. The circles indicate the observed and 
the expected proportions of ICU 6-hr time periods over ascending Criticality Index intervals. 94.26%, 89.01%, 90.81%, and 90.64% of 
the risk intervals within each plot have a Cohen’s h value less than 0.2, implying there are mostly small effect size differences between 
the observed and expected proportions. A linear regression is reported in each panel with their respective R2, and the fitted mean is 
represented with the solid line. Calibration was accomplished for each model by using their output for B-spline polynomials as covariates 
in a linear logistic regression with outcome ICU/regular care for the respective future time. This calibration method is similar to the Platt 
scaling method for support vector machines (20).

Figure 2. Precision-recall curves for the 2017–2018 independent cohort classifying care as routine or ICU for the respective future 
time periods. The area under the precision-recall curves and 95% CIs are included in each panel. The areas were computed with integral 
approximations, and the CIs were computed using a logit method (24).
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equal to 0.74 in the 2017–2018 cohort. The best per-
forming models in the 2017–2018 models for correct 
prediction for ICU transfer for the first 6-hour ICU 
time period were the 12–18-hour model (89.6%) and 
the 6–12-hour model (84.8%). Finally, the perfor-
mance metrics assessed by the hospital characteris-
tics of bed size, geographic region, and teaching status 
are shown in Table 3 (Supplemental Digital Content 
5, http://links.lww.com/CCX/A740). The maximum 
reductions compared with the test sample (Table 2A) 
were less than 11%, whereas most were equivalent or 
better. Hospitals greater than 500 beds, those in the 
northeast, and teaching hospitals had the lowest per-
formance metrics, and there was sometimes a small 
decrease in performance as the prediction time period 
increased.

DISCUSSION

Identification of patients’ future care needs as ICU or 
non-ICU care is an estimate of changing severity of ill-
ness and may identify patients who will have increased, 
decreased, or stable care requirements. The Criticality 
Index which demonstrates large differences among 
high-intensity ICU care, ICU care, and non-ICU care 
is an appropriate framework to predict changes in se-
verity of illness as reflected in care needs. This analysis 
focused on neural network models predicting future 
care needs in time periods ranging from 6–12 hours 
to 24–30 hours and evaluated their potential clinical 
applicability in a simulated children’s hospital and in 
an independent cohort without ICU patient enhance-
ment. In the independent 2017–2018 cohort with 
a decision cut point of 0.5, all models predicting the 
need for ICU care had an AUROC greater than 0.945, 
AUPRC greater than 0.72, and accuracy greater than 
0.92, and all had excellent calibration. Notably, the 
performances in the different prediction time periods 
were very similar with only small decrements in per-
formance as the prediction time increased for some 
performance metrics. Altering the decision cut points 
changed the performance metrics, and this is illustrated 
for sensitivities and specificities of 0.85, 0.90, 0.95, 
and 0.99. The stability of model performance across 
time could be explained by the relative infrequency of 
changes in care area. We evaluated this possibility by 
computing accuracies for transfers to the ICU, and the 
accuracy of predictions of ICU care was greater than 

88% with a sensitivity of 0.95. In addition, the positive 
predictive value of these patients needing vasoactive 
agent infusions or mechanical ventilation if correctly 
predicted was 37–38%, at least as good as the perfor-
mance of the Pediatric Early Warning Score (PEWS) 
paired with clinical assessment (25). We assessed po-
tential “real-world” performance both in a simulated 
children’s hospital sample and an independent cohort 
without an enhanced ICU sample from 2017 to 2018, 
and the performances were comparable with the test 
sample including the precision indicating a number 
needed to evaluate of less than 2. Additionally, hospital 
characteristics had only minor influences on the per-
formance metrics. These results indicate the method-
ology is appropriate for validation and optimization in 
a clinical environment.

Risk scores are evolving from those generally 
directed at identifying patients with high risk of death 
to those that predict clinical deterioration (26–29). 
Relatively simple models, such as the PEWS, predom-
inantly use vital signs to derive immediately action-
able information (30, 31). Although in widespread use, 
they generally require large “numbers needed to eval-
uate” (i.e., high false-positive rates) to achieve reason-
able sensitivity and did not improved hospital outcome 
when tested in a large effectiveness study (32). In the 
2017–2018 independent cohort, the number needed to 
evaluate for a sensitivity of 0.95 was less than or equal 
to three patients for all models.

Accurate predictions could provide major ben-
efits in assisting clinician decision-making (33–35). 
We operationalized improving or deteriorating se-
verity of illness as changes in care area, enabling the 
prediction of ICU or non-ICU care within the same 
model. Although none of the current risk assessment 
or prediction methods have significantly enhanced 
the ability of bedside caregivers to recognize early 
patterns of deterioration (36–38), the methodology 
described in this article has the potential to iden-
tify patients who will require future transfer to ICU 
care, potentially altering the clinical trajectory and 
improving hospital outcomes, patients who will be 
ready to transition to non-ICU care from ICU care, 
and those with stable care needs. However, these pre-
dictions have different clinical utilities. An alert that 
a patient may need ICU care usually results in an im-
mediate clinical assessment, often by a rapid response 
team. Patients predicted to transition out of intensive 
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care, however, do not need immediate evaluation, the 
transfer is often influenced by administrative and or-
ganization factors, and therefore, models are expected 
to have lesser performance.

These models, based on the Criticality Index, inte-
grate past and current physiologic data, therapeutic 
data, and therapeutic intensity. This is conceptually 
consistent with historically important ICU severity 

TABLE 3. 
Analysis of the 2017–2018 Cohort for Accuracy, Precision, and Negative Predictive Value 
at Sensitivities and Specificities of 0.85, and 0.95, at the Lower Boundary of the 95% CI

Sensitivitiesa

Prediction  
Time  
Period, hr Sensitivityb Accuracy Precisiond Specificityc

Negative  
Predictive Value

6–12 0.851 (0.850–0.852) 0.906 (0.905–0.906) 0.580 (0.579–0.582) 0.913 (0.913–0.914) 0.978 (0.977–0.978)

6–12 0.951 (0.950–0.951) 0.800 (0.800–0.801) 0.377 (0.376–0.378) 0.779 (0.779–0.780) 0.991 (0.991–0.991)

12–18 0.851 (0.850–0.852) 0.904 (0.904–0.904) 0.580 (0.579–0.582) 0.912 (0.911–0.912) 0.977 (0.977–0.977)

12–18 0.951 (0.950–0.952) 0.794 (0.793–0.794) 0.374 (0.373–0.375) 0.771 (0.771–0.772) 0.991 (0.991–0.991)

18–24 0.851 (0.850–0.852) 0.900 (0.900–0.900) 0.573 (0.572–0.574) 0.907 (0.907–0.907) 0.977 (0.976–0.977)

18–24 0.951 (0.950–0.951) 0.780 (0.779–0.780) 0.362 (0.361–0.363) 0.755 (0.754–0.755) 0.991 (0.990–0.991)

24–30 0.851 (0.850–0.852) 0.899 (0.899–0.899) 0.575 (0.574–0.576) 0.906 (0.906–0.907) 0.976 (0.976–0.976)

24–30 0.951 (0.950–0.951) 0.785 (0.784–0.785) 0.371 (0.370–0.372) 0.760 (0.759–0.760) 0.990 (0.990–0.991)

Specificitiesa

Prediction  
Time  
Period–hr Specificityc Accuracy Precisiond Sensitivityb

Negative  
Predictive Value

6–12 0.853 (0.853–0.853) 0.861 (0.861–0.862) 0.469 (0.468–0.470) 0.921 (0.920–0.921) 0.987 (0.987–0.987)

6–12 0.950 (0.950–0.951) 0.924 (0.923–0.924) 0.676 (0.674–0.677) 0.736 (0.734–0.737) 0.962 (0.962–0.963)

12–18 0.850 (0.850–0.851) 0.987 (0.987–0.987) 0.469 (0.468–0.470) 0.920 (0.919–0.921) 0.987 (0.987–0.987)

12–18 0.950 (0.950–0.951) 0.922 (0.921–0.922) 0.677 (0.676–0.679) 0.726 (0.724–0.727) 0.960 (0.960–0.960)

18–24 0.851 (0.850–0.851) 0.858 (0.858–0.859) 0.472 (0.471–0.473) 0.912 (0.911–0.913) 0.985 (0.985–0.985)

18–24 0.950 (0.950–0.951) 0.921 (0.921–0.921) 0.680 (0.679–0.682) 0.722 (0.720–0.723) 0.959 (0.959–0.959)

24–30 0.851 (0.850–0.851) 0.859 (0.858–0.859) 0.477 (0.476–0.478) 0.915 (0.914–0.916) 0.985 (0.985–0.985)

24–30 0.950 (0.950–0.951) 0.921 (0.920–0.921) 0.684 (0.682–0.685) 0.722 (0.720–0.723) 0.958 (0.958–0.958)

aLower bound of the 95% CI.
bSensitivity = true positive rate = ICU care time periods.
cSpecificity = true negative rate = non-ICU care time periods.
dPrecision = positive predictive value = true positives (cared for in the ICU)/(true positive + false positive). Number needed to eval-
uate = 1/precision.
The identification of true positives (ICU care time periods) is most relevant to identifying those patients expected to transfer to the 
ICU from non-ICU care areas or remain in the ICU. The identification of true negatives (non-ICU care time periods) is most relevant to 
identifying those patients not expected to transfer to the ICU or transfer from the ICU to non-ICU care areas. The data shown are the 
estimates and 95% CIs.
 Data for sensitivities and specificities of 0.85, 0.90, 0.95, and 0.99 are shown in Table 1 (Supplemental Digital Content 4, http://links.
lww.com/CCX/A739).
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advances (39–41). If the performance is validated with 
real-life data and if the methodology has sufficient face 
validity for providers, it could improve clinical deci-
sion-making by supplementing the limitations of cog-
nitive processing and reducing medical errors (42–46). 
Medical errors are often based in heuristics and are 
more likely to occur in high-pressure, high-stakes 
decisions, particularly when dealing with incomplete 
information, such as assessing a deteriorating patient 
or determining the need for ICU care (47–49).

This study has several limitations. First, the data-
base did not contain the full spectrum of data available 
in the electronic health record (EHR), and therefore, 
these results might be further optimized. Second, po-
tential clinical applicability needs to be confirmed 
using real-time EHRs and, when possible, models spe-
cific to individual hospitals. Our assessment of clinical 
applicability using a simulated children’s hospital and 
independent cohort justifies optimism for successful 
clinical application. Third, we used time periods of 6 
hours; shorter time periods might allow better pre-
dictive models. Fourth, although machine learning 
methods have the advantage of measuring intrinsically 
complicated interactions, the deep neural network 
models are not transparent, making the clinical im-
portance of individual or sets of variables difficult to 
ascertain (50, 51).

CONCLUSIONS

Machine learning models, based on laboratory, vital 
sign, and medication data predicting future care needs 
of 6–12, 12–18, 18–24, and 24–30 hours based on the 
Criticality Index, had promising performance met-
rics. The performances in all time periods were similar 
without a significant drop-off as the prediction time pe-
riod increased, and we demonstrated the models for dif-
ferent times were not simply predicting lack of change 
since they were able to predict care area changes. This 
conceptual framework and modeling method are appli-
cable to assessing future care needs represented by care 
areas, including early detection of major changes in care 
needs and potentially identifying patients who would 
benefit from early clinical interventions.
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