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ABSTRACT
Human cerebral cortex displays various dynamics patterns under different states, however the mechanism
how such diverse patterns can be supported by the underlying brain network is still not well understood.
Human brain has a unique network structure with different regions of interesting to perform cognitive tasks.
Using coupled neural mass oscillators on human cortical network and paying attention to both global and
local regions, we observe a new feature of chimera states with multiple spatial scales and a positive
correlation between the synchronization preference of local region and the degree of symmetry of the
connectivity of the region in the network. Further, we use the concept of effective symmetry in the network
to build structural and dynamical hierarchical trees and find close matching between them.These results
help to explain the multiple brain rhythms observed in experiments and suggest a generic principle for
complex brain network as a structure substrate to support diverse functional patterns.
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INTRODUCTION
Cerebral cortex in the brain displays various dynam-
ical patterns under different states in normal func-
tioning and neuropsychiatric disorders. It is now
well known from EEG data that phase synchroniza-
tion occurs among distributed functional regions in-
volved in different cognitive processes [1,2]. For
example, synchronization in theta band is related
to short-term (episodic) memory, whereas a task-
specificdesynchronization in theupper alphaband is
related to long-term (semantic) memory [3]. Thus,
local synchronization between specific cortical re-
gions plays key roles in normal cognitive dynamics
[4].During sleepingor anaesthesia, thebrain activity
patterns shift to large-scale, apparently cortex-wide
synchronous up-down states [5]. Such synchronous
up-down states can alsohappen locally, leading to lo-
cal sleep [6]. Recently, a new phenomenon in hu-
man sleep has been revealed, called the first-night
effect (FNE) [7], which represents troubled sleep
in a novel environment. In the FNE, one hemi-

sphere is more vigilant than the other in unfamiliar
surroundings during sleep, i.e. regional interhemi-
spheric asymmetry of sleep depth. Similar unihemi-
spheric sleep happens in some birds and marine
mammals which is a protective mechanism to com-
pensate for risks during sleep [8]. During patholog-
ical states such as epileptic seizure and Parkinson
disease, some regions of brain are highly synchro-
nized, indicating that the abnormally excessive syn-
chronization is related to brain disorders [9]. In se-
rious seizure events, the abnormal synchronization
tends to spread to the whole cerebral cortex, leading
to a global synchronization [10].

A question of fundamental interest to physical
science and complex systems is how such diverse
patterns are supported, shaped and constrained
by the underlying interacting network. Advanced
neuroimaging has revealed that there is a very
complex cortico-cortical network underlying the
dynamical and functional interaction among the dis-
tributed cortical regions, forming the brain connec-
tome [11,12]. Brain network displays features like
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smallworld, communities, hierarchical and rich-club
connectivity [11–13]. The study of the structure-
function relationship has attracted great attention
by investigating the interregional dynamical inter-
actions from the method of functional connectivity
(correlation of brain activities usually measured in
functional magnetic resonance) and complex net-
work measures [14,15]. It has been found that the
structural and functional connectivity share many
common graphic features [14,15]. Despite the ad-
vance made so far, how the underlying network ar-
chitecture can support, shape and constrain various
dynamical patterns at different brain states is still
elusive and is a central challenge in network neuro-
science [15].

A characteristic feature of the various brain dy-
namical patterns is that some nodes (cortical areas)
are synchronized and theothers areunsynchronized,
i.e. a kind of coexistence of coherent and incoher-
ent behaviors across different spatial scales in the
whole brain system. In fact, the phenomenon of co-
existence of coherent and incoherent states has been
intensively studied in the last decade under the name
chimera state (CS) for identical oscillators [16,17],
including theneuron systems [18–20], experimental
systems [21,22], andmultiple CS [18,23]. Recently,
itwas reported thatCScaneven showup in real brain
networks [24,25]. In particular, Bansal et al. stud-
ied CS in brain cortical network model at the level
of nine cognitive subsystems formed by 76 cortical
regions (network nodes) [26] and revealed a kind
of cognitive CS due to stimulations to the cognitive
subsystems. However, these studies of CS did not
pay much attention to how CS is related to the un-
derlying network properties.

Here, we construct a brain network from the real
data of human cerebral cortex to study its collec-
tive behaviors. We focus on how the collective be-
haviors emerge from the interaction of neural pop-
ulations on the underlying brain network. As each
node of brain network represents a region of inter-
est (ROI) with a large number of neurons, we use
a neural mass model to describe the mean field ac-
tivity of these neural populations. To go deep to the
structure-dynamics relationship, we study the col-
lective behaviors from both global and local regions,
i.e. a rescaling or renormalization approach. We in-
terestingly find that except disorder and synchro-
nized states, there is a regime of CS in both levels,
indicating a new feature of CS with multiple spa-
tial scales. Especially, we find that a zero-correlation
state of brain network in global level is very likely
filled with abundant partially synchronized patterns
in local level. To reveal the relationship between
the activeness of each region in cognitive tasks and
its connectome, we study the emergence of collec-
tive behaviors from the angle of synchronization and

reveal a positive correlation between the synchro-
nized fraction of a local region in phase diagram and
the degree of connection symmetry of the region in
the network.

Moreover, we use the concept of effective sym-
metry in the network to build structural and dynam-
ical hierarchical trees from similarity in network con-
nectivity and dynamical synchronization. We find a
close matching between the structure and dynami-
cal trees, which helps to explain the multiple brain
rhythms observed in experiments and also reveals
that the observed multiscaled CS patterns are inher-
ent in the hierarchal structural clusters with different
sizes. These clusters can be activated and recruited
under different parameters to form diverse com-
binations of coherent-incoherent states. Thus, our
work suggests a generic principle for complex brain
network as a structure substrate to support diverse
functional patterns under normal and abnormal con-
ditions by activating different combinations of the
inherent clusters offered by the complex network
connectivity.

RESULTS
Firstly, we construct a weighted brain network of
cerebral cortex from the data of Refs. [11,12]. We
notice from the data that there are 9 isolated nodes
without links, likely due to the limitation of diffusion
tensor imaging method [11,12]. For convenience
of discussion, we remove the 9 isolated nodes in
our modeling. The obtained network has N = 989
nodes (Nr = 496 and Nl = 493 for the right and
left hemispheres, respectively), each representing
a ROI, and 17 865 links among all the nodes. The
total nodes are grouped into 64 functional regions
following the cytoarchitecture and functional
parcellation in [11,12], and those nodes in each of
the 64 cortical regions are numbered consecutively.
The obtained 989 × 989 connectionmatrix {MIJ} is
weighted. Figs S1–S3 in supplementary information
(SI) show the weighted connection matrices and
partition of the 64 cortical regions. Then, we let the
dynamics of each node be represented by a neural
mass model [27,28] describing the mean field activ-
ity of a neuronal population (see Methods). Results
in the following are based on Eq. (2) in Methods
with a constant time-delay τ .The case of distributed
τ will be discussed in Figs S6 and S7 of SI.

Typical dynamical patterns and phase
diagrams of order parameter
As in [27,28], we take the average potential u I =
ve
I − vi

I from Eq. (2) to represent local field po-
tential. Fig. 1 (a)–(d) shows the snapshots of four
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Figure 1. Typical dynamical patterns. (a-d): Snapshots of four typical patterns in the network of cerebral cortexwith N = 989
nodes. (e-h): The spatiotemporal patterns corresponding to (a)–(d), respectively. I = 1, · · · , 496 for right hemisphere and
I = 497, · · · , 989 for left hemisphere. The parameters are c = 0.05 and τ = 9ms in (a) and (e), c = 0.025 and
τ = 16ms in (b) and (f), c = 0.025 and τ = 51ms in (c) and (g), and c = 0.05 and τ = 20ms in (d) and (h).
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Figure 2. Phase diagram of the order parameter R on the parameter space τ − c plane. (a), (b) and (c) represent the cases
of whole brain network, right and left hemispheres, respectively, and (d)-(f) the cases of three typical cortical regions of
2 (rCAC, 4 ROIs), 38 (lFUS, 22 ROIs) and 7 (rIP, 28 ROI), respectively, randomly selected for demonstration.

typical collective behaviors of the network for differ-
ent pairs of coupling strength c and time-delay τ and
(e)-(h) shows their corresponding spatiotemporal
patterns. Fig. 1 (a) and (e) shows that u I are largely
randomly distributed, corresponding to an incoher-
ent state. In Fig. 1 (b) and (f), the nodes are divided
into different coherent groups, with some being un-
synchronized with these groups, corresponding to a
CS. Fig. 1 (c) and (g) gives the example that the right
cerebral hemisphere is largely synchronized while
many nodes in the left hemisphere are in an incoher-

ent state, which resembles the phenomenon of uni-
hemispheric sleep. Fig. 1 (d) and (h) shows a com-
plete synchronization of the whole cerebral cortex,
marking the large-scale synchronization in epileptic
seizure.

Below we comprehensively explore the dynami-
cal properties in the parameter space of τ − c plane
through extensive numerical simulations andfinddi-
verse patterns.Toquantify anddistinguish thesepat-
terns, we adopt the order parameter R from Eq. (3)
inMethods. Fig. 2 shows the phase diagrams of R on
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Figure 3. Spatial multi-scaled CS. (a) Local representation of R for the case of c =
0.075 and 15ms , where the color points with numbers represent the network of the
64 local regions and the gray background points represent the network of 989 nodes.
The functional names of these 64 local regions are given in Table S1 of SI. (b)–(d) show
three arbitrary snapshots for the oscillators within the cortical region 38 (lFUS) from (a),
respectively, where the blue oscillators on the dotted lines represent the synchronized
cluster which is stable.

the parameter space τ − c plane, for different levels
of the whole brain (a), hemispheres ((b) and (c)),
and three typical brain regions ((d)-(f)).

Three features of Fig. 2 can be noticed: (i) The
cases of Fig. 2(a)–(c) at global level are similar,
thus the chance to find one hemisphere being
synchronized and the other being incoherent at
the same time must be located near the boundary
between complete synchronization (R ∼ 1) and
un-synchronization (R ∼ 0) in the phase space. (ii)
Fig. 2(d)–(f) are largely different from each other
in their un-synchronization regions (R < 1). For
example, the phase space for τ < 9 is partially syn-
chronized (0 < R < 1) in Fig. 2(d) but incoherent
(R ∼ 0) in Fig. 2(f) and in between in Fig. 2(e).This
local difference in dynamics is consistent with the
observation that different cortical regions have been
involved into different brain functions [9]. And (iii)
the unsynchronized region of R ∼ 0 in Fig. 2(a)–(c)
with τ < 9 is in contrast with the corresponding
region of 0< R < 1 in Fig. 2(d), implying that a dis-
ordered state of R ∼ 0 in global level of brain does
notmean a complete disorder of the whole brain but
a balanced state with abundant local synchroniza-
tion patterns.This result can be further confirmed by
other regions, seeFig. S5 in SI for the phase diagrams
of R on τ − c plane for all the 64 cortical regions.

Multi-scaled CS in brain network of
cerebral cortex
By checking the dynamical behaviors of Fig. 2(d)–
(f) in the regions with 0 < R < 1 , we find that the

dynamics of their oscillators typically consists of the
coexistence of coherent and incoherent groups, sug-
gesting that CS also appears at the local level. Thus,
CS in brain network can be observed on both the
global and local levels, which we call spatial multi-
scaled CS.

To characterize the CS of local level, we go to
the scaled network of the 64 brain cortical regions
[11,12], where a region-i consists of ni oscillators.
Considering each region as a node, the scaled net-
work will have 64 nodes, where the physical position
of each node will be the average of the positions of
all its ni nodes. Fig. 3(a) shows the position distri-
bution of these 64 nodes in human brain network
where the numbers are the index of these nodes and
their functional names are given in Table S1 of SI.
We also keep the original 989 nodes in Fig. 3(a) as
the gray background, for visualization effect. Now,
we calculate the local order parameter R for the ni
nodes in each local region. Take the case of c =
0.075 and τ = 15ms as an example, which has a
small R at the global level. The different colors of
nodes inFig. 3(a) show their values of R.Wesee that
the degree of synchronization differs across cortical
regions in the whole brain. To confirm the feature
of CS in local level, Fig. 3(b)–(d) shows the snap-
shots of those oscillators within the cortical region
38 (lFUS) from (a) for three arbitrary moments, re-
spectively. We see that the oscillators on the dotted
lines represent the synchronized clusters and others
unsynchronized, confirming the coexistence of sta-
ble synchronized cluster with incoherent oscillators,
i.e. a CS within the region 38 (lFUS). We have ob-
served the similar phenomenon at other nodes of
Fig. 3(a) with 0 < R < 1 and also found that it is
quite general for different parameters (τ,c ) (e.g. see
Fig. S4 in SI, corresponding to Fig. 1(b)).

Dependence of node’s activeness on
local structure of brain network
Then, a key question is how the CS of these 64 lo-
cal regions are related to their brain functions. To
figure out the answer, we show the local R of all
the 64 cortical regions for a few typical sets of c and
τ in the Table S1 and find that the individual re-
gions have different preferences to show the states
of disorder, CS, and synchronization. This result is
interesting as it confirms that different local regions
of brain have different activeness to potentially sup-
port their heterogeneous roles in performing certain
tasks and cognitive functions such as pattern recog-
nition, function approximation, and data process-
ing etc. To quantitatively measure this activeness,
we sample the phase diagram of each local region
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Figure 4. Node’s activeness and its dependence on local structure of brain network.
(a) Number of synchronized points ns with R > 0.9 in the phase diagram of τ − c
plane, where the coupling range 0 ∼ 1 is divided into 40 points, and the time-delay
range 1 ∼ 18ms is divided into 18 points. (b)–(e) respectively show fi , n i , ρi , and gi
for the 64 regions. (f) gi versus fi with Pearson correlation coefficient r = 0.76 and
p-value p= 0.

(i.e. Fig. 2(d)–(f) and Fig. S5) by δτ = 1ms in
the range of 1 ∼ 18 and δc = 0.025 in the range
of 0 ∼ 1 , i.e. total 18 × 40 = 720 phase points
in the τ − c plane. Then, we count the number of
phase points with R > 0.9 from the phase diagram
of each local region and denote it as ns . Fig. 4(a)
shows the results where ln ns ranges from 3.6 to 5.6,
i.e. ns ranges from 50 to 294. Three features can be
found from this figure: (i) There are a few regions
withhigherns such as the regions 5, 37, 31, 63 and
32. (ii) Most of the regions with middle values of ns
are distributed along the middle lines separating the
two hemispheres. (iii) And most of the regions with
lower values of ns are distributed away or far away
from the middle lines. For convenience, we let f i =
ns /720 represent the fraction f i for each region-i to
take R > 0.9 in the τ − c phase plane, represent-
ing the activeness of the region in synchronization
dynamics.

To understand the underlying mechanism of
these three features or how the local topologies of
nodes influence their behaviors, we recall the re-
cent findings of cluster synchronization that the os-
cillators of network will be automatically evolved
into different synchronized clusters but the oscilla-
tors in different clusters are not synchronized with
each other [29,30]. It was revealed that network
symmetry is the necessary condition for synchro-
nized clusters [31,32]. It was also reported that the
synchronized cluster may not directly result from
the network symmetry, but due to the same total
amounts of inputs received from their neighboring

nodes [33].Thus, wemay conclude from these find-
ings that more symmetry among a cluster of oscilla-
tors implies stronger synchronization among them.
In our case, we consider the ni oscillators of region-
i as a cluster. Its symmetry comes from two aspects.
One is the symmetry from the intra-links among the
ni oscillators, and the other is the symmetry from the
out-links of the ni oscillators. For the first aspect, a
complete graph, where each oscillator has an intra-
degree ki ni = ni − 1, corresponds to a perfect sym-
metry since each pair of oscillators have completely
common network neighbors. When the graph is

not complete, we let ρi = ni 〈ki ni 〉
ni (ni − 1)

be the intra-

connection density where 〈ki ni 〉 is the average intra-
degree and ni (ni − 1) is the maximum of possible
intra-links within the same region-i . Then, a larger
connection density ρi corresponds to a stronger
symmetry of intra-links. For the second aspect, the
out-links of the ni oscillators will go to different os-
cillators of theneighboring regions of region- i . Con-
sider a specific case where each of the ni oscillators
has only one out-link and all the ni out-links go to
the same oscillator-j in another region. In this case,
the oscillator-j is a center hub while the ni oscil-
lators are the leaf nodes, i.e. a star network. It has
been revealed that for the star network, there is a
remote synchronization among the leaf nodes of a
hub but not synchronized with the hub [34]. This
result has been recently extended to the brain net-
work [35]. As the leaf nodes are symmetric around
the hub, we may conclude that the existence of the
common hub oscillator-j represents the symmetry
of out links. Thus, more common hub oscillators
imply stronger symmetry of out links. We let g i =
ncomm
i

<kouti >
be the out-links symmetry of the ni oscilla-

tors where ncomm
i represents the number of the com-

monhuboscillators and< kouti > represents the av-
erage out-links of the ni oscillators, i.e. the average
out degree. A larger g i means a stronger out-links
symmetry. For example, Fig. 5 shows the case of the
region-5 with n5 = 2 in Fig. 4(a) where the red
line is the only intra-link, the other links are the out-
link, and the green nodes are the common hub os-
cillators. After simple calculation we obtain ρ5 = 1
and g 5 = 0.767. Doing the same calculation for all
the 64 regions, Fig. 4(b)–(e) respectively show f i ,
ni , ρi , and g i for all the 64 regions. Several features
can be noticed for the five nodes 5, 37, 31, 63 and
32 with higher ns in Fig. 4(a). From Fig. 4(b)–(e)
we see that all the five nodes have f i > 0.2 in (b),
a small ni in (c), a larger ρi in (d), and a larger
g i in (e). In sum, the oscillators in all the five nodes
have stronger symmetries as they all have both larger
ρi and larger g i , which explains why we have ob-
served the larger f i or ns for the five nodes. To
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Figure 5. Connection structure and symmetry of the region-5. The region-5 contains only two oscillators (ROIs 26 and 27)
where the red line is the only intra-link and the other links are the out-links. The common nodes are shown in the central part
with green color.

check the statistical significance of these results, we
have calculated the correlation between f i and g i
and its P-value, see Fig. 4(f). We find that its Pear-
son correlation coefficient is r = 0.76 and P-value
is P= 0.

On the other hand, we find that the value of ns is
closely related to the node’s activeness in brain func-
tions. For example, the five nodes 5, 37, 31, 63,
and 32 with the largest values of ns in Fig. 4(a) rep-
resent the brain regions rFP, lFP, rTP, lTP, and rTT,
respectively, see Table S1. It is well known that all
these regions take key roles in the aspects of cogni-
tive, memory, behavior, and auditory processing etc.
[36]. We also notice that each of these five regions
containsonly a fewoscillators (ni =2 for the regions
of rFP, lFP, rTPand lTPandni =3 for rTT)and thus
mainly takes the role of connecting other regions, i.e.
the function of signal transmission [36]. These re-
sults show robustness to distributed time delays (see
Figs S6 and S7 in SI).

Hierarchy trees of both anatomical and
functional networks
To further explore how the network structure can
support the multiscaled dynamics, we would like to
extend the above concept of hidden dynamical sym-
metry in the network [31–33,37–39]. Two nodes l
and l′ are dynamically symmetrical if they have ex-
actly the same connection neighbors nn in the net-
work so that their dynamical evolutions are identical
and their states can be in principle completely syn-

chronized, i.e.

ẋl = f (xl) +
∑
k∈nn

Mlkh (xk) , ẋl′ = f (xl′)

+
∑
k∈nn

Ml′kh (xk) . (1)

However, in the real brain networks, dynamical
symmetry may not be perfect, but only be effec-
tive, so that two nodes may not have exactly the
same network neighbors, but may share a portion
of common neighbors. Higher portion of common
neighbors will give stronger common driving sig-
nals to the two nodes and will likely make stronger
synchronization between them. Thus, it is possible
to predict synchronization patterns from the in-
herent patterns of effective symmetry in the net-
work connectivity. Based on aweighted connectivity
matrix W, with Wll′ being the input connection
from node l′ to node l , let Kl be the total weight
of node-l, i.e. Kl =

∑
k Wlk from all other nodes.

The shared weight for nodes l and l′ from a com-
mon neighbor n is On

ll′ = min(Wln, Wl′n), thus∑
n O

n
ll′ represents the total shared weight from all

the common neighbors of the two nodes. We can
quantify the effective dynamical symmetry by the
similarity of connectivity between two nodes l and
l′ as Sll′ = (

∑
n O

n
ll′)/(Kl + Kl′ − ∑

n O
n
ll′) , i.e.

the ratio of total shared weight from all the com-
mon neighbors to the union of connection weights
of the two nodes in the network. Sll′ = 1 for ideal
symmetry if the neighbors are completely identical
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Figure 6. Relationship between hierarchal clusters of anatomical network and dynamical synchronization at the level of 64
cortical regions. (a) Hierarchy tree of anatomical network with three branches ST1, ST2, and ST3 by taking yth ≈ 0.84. (b)
Hierarchy tree of functional network with three branches DT1, DT2, and DT3 for c = 0.075 and τ = 15ms by taking
yth ≈ 0.45 . (c) Fractions of nodes from right and left hemispheres in ST1- ST3 of (a). (d) Fractions of nodes from right and
left hemispheres in DT1-DT3 of (b). (e)-(g) show the fractions (number) of nodes in DT1-D3 of (b) coming from ST1-ST3 in (a),
respectively.

or Sll′ = 0 if there is no sharing of any common
neighbor at all. In previous work [28,40], this de-
gree of symmetry was called matching index and
used to obtain the hierarchy tree of anatomical net-
work [40], by performing hieratical clustering anal-
ysis of the dissimilarity 1 − Sll′ . Below we focus our
attention to analyzing the relationship between the
hierarchical organizations of the effective symmetry
in anatomical connectivity and the dynamical clus-
tering of spatial multiscaled CS. We will study the
structure-dynamics relationship from both the re-
gional level with 64 cortical regions and the ROI
level with 989 nodes.

For the coarse-grained network of 64 cortical re-
gions, we consider two cortical regions l and l′ be
connected if there is at least one link between their
nodes.TheweightWll′ of this inter-regional connec-
tion will be the average weight for all those links be-
tween ROIs in the two regions (see Fig. S3 in SI).
Figure 6(a) shows the result of hierarchical tree of
the anatomical network where x axis is the 64 cor-
tical regions and y axis is the dissimilarity. This hi-
erarchical tree clearly displays connectivity clusters
across multiple levels, which can be obtained from
the sub-trees (branches) at different thresholds yth .
Here we classify it into three structural trees ST1,
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ST2, and ST3, respectively, by taking yth ≈ 0.84 .
While ST1 and ST3 are solely from the right and left
hemispheres, respectively, ST2 is the combinations
of the two hemispheres (see Fig. 6(c)). We notice
from Fig. 6(a) that the isolate 63 does not belong to
the three trees, which is consistent with its role of re-
lay node. Similar situations will happen for other re-
lay nodes when different yth are taken.

We now obtain the hierarchy tree of dynamical
interactions (functional network) from the neural
mass model in two steps. (i) We calculate the pair-
wise order parameter RIJ from Eq. (4) for all the
pairs of nodes I and J for all the 989 nodes. (ii) We
calculate the average value for all those functional
links RIJ between the two cortical regions l and l′
as the dynamical similarity S F

ll′ and obtain the hi-
erarchal tree using dynamical dissimilarity 1 − S F

ll′ .
Figure 6(b) shows the hierarchy tree of the func-
tional network for c = 0.075 and τ = 15 by
taking yth ≈ 0.45, which is also divided into three
branches, named as dynamical trees DT1, DT2, and
DT3, respectively. The ratios how each dynamical
branch comes from the right and left hemispheres in
Fig. 6(d) show that DT1 is solely from the left hemi-
sphere, while DT2 and DT3 are from both the left
and right hemispheres.These results are well consis-
tent with the observations in Figs 1 and 3.

Now, we investigate the relationship between
structural and dynamical clusters (branches) in
Fig. 6(a) and (b) by examining how the dynamical
trees in Fig. 6(b) are contributed by the underlying
structural tree in Fig. 6(a). Figure 6(e)–(g) shows
the results where DT1 is mainly from ST3, DT2 is
a rich combination of all the structural branches,
with ST2 giving themaximal contribution, andDT3
is dominated by ST2. Overall, the left hemisphere
is divided by all the three dynamical clusters DT1-
DT3, suggesting that the left hemisphere appears to
be more segregated in this dynamics state. Similar
matching relationship holds when considering
fewer branches, where ST1 and ST2 are merged
to a large structural branch containing the whole
right hemisphere and part of the left hemisphere
and DT2 and DT3 are merged to a larger dynamical
cluster (see Fig. S8). Similar relationship between
dynamical and structural trees also holds for other
parameters.

The multiscaled CS can be further elucidated
by investigating the anatomical and functional net-
works level with 989 ROIs. As it is not readable
to plot the 989 nodes in a single figure, we here
only take the branch containing most of the corti-
cal region 38 (lFUS) with 22 nodes as an illustration
example. Figure 7(a) shows its hierarchical tree of
anatomical network with three structural branches
of ST1, ST2 and ST3. It is easy to see that the hierar-

chical tree of Fig. 7(a) is similar to that of Fig. 6(a),
indicating a scaling invariance. This property is con-
sistent with the observation that cortical network
connectivity is cost-efficient [40], with strong pro-
jections in spatial neighborhood and decaying expo-
nentially with distance.

Figure 7(b) shows the hierarchical tree of func-
tional network of the cortical region 38 (lFUS). Sim-
ilar to Fig. 6(e)–(g), we also find that themajority of
each of the dynamical trees DT1-DT3 always comes
from two structural branch of ST1, ST2, and ST3
(Fig. 7(c)–(e)), confirming again the close relation-
ship between the structural and functional networks.
This matching is similar for other cortical regions
displaying CS.

DISCUSSION
In this work, we study the principle how complex
brain network can support diverse co-existence of
coherent and incoherent dynamics patterns in the
framework of CS of identical oscillators in networks.
Our intensive numerical simulations on biologically
plausible neural mass models, ideally assumed to
be identical in different ROIs, have shown that the
highly complex and heterogeneous brain network
can support spatial multiscaled CS at different cou-
pling and delay parameters. We reveal that the fun-
damental principle lies in the inherent effective sym-
metry in the complex brain structural networks, that
allows the formation of hierarchical synchronization
clusters across multiple scales, and such clusters can
be activated and manifested under different dynam-
ical parameters.

Themultiscaled CS suggested that there is a sim-
ilar organization principle underlying the hierarchy
of the brain network. Intuitively, we may make a
rescaling/renormalizationprocess to change the size
of brain network where a few nodes are combined to
form a larger one. If we intentionally let the synchro-
nized, CS and unsynchronized nodes of Fig. 3(a) to
combine to form new nodes, respectively, we will
have similar dynamics on different scales. Contin-
uing this process, we will finally go to the global
level where all the oscillators/nodes are considered
as a unit. We have confirmed this renormalization
process in numerical simulations. As an example,
Fig. 2(f), (b), and (a) shows the phase diagrams of R
for the region 7 (rIP), right hemisphere, and whole
brain network on the parameter space τ − c plane ,
respectively. We see that these three panels with dif-
ferent size are similar to each other, confirming the
feature of spatial multi-scaled CS.

The results in Figs 6 and 7 comparing the hi-
erarchical clustering in structural and functional
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Figure 7. Matching of hierarchal cluster between anatomical network and dynamical synchronization at the level of 989
nodes: the hierarchy tree of the cortical region 38 (lFUS). (a) Hierarchy tree of anatomical network with three branches ST1,
ST2 and ST3. (b) Hierarchy tree of functional network with three branches DT1-DT3, where the parameters are taken as
c = 0.075 and 15ms. (c)-(e) represent the fractions of those lFUS nodes in DT1-DT3 of (b) from those lFUS nodes in ST1,
ST2 and ST3 in (a), respectively.

connectivity suggested that the underlying network
can provide substrate to support diverse dynami-
cal patterns through the organization of hierarchi-
cal clusters across multiple scales due to effective
symmetry, and these inherent structural clusters
can dominate dynamical clusters or provide flexi-
ble segregation-integration to form rich dynamical
combinations. Generally, the anatomical brain net-
work in adults does not have a significant change
within short periods. Thus, the implementation of
brain activities and functions could be manipulated
by the coupling strength (neurotransmitters) and
other possible physiological parameters. The varia-
tion of coupling strength represents the activation or
inactivation of links, while different time-delays cor-
respond to long or short links, respectively. When
the brains stay in different states, such as in wake-
fulness or sleep, the effective coupling could be ma-
nipulated to select and activate different inherent
states and their combinations. Therefore, the abun-
dant combinationsbetweenτ and c potentially guar-
antee the diversity of brain patterns.

The hierarchical clustering and multisaled CS
could also contribute to the formation of multiple
rhythms in brain activities. In a multiscale network
system, the spatial scales and temporal scales are
inherently related based on the eigenmode theory
[41,42]. Indeed, it has been shown that brain tem-
poral rhythms are closely coupledwith spatial scales,
with faster oscillations in local scales and slower
oscillations in broader scales [43,44]. For example,
during sleep, slow oscillations can emerge to gener-
ate large-scale synchronized states [5,6] recognized
as slow wave sleep. In the current work, we have
shown that the multiscaled CS is closely related
with the underlying hierarchical spatial clusters that
are inherent in the network structure. Considering
the interactions within and between such clusters,
their different sizes of feedback loops represent
different rhythms of neural activities. When needed
for specific brain functions, these rhythms/clusters
may be activated and recruited under different
parameters to form diverse combinations of
coherent-incoherent states, which might explain the
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multiple brain rhythms observed in experiments.
Thus, these clusters of different sizes provide a
scalable backbone for multiscaled CS patterns
and suggest a generic principle for complex brain
network as a structure substrate to support diverse
functional patterns under normal and abnormal
conditions. In this sense, we may consider the
multiscale feature of chimera state as one potential
mechanism for the multiple brain rhythms observed
in EEG or any other electrophysiological brain
measurements, but not the only one. The multiple
brain rhythms may also come from other factors
such as the external stimulations and the task state or
resting state etc.

Our results showed that the tendency to form
coherent synchronization clusters in different
brain regions is heterogeneous due to nonuniform
inherent symmetry property of the underlying brain
network. The synchronization of different regions
could be closely related to the brain functions and
disorders. Especially, an abnormal synchronization
is the mark of epilepsy. There are different types
of epilepsy. Sometimes there are focal areas in
the frontal lobe or temporal lobe, and sometimes
enhanced synchronization is more broadly dis-
tributed. For temporal lobe epilepsy (the type
where surgery is often the only option), thalamus,
amygdala, and hippocampus are involved [45].
Interestingly, this phenomenon is consistent with
our results, i.e. the five regions 5 (rFP), 37 (lFP),
31 (rTP), 63 (lTP) and 32 (rTT) with the largest
values of ns in Fig. 4(a). The regions 31 (rTP) and
63 (lTP) are just the right and left temporal lobes,
while the regions 5 (rFP) and 37 (lFP) are just the
right and left frontal poles, i.e. the tops of frontal
lobes. This striking correspondence suggested that
epilepsy may have an anatomical foundation rooted
in the symmetry property of the brain network.
This correspondence also suggests that the hier-
archal symmetry in the brain network as revealed
in this work may offer a principle understanding
of various cognitive processes in the brain, which
deserves further theoretical and experimental
investigations.

In the current work, we have considered iden-
tical neural oscillators for different ROIs. Recent
neuroanatomical studies have shown that the local
cortical regions are not uniform in its thickness, neu-
ronal density, spine density, myelination contents
and gene expressions [46,47], thus the internal dy-
namics of ROI is supposed to be heterogeneous too,
e.g. with different time scales [48,49]. In our model-
ing framework at the level of ROI, such nodal het-
erogeneity in the oscillators is supposed to induce
additional diversity and to enlarge the range of
complexity of the neural dynamics, as enhanced or

even optimized dynamical complexity is desirable
for functional requirements, e.g. to achieve a bal-
ance of segregation and integration across different
scales [41]. If we go into the microscopic scales of
interacting neurons by synaptic coupling, such het-
erogeneity in local circuits in ROIs also corresponds
to heterogeneous network connectivity among the
neurons, and is expected to induce more levels of
effective symmetry and synchronized firing clusters
within ROI, again supporting the notion of more
complex dynamics for efficient information coding
and processing.

Another limitation of this study is that the con-
sidered brain network is only in the level of cortical
regions, i.e. about 1000 nodes. In this level, the sub-
cortical structures, such as amygdala, hippocampus
and thalamus, have not been included in the model,
but they are network hubs and are supposed to play
a crucial role in both functionally desirable synchro-
nization and pathological brain dynamics. Recently,
we notice a brain network of higher resolution with
50 000 nodes [50], which is scale-invariant across
topological scales [51]. Such finer resolution brain
network would better reflect the heterogeneity in lo-
cal connectivity. We will study such finer resolution
brain network in the future.

CONCLUSION
In sum, we have shown that coupled neural mass
oscillators on human cerebral cortex network can
display spatial multiscaled CS, i.e. both global and
local levels. A global state of R ∼ 0may correspond
to a variety of local patterns with 1 > R > 0 , indi-
cating that the CS on larger scales can be considered
as a rescaling of those CS on small scales. Further,
we have shown that the effective symmetry in the
network connectivity forms hierarchical clusters in
the networkwhich can potentially formmulti-scaled
dynamical clusters, but the recruitment of these
inherent structural clusters to form rich dynamical
clusters depends on the coupling strength and delay
parameters in the current model. These findings
elucidate a generic principle underlying the
structure-function relationship in the brain, namely
the underlying complex cortical network can sup-
port diverse brain dynamical patterns by activating
different combinations of the hidden inherent
clusters under different normal or abnormal
physiological and psychological conditions. It is
plausible to expect that the heterogeneity in local
neural circuits [46] could bring in additional rich
dynamical diversity for efficient functioning, while
the counter-intuitive results that the heterogeneity
in oscillators or connectivity may compensate the
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imperfect symmetry to enhance synchronization
[31] could also play a role in brain functioning,
which are interesting lines of research in the future.

METHODS
Dynamical equations
As each ROI of the real brain network contains an
ensemble of excitatory and inhibitory neurons, we
model its dynamics by a neural mass model [27,28]
describing the mean field activity of a neuronal pop-
ulation. This low-dimensional model with biologi-
cally plausible interactions between excitatory and
inhibitory neural populations can generate oscilla-
tions in the alpha band (∼ 10Hz) and is used to rep-
resent resting brain states [52]. Increasing evidences
show that the local circuits in the cortical regions
are not identical [46,47], but display heterogeneity
in neuronal density and spine density etc. However,
modeling the regions with simplified assumption of
identical neuralmass oscillators allows us to focus on
the effect of the underlying network architecture on
the dynamical patterns. The dynamical equations of
identical neural mass oscillators coupled by the un-
derlying cortical network read as

v̈
p
I = Aa f

(
ve
I − vi

I
) − 2a v̇

p
I − a2v p

I ,

v̈i
I = BbC4 f (C3v

P
I ) − 2bv̇i

I − b2vi
I ,

v̈e
I = Aa

[
C2 f

(
C1v

p
I
) + pI + c

λI

∑N

J =1
MIJf

(
ve
J (t − τ) − ve

I
)] − 2a v̇e

I − a2ve
I , (2)

where I = 1, · · · , N , v
p
I , vi

I and ve
I are the

post-synaptic membrane potentials for three sub-
populations (pyramidal neurons, inhibitory and ex-
citatory interneurons) of the node-I. The sigmoid
function f (v) converts the average membrane po-
tential into an average pulse density of action
potentials (spikes), which propagate among sub-
populations within each node and between nodes
through synaptic coupling. MIJ is the coupling ma-
trix with the real connection weights from the data
of Refs. [11,12]. The coupling strength c is nor-
malized by the mean intensity λI across the nodes,
where λI = ∑N

J MIJ is the total input weight to
node-I . The parameters A and B represent the av-
erage synaptic gains, and 1/a and 1/b are the av-
erage dendritic-membrane time constants. C1 and
C2 , C3 and C4 are the average number of synap-
tic contacts among the subpopulations. A more
detailed interpretation and the standard parame-
ter values of this model can be found in [27,28].
In this work, we follow Ref. [28] to take the

parameters as cc = 135, C1 = cc, C2 = 0.8cc,
C3 = 0.25cc, C4 = 0.25cc, A = 3.25, B = 22,
a = 100, b = 50, and pI = 180. The sigmoid
function takes the form (v) = 2e0/(1 + e r (v0−v)),
wherev0 is thepostsynaptic potential corresponding
to a firing rate of e0, and r is the steepness of the ac-
tivation, with the parameters as v0 = 6, e0 = 2.5,
and r = 0.56 as in Refs. [28,29]. τ is the time-delay
for interregional signal transmission, assumed to be
common for different links.Thismodel setting of de-
lay is certainly simplified as the conduction speed
depends on whether the synapses are myelinated or
not and on the length of the fibers and differs across
pieces [53]. To date, complete information of con-
duction delays of the brain network is not available.
Themore realistic case of distributed τ according to
distance betweenROIs is discussed inFigs S6 andS7
in SI.

In the study of CS [16,17], the coupling delay τ

is often considered as a tunable parameter. Below
we aim to demonstrate that under different param-
eter settings τ − c , various CS patterns can emerge
from the inherent effective symmetry in the under-
lying network, though we cannot simply claim that
these parameters are the actual biological reasons for
the formation of a particular pattern in the real brain.

Order parameters
To quantify and distinguish the patterns, we adopt
the order parameter R in the form

R e iφ = 1
Ni

Ni∑
I = 1

e i θI, (3)

where R characterizes phase coherence, φ the aver-
age phase, θ the phase of oscillator, and Ni is the
number of coupled oscillators to be examined. The
phase variable of a general nonlinear oscillator not
necessarily having a well-defined rotational center
can be obtained based on the general idea of the cur-
vature [54], namely θI = arctan(v̇i

I /v̇
e
I ) in our sys-

tem. We consider cases of both the global and local
levels. In the global level,Ni will beN = 989 for the
whole brain network, and Nr = 496 and Nl = 493
for the right and lefthemispheres, respectively. In the
local level such as within each of the 64 brain corti-
cal regions, Ni will be the number ni of nodes in the
region-i .

We can also introduce another order parameter
RIJ to describe the correlation between two con-
nected nodes, i.e. the pairwise order parameter, de-
fined as

RIJ =
∣∣∣∣ lim
T→∞

1
T

∫ t+T

t
e i [θI (t)−θ J (t)]dt

∣∣∣∣ , (4)
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whereT is the timewindow tomeasure synchroniza-
tion. Thus, RIJ represents the correlation between
nodes I and J for all the 989 nodes.
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