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Abstract: With the growing adoption of the Internet of Things (IoT) technology in the agricultural
sector, smart devices are becoming more prevalent. The availability of new, timely, and precise
data offers a great opportunity to develop advanced analytical models. Therefore, the platform
used to deliver new developments to the final user is a key enabler for adopting IoT technology.
This work presents a generic design of a software platform based on the cloud and implemented
using microservices to facilitate the use of predictive or prescriptive analytics under different IoT
scenarios. Several technologies are combined to comply with the essential features—scalability,
portability, interoperability, and usability—that the platform must consider to assist decision-making
in agricultural 4.0 contexts. The platform is prepared to integrate new sensor devices, perform
data operations, integrate several data sources, transfer complex statistical model developments
seamlessly, and provide a user-friendly graphical interface. The proposed software architecture is
implemented with open-source technologies and validated in a smart farming scenario. The growth
of a batch of pigs at the fattening stage is estimated from the data provided by a level sensor installed
in the silo that stores the feed from which the animals are fed. With this application, we demonstrate
how farmers can monitor the weight distribution and receive alarms when high deviations happen.

Keywords: sensors; Internet of Things; microservices architecture; cloud computing; precision
livestock farming; smart farm; pig farming

1. Introduction

Developments in the digital era are transforming the agricultural industry by making
its processes more efficient, automated, and competitive. The line that separates the virtual
and the physical world is getting closer, and this approximation brings in new paradigms
and challenges to become a full-fledged 4.0 industry. From the Internet of Things (IoT)
perspective, the core idea is that each physical object in the real world is equipped with
sensors that connect it to the virtual world. Predictive models, prescriptive models, or
Artificial Intelligence (AI) algorithms can be fed with these data enriched with other context
information to generate new insights to assist the decision making process. Several inno-
vations, like sensor technology [1,2], positioning systems [3], digital image processing [4],
cloud [5], and fog computing [6], among others, make this transformation possible.

Nowadays, the automatic acquisition of data, which is part of the datafication and
digitization process, is undertaken in many sectors given that sensors are becoming cheaper
and more energy-efficient [7]. The value of such data is directly related to the use given.
The simplest use of the sensor data leads to descriptive analytics, and using the information
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only in this way may not exploit its full potential [8]. Therefore, given that the number
of devices that can transmit data is increasing, there is a need to improve the systems for
gathering, crossing, and processing the data provided by the different sources in order to
support smart decisions.

To start with, several challenges arise on the data collection process: (a) raw data
coming from the sensor may be inaccurate or even erroneous due to systematic and random
errors; (b) some information may be partially lost due to network congestion, continuous
environmental interference [9], or long distances in remote places [10]; (c) fraudulent ma-
nipulation of data by attackers affecting their veracity [11]; (d) some technical specifications
from sensors manufacturers can vary the structure of their data and/or their communi-
cation interface may change [12]; or (e) huge volumes of real-time data that traditional
systems cannot handle [13] may overload the systems, among others. The presence of any
of these factors requires specific data operations to avoid an inadequate representation [14].

Another challenge to address is how the multiple types of sources, devices, and other
information sources are connected in order to obtain a global vision. Data come from
different installations, places, databases, business information systems and more, each with
their own format. Computing platforms and services need to be flexible to allow diverse
data exchange among internal and external tools.

With the aim to increase the value of the data collected, data scientists in the fields
of Operational Research, Artificial Intelligence, or Statistics are developing advanced
modeling techniques. These techniques may rely at some points in solving intensive
computational processes regarding CPU (central processing unit) and memory, such as
when solving optimization models or training neural networks. The management of these
resources requires platforms where services can scale with resource needs.

Moreover, the human interaction with these complex techniques and smart data
generated need to be presented with a user-friendly perspective, smoothing the learning
curve and providing targeted information. Decision-makers need to use these tools with a
natural flow to access different information levels depending on their roles and decisions.

To overcome the challenges exposed until now, in this work we propose a generic
software architecture together with guidelines on how to adapt the architecture to different
IoT scenarios. Therefore, the main contributions of this work is the design of a software
architecture with the following properties:

• Support the integration of several type of sensors, in order to automatically collect
real-time data and keep historical records, independently of their original format.

• Assist in the adoption of methodologies and mechanisms to detect and correct possible
errors in order to provide the most accurate information.

• The capability to obtain data from other data sources such as databases or web services
among others to complement the sensor data.

• Interoperability between internal and external systems.
• The provision of the needed resources to ensure the correct use of the different tools

and methodologies of the digital platform.
• The incorporation of tools that facilitate the interaction with different complex pro-

cesses and provide new insights to the users.
• Security mechanisms to provide the needed information and access to the different

processes for the different user roles.
• Easy of use, implementation, management, and deployment of the architecture into

different scenarios.

In order to validate this architecture design, this work presents a case study for the pig
sector. A platform using this software architecture has been implemented. Data collected
from feed silos equipped with a level sensor are used to predict the growth of a batch
of fattening pigs. Procedures for data cleaning are integrated in order to provide data
of quality to proceed with the analysis. To increase the data value, statistical models
are integrated in order to estimate the feed intake and the growth of a batch of pigs.
The average growth model is based on a sigmoid function from the Gompertz family which
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uses the accumulated feed intake. The distribution is complemented with the estimation
of the variance of the weight of the animals, by using a cubic polynomial function. This
information allows the farmer to infer whether the pigs are gaining weight as expected.
This application also incorporates an alert system to warn the farmer if some anomaly
is detected.

The rest of this paper is organized as follows. Section 2 performs a literature review of
similar works. Section 3 presents the design of the cloud architecture, the technologies that
have been chosen to implement it, and how it has been distributed and deployed.

Section 5 applies this cloud platform to a livestock scenario. Finally, Section 6 high-
lights the main conclusions of this work and future research lines.

2. Bibliography Review

In this section, we review the state-of-the-art of proposals found in the literature that
address the design of cloud platform architectures. We limit the scope to works in the
agricultural sector, which is related to our case study. We analyze if these works present
IoT platforms that accomplish a set of characteristics that in our opinion are essential for
IoT scenarios. These characteristics are the following:

1. Decision-making assistance: To analyze the type of tools included in each work,
such as visualization proposals, the use of predictive or prescriptive analysis or the
generation of alarms among others.

2. Scalability: To analyze if the platform is able to integrate new IoT devices and services
to meet potentially growing demand.

3. Interoperability: To explore whether the architecture is prepared to easily communi-
cate between different systems independently of their technology.

4. Portability: To check whether the architecture provides some mechanisms that facili-
tate the system to be run in different environments.

We first present a brief introduction of the works analyzed. It follows a comparison of
the characteristics included.

Ferrández-Pastor et al. [15] present a platform that can acquire, process, store, and
monitor data from growing cropping systems with the purpose to automate the mainte-
nance of croplands and control the conditions that determine the proper development of
a crop such as soil moisture, water pH level, or luminance. Trilles et al. [16] present the
design of an architecture for IoT that manages devices, acquires data from such devices, and
analyzes and generates events/alerts from these data devices. They validate the solution in
vineyards to monitor environmental variables, such as the temperature, air/soil humidity,
and to help the farmer predict the mildew disease.

Taneja et al. [17] present an IoT platform for animal behaviour analysis and health
monitoring. Their focus is on different parameters of dairy farms to monitor the health of
the cows and to detect possible anomalies.

The work presented by Cambra et al. [18] proposes an innovative IoT communication
system used as a low controller irrigation system. It collects real-time data such as temper-
ature, humidity, air, rain to monitor it, controls the actuators (components that perform
mechanical actions), and detects dangers in the field. Codeluppi et al. [19] propose a
low-cost, modular IoT platform to improve the management of generic farms. Authors
validate the platform in a real farm to collect environmental variables related to the growth
of grapes and greenhouse vegetables.

A cloud-based framework called WALLeSMART is presented in [20] which proposes
an architecture to address the challenges of acquisition, processing, and visualization of a
massive amount of data to assist decision-making. They focus on collecting parameters
related to the dairy farms and the weather. Stevens et al. [21] present MICROCEA,
an architecture developed to automate the growth of plants in urban indoor residential
areas. The purpose is to monitor sensor data, such as light, temperature, and humidity, and
let users program events to automate the process.
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Table 1 summarizes the comparison of these works and our proposal with the main
keywords of the architecture presented from a technological point of view and how they
use data from sensors to assist decision-making.

Table 1. Comparison between related studies.

Proposal Platform keywords Decision Making Scalability Portability Interoperability Sector

[15] Cloud Computing
Edge Computing Descriptive Analytics - Agriculture

[16]

Cloud Computing
Docker

Microservices
Time Series DB

Descriptive Analytic
Predictive Analytic Agriculture

[17]

Cloud Computing
Docker

Fog Computing
Microservices

No SQL databases

Descriptive Analytic
Predictive Analytic Livestock

[18] Cloud Computing
Relational Databases

Descriptive Analytic
Predictive Analytic

Prescriptive Analytic
- - - Agriculture

[19] Cloud Computing
Relational Databases Descriptive Analytics - - - Agriculture

[20]

Cloud Computing
Docker

No SQL and relational
databases

Descriptive Analytics - Livestock

[21] Cloud Computing
No SQL databases Descriptive Analysis - - Agriculture

Our proposal

Cloud Computing
Docker

Microservices
NoSQL databases

Descriptive Analytic
Predictive Analytic Livestock

All the analyzed works provide some tools to visualize data (either historical sensor
data, real-time sensor data, or external services data) and perform some management tasks.
Only three works present the required tools for IoT scenarios so that the data collected can
provide extra information: the work in [16], where they provide models to detect diseases
in the crop and generate alarms since the farmers can deal with the problem at early stages.
The system developed by the authors of [18] generates alarms and create actions to deal
with the adequate growth of the crops, and the solution implemented in [17] provides
analysis to predict heat detection or anomalies of the cows and generate alarms to warn
the farmer. Such solutions are mostly self-created platforms. However, the method in [15]
uses the Ubidots IoT platform in order to provide with generic and basic visualization and
analysis tools.

From a scalability point of view, all these works use the cloud computing technology
in order to obtain the needed resources to integrate new services and IoT devices. However,
the type of database used and how these applications are distributed must be also taken in
to consideration in order for the platform to cope with the new needs of the environment.
Some solutions use relational databases [18,19]. These kinds of databases are not change-
tolerant as they require that the structure of the data is defined before storing it, and a small
update in the schema can cause a great deal of modifications in the system that must be
carefully controlled. Using NoSQL [17,20] or Time series databases [16] is a better choice for
IoT scenarios due to the heterogeneous data of the sensors. For example, NoSQL databases
provide flexible schemes that allow storing unstructured data without having to predefine
a structure.

Another important feature is how the different applications of the architecture are
distributed to ensure that it is able to support potentially growing demands. Different
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approaches are found: the authors of [19] propose a platform that is able to integrate new
IoT devices and application modules according to the demands of farmers. The works
in [15,17] take some responsibilities from the cloud such as computing and analytics in order
to be performed at the edge of the network and provide better time responses. In addition,
in [16,17] the authors present a microservice-based approach in order to distribute the IoT
platform in a set of services that are responsible for performing specific functionalities and
are independent from each other.

With regards to the interoperability, most of the studies take into consideration pro-
viding HTTP (Hyper Text Transfer Protocol) APIs (Application Programming Interfaces) to
the services in order to be able to interact with the consumer applications. An HTTP API is
an interface that allows the interaction of two applications by using the HTTP protocol. In
addition, the most used message protocol in these works that allows a connection of the
IoT devices and the cloud platform is the MQTT (Message Queueing Telemetry Transport).
However, in order to integrate heterogeneous IoT devices, they might require other kinds
of network protocols. In [16], the authors use RabbitMQ in order to also be able to operate
with AMQP (Advanced Message Queuing Protocol) and STOMP (Streaming Text Oriented
Messaging Protocol) clients.

Finally, there is also the need to provide mechanisms that facilitate the use of the
architecture into different environments and scenarios. The works in [16,17,20] are the
only studies that provide these facilities. In fact, they use Docker in order to package
the architecture and its dependencies in order to be deployed in any environment with
the advantage to select which component might need in order to adapt it to a specific
IoT scenario.

After analyzing the reviewed works, we find that there is a gap in solutions that
provide generic scalable, portable, and interoperable architectures that let integrate models
in order to take advantage from the data collected by the sensors. It is of special importance
to provide evidence in practical applications of the added value that the integration of
several sources can provide in the agricultural sector, in general, and the livestock sector,
in particular.

In our work, the purpose is to provide guidelines and a proof of concept to design ar-
chitectures that can be reused in different IoT scenarios with the adoption of a Microservice
approach, Docker, and the integration of models with a focus in Agricultural contexts.

3. Architecture

Basically, in an IoT scenario there are sensors that can share their data through the
Internet and interoperate with cloud platforms, see Figure 1.

These sensors can give access to their data through APIs or Edge computing nodes.
Usually, in most of the IoT scenarios, sensors provide APIs that allow obtaining their
last reads (they are updated periodically) in semi-real-time by using the HTTP protocol.
However, there are other scenarios where it is required that the response time is the lowest
possible. In order to provide quicker responses, there is the need that the processing and
storage capabilities of the cloud are moved near to these IoT devices, but also to use more
lightweight protocols than HTTP such as MQTT for data transmission to provide real-time
interaction. Edge computing nodes offer these capabilities. Nevertheless, the resources of
these computing nodes are limited and in order to store historical data or perform complex
tasks they must also transmit the preprocessed sensor data to the cloud. The cloud platform
is the key to manage the different requirements of IoT scenarios such as huge volumes of
heterogeneous data, security, interoperability, and scalability by providing the on-demand
computing resources such as networks, databases, servers, storage, and others through the
Internet thanks to its cloud computing infrastructure.
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Figure 1. General Internet of Things (IoT) scenario.

This generic cloud architecture (Figure 2) has been designed by taking into account the
requirements presented in Section 1 but with the condition that the cloud platform must be
connected with third-party APIs or Edge nodes to give response to these input data.

This cloud architecture comprises three layers (the presentation layer, the logic layer,
and the data layer) and a gateway. The gateway opens the door to the cloud platform.
Thus, it sits between the users and a collection of user services. The primary purpose of
the presentation layer is to provide a user interface to collect the user data and display
the relevant information to the user. The logic layer represents the processes to obtain the
sensor data, the treatment of this heterogeneous data such as data cleaning methodologies,
the generation of alarms, the execution of different algorithms to obtain valuable data for
the users, and the interoperability mechanisms to interact with external systems. Finally,
the data layer is in charge of storing the data that come from different sources.

These layers are implemented following a microservices architecture approach. These
collections of services provide the full functionality of the cloud platform. As observed
above, each service uses its technology stack and interoperates between them by using
lightweight protocols and APIs. Observe that if a service needs to be updated, then only
this service becomes non-operational without affecting the others. Another highlighting
feature is that these decoupling limits were building the overall platform by using a unique
technology. Instead, it can use the adequate technology in order to build a specific func-
tionality.

3.1. Gateway

The gateway sits between the users and a collection of user services. It decouples
the services and allows routing each user request to the right place, keeping track of
everything, and allowing role-based access to the platform services. Finally, it adds a
specific component that controls all traffic, and external interaction must pass through this
component. This way reduces the complexity to add new services and components and
reuse these functionalities.
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Figure 2. Cloud architecture design.

The main functionality of the gateway is providing authentication and authorization
mechanisms. This functionality is provided by the combination of the Shinyproxy [22] and
LDAP services. Shinyproxy is an open-source software that provides the authentication
and authorization mechanisms to deploy Shiny apps in a production context.

The Shinyproxy service offers a login page that sends the credentials to the LDAP
directory service to check if an user exists and the roles that the user has assigned to provide
the web application that it might require. This way, it provides an isolated workspace for
every user session by launching a Docker container with the web application accessed by
the user.

3.2. Presentation Layer

The presentation layer is the visible part of the cloud architecture. It represents the
tool that users use to interact with the complex functionalities and models they might
require. It is a user-friendly web application that can be accessed from any user device
connected to the Internet. It hides the complexity of the functionalities and operations
performed to obtain the desired information.

The main functionalities of this layer are gathering user input using forms and wizards,
and displaying output data using dashboards and data visualization tools. This work
proposes R Shiny to present the data collected by the sensors and the analysis provided by
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the cloud in a user-friendly manner. The data are obtained by the REST API offered by the
Node js web service.

R Shiny is a package for the R language that facilitates the building of interactive web
apps by providing the required components to integrate the different analysis developed in
R in the web without knowing Javascript, HTML (HyperText Markup Language), and CSS
(Cascading Style Sheets). It also provides the mechanisms to interoperate with external
systems such as APIs to obtain and transmit the required information. Therefore, it permits
agile deployment and maintenance for technical and non-technical users.

3.3. Logic Layer

This layer aims to process the data from the presentation layer, the sensors, and
external services through defined business operations and query the data layer. It acts
as the bridge that allows communication between the presentation layer, the IoT devices,
the external services, and the data layer. APIs allow interoperating between the different
components of the architecture independently of the technology stack that has been used.
It also lets the integration of new components to provide more data, such as more sensors,
external services, and others. Most of the time, these APIs use the REST (Representational
State Transfer) principles to operate respecting the HTTP protocol and transfer the required
resources by using data formats such as JSON (JavaScript Object Notation) and XML
(Extensible Markup Language). Finally, different scripts have been developed to perform
data collection and data analysis to extract the value of this data and generate alarms. Thus,
the main functionalities of this layer are as follows:

• Data Collection: Collect data periodically and store them into the MongoDB database.
• Data Cleaning: Detect and correct data errors, outliers, or erroneous input data.
• Data processing and Analysis: Execute predictive and prescriptive models. Trans-

forming raw data into valuable data.
• Alert Notification: Inform the users via email about possible problems.

Most of these actions and functions must be executed periodically, such as data collec-
tion, data cleaning, and data processing. Thus, CRON jobs are implemented to automate
these executions periodically and make the platform act autonomous. The technologies
that have been applied to implement these functionalities are:

• Node js [23]. Node js is an application runtime environment that allows writing
JavaScript for web applications. It comes with many adequate libraries for back-end
development, such as file system management, HTTP streams, or database man-
agement. It has been chosen to develop the web service and implement an alert
notification system since it facilitates dealing with multiple client requests and pro-
vides mechanisms that help scale the applications. The authors propose using Node js
to implement the APIs because they have previous know-how and successful projects
implemented on it. However, it is possible to choose similar technologies such as
Falcon, Asp.Net, or Spring to develop these APIs. The web service is in charge of
retrieving the data from the database and receiving the client’s data to process the
data and store it. These data are transmitted and received using the JSON format.
The communication between the client and the web service is made via the REST
API with the HTTP protocol that defines the different CRUD (Create, Read, Update,
Delete) operations that different controllers define. These controllers can operate with
the NoSQL database by using a library called mongoose that permits mapping the
models defined by Schemas into collections of the database. The alert notification
system uses the nodemailer library to send emails to the user when the system detects
an alert.

• Python. In order to perform the data collection process, Python has been chosen. It
provides the mechanisms to perform HTTP calls, MQTT protocol, and query NoSQL
databases. A Python script has been implemented to collect the sensor data provided
by an External API and uses a package called pymongo to store the data into the
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NoSQL database. In order to integrate new sensors, it would be necessary to develop
the corresponding script using the protocol that would be required for that sensor.
Note that Python is one of the most powerful scripting languages, but other languages
can be used to implement these services. The authors suggest using Python because it
has a large community and several data mining, automation, and big data platforms
rely on it. Moreover, it is versatile, flexible, easy to manage and maintain, and it has a
vast range of libraries available.

• R. In order to perform the data cleaning and analysis, R scripts have been developed.
These scripts interact with the Web service to store the cleaned data and store the
outputs of the analysis methods. It is also possible to implement these services
with other programming technologies. Nevertheless, the authors suggest using R to
simplify the integration with the presentation layer and to allow operations research
experts to develop models and analytics, as R is a language broadly used in this
research field.

The methodology presented relies on sensors with data transmission capabilities such
as HTTP or MQTT. Therefore, the only requirement to add a new sensor to the platform is
defining the rules to transmit the data using the APIs. Nevertheless, this is not a limitation,
and if the sensors are old-fashioned and do not support these protocols or they do not have
direct access to the net, a simple solution is to add a file submission microservice to the
platform. Then, the manager of the sensor can manually submit the readings periodically
to the platform.

3.4. Data Layer

The data layer is in charge of storing data from the sensors, user profiles, user roles,
and data coming from external services, among others. This layer needs to be write-
optimized to handle all the data arriving from the devices. Another important feature is
that data are alive and can change in the future, so the database technology must permit
the addition of new data types or change the current structure. Therefore, NoSQL is most
proper for this purpose than relational databases.

MongoDB [24] is an open-source NoSQL database oriented to documents and is write-
optimized. It allows storing unstructured data as a document in a representation called
BSON (Binary JSON) in a collection of documents. It provides a dynamic schema that lets
us build flexible models by updating the schema without affecting the other documents.
These features allow adapting quickly to changes that can be vital when the system starts to
store huge volumes of data. This database is also designed to support horizontal scalability
achieved by adding new machines and is managed by the cloud computing technology
and provides high-performance to perform simple operations. Finally, it also saves costs
and complexity in comparison to relational databases. These features make this database
ideal for IoT scenarios.

On the other hand, OpenLDAP [25] is an open-source implementation of LDAP that
allows access to directory services. These directories are specialized databases optimized
for reading, browsing, searching, and simple update operations. These features make these
databases ideal for providing centralized user administration to store sensitive information
and other users’ account details. Furthermore, to make more accessible the management
of this LDAP directory, an administration user interface is provided. LAM provides a
user-friendly interface to manage an LDAP directory without the need for the administrator
to manage LDAP entries.

4. Deployment

This section explains how the software architecture has been deployed by leveraging
the advantages of Virtual Machines and container virtualization using Docker.

Virtual Machines are digital representations of physical computers with their Opera-
tive System and assigned resources (Memory, CPU, storage, and networks) created from a
software component called a hypervisor. This virtualization allows the cloud infrastructure
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to be split up by independent Virtual Machines that can act as different servers by sharing
the resources managed by the hypervisor. Moreover, Docker can be installed in these
Virtual Machines [26]. Docker is an open platform that allows splitting up the applications
from the infrastructure into Docker containers and dealing with process isolation. Docker
containers allow separating service and dependencies from the underlying operating
system and other containers to avoid dependency conflicts. All these containerized appli-
cations share a unique operating system, so it permits saving resources and it is also faster
to be started and stopped than Virtual Machines that need each one an Operative System.

The cloud platform chosen to develop this work is OpenNebula. This is an enterprise-
ready platform that helps build an Elastic Private Cloud. It avoids risks and vendor lock-in
by choosing a powerful but easy-to-use, open-source solution. OpenNebula is based on
virtual machines but also allows containerized applications from Docker to be run.

OpenNebula offers an open and transparent means to build private clouds. The Stormy
server [27] is a legacy private cloud platform supported by public funding, developed and
maintained by the authors’ research group aimed at assisting researchers and deployed
with OpenNebula and KVM. There are several manuscripts, such as that in [28] or in [29],
that use the Stormy service as a support platform to achieve their goals. Nevertheless,
this architecture is not limited to this cloud provider as it has been given the needed
mechanisms to be reused in different environments such as Amazon Web Services (AWS)
or Google Cloud.

Concretely, we have instantiated different virtual machines using a Centos7 OS image
to host the different microservices. Each virtual machine is protected with a firewall. All the
microservices are deployed and managed using container-based virtualization (Docker).
This containerization allows this architecture to be scaled and reused so it can replace
the services used in this architecture for the specific services and its suitable technologies
to implement the specific IoT scenario and also the environment where these services
are deployed but also duplicate the services that require more availability. Therefore, it
facilitates that this cloud architecture can be reused in any environment and is prepared to
take advantage of autoscaling policies provided by Kubernetes or other cloud orchestrators.

Figure 3 depicts a general-purpose deployment into a cloud provider (OpenNebula,
Amazon Web Services or Google Cloud). First, it is configured the virtual resources into the
cloud provider (CPU, Memory and Networks). Then, the operating system (Centos7 in our
deployment) is installed to each virtual machine deployed together with all the required
tools (Docker and Git). Next, an orchestrator is installed and configured. Our deployment
uses docker-compose, but other alternatives that can be used are Kubernetes, docker-
swarm, among others. In parallel, the development environment can be configured in a
local machine to implement and test the services and the applications. Then, to integrate
the development and production environments, GitHub is used (push and pull actions).
Finally, the docker build commands are employed to create the images, and to run and
execute all the services the docker-compose up commands are used.
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5. Case Study

The rate of adoption of sensor technologies varies among sectors, and it is related
to the trade-off between the costs and potential benefits. In particular, the agricultural
sector uses different sensors to measure and track the evolution of several environmental
characteristics such as soil humidity, air temperature or CO2 concentrations, among others.
This type of information is relevant to guide the decisions on the best actuation at each
moment. The data analysis that stems from this information usually falls in the descriptive
area. With the IoT platform presented, we aim to facilitate the development, usage and
adoption of applications involving advanced modeling techniques for the agricultural
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sector. In this way, new developments from the Operations Research or the Artificial Intel-
ligence communities such as prescriptive optimization models [30], predictive statistical
models [31] or classification models [32], among others may be easily transferred to the
final users.

The current case study applies the described cloud architecture to build a smart
application that estimates the growth of pigs based on the amount of feed discharged from
the silo, where a sensor is installed. Pork is one of the most consumed meats in the world
together with poultry [33]. It is estimated that between 60% and 70% of the total production
cost per kilogram of pork corresponds to feed consumption [34], being the information
related to the feed a key characteristic to monitor and control. This application has been
developed within a demonstration project with the participation of three farmers and a
total of eight silos monitored and sixteen batches analyzed (composed of 500–900 animals
per batch). The capacity of the silos monitored ranged from 11,000 kg to 16,000 kg.

The interest in estimating (and better understanding) the growth of a batch of pigs is
one of the key breakthroughs that the pig sector is working on. Some approaches go in the
line of precision feeding where individual data on feed intake and weight is monitored
each time an animal visits the feeding station [35]. While this system offers accurate and
comprehensive information, it is still an expensive option. At the other end, traditional pig
management software offers estimates on the expected growth based on estimates from
previous batches. An estimation of the feed consumed is built from these parameters and
then compared with the loads performed during the growth. However, the interest of
monitoring the feed dynamics is increasing and other solutions are being implemented.
The application we have developed leverages the information provided by a low-cost
sensor installed in a silo to infer the feed consumption and from this information compute
the expected growth.

The primary use of a sensor installed in a silo is to provide information on the amount
of feed available to guide the farmer on the replenishment order. However, this information
can provide extra value if it is combined with other information. For example, feed
manufacturers may better plan their operations if they know the inventory levels of their
clients [36]. From a farmer’s perspective, the enrichment of statistical growth models
with sensor data that estimate the feed intake may provide valuable estimates of the
expected growth evolution of a batch of pigs. Monitoring the animals’ growth is relevant to
support the optimal moment for delivering the pigs to the abattoir and to detect abnormal
deviations between the theoretical expected growth curve and the estimated growth based
on sensor data. Such deviations may reveal the occurrence of some (sanitary, feed quality,
etc.) problem if the estimated curve is slower or reflect the result of a good practice if the
growth is faster.

In the following sections, the application that estimates the weight evolution of the
pigs in a fattening farm based on the estimate of the feed consumption is presented. We
first explain the process to integrate several sources of data with the predictive models,
the characteristics of the farm, the sensor technology used, the growth models, and the user-
friendly interface that allows to easily obtain the information. The resulting application
can be accessed from https://gcd007.udl.cat/login (version 31 August 2021) and the
functionalities can be explored with a demonstration test set for a user (username: demo)
with password (demo@alba25.udl.cat). Note that some functionalities are disabled for this
demonstration user.

5.1. Process Description

In a three-site system, pig production is divided in three stages: (a) maternity, where
the piglets are born and stay there for 4–5 weeks; (b) rearing, where young pigs are grown
up to the age of 8–10 weeks; and (c) fattening, where the pigs are grown for 17–20 weeks
until they reach a target marketing weight and then are sent to the abattoir. In this
application, our target is to estimate the growth at the fattening stage. Figure 4 shows the
main steps of the data flow process, from the data acquisition to the final growth estimate.

https://gcd007.udl.cat/login
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The data sources are the sensor measures and some technical parameters of the batch of
pigs which are combined to provide an estimate of the average feed consumption per
animal. The literature provides functions that relate the average consumption of pigs
with the expected growth. The expected average weight is finally modeled as a weight
distribution, so the farmer has a week by week estimation of the number of animals that
are expected to be in each weight range.

SILO CONTENTS

BATCH
INFORMATION

FEED
CONSUMPTION

GROWTH
ESTIMATION

Figure 4. General data flow process.

Due to sanitary reasons, the animals at the fattening stage are grown in batches where
no new animals can enter the farm before the last animal from the previous batch has left
and the farm is sanitized. However, the entrance and removal of animals can happen on
different days. The application shows information for a particular batch, which is defined
with the earliest entrance of animals. For each entrance, the date, number of piglets, and
the average weight needs to be specified by the farmer in an input form. This is the basic
information the farmer obtains for each truck of piglets received.

At the entrance, piglets may not have a homogeneous weight nor age. Furthermore,
the growth rate of each animal will be different and therefore some animals will reach the
target weight earlier than others. When a sufficient number of animals (which is related to
the truck capacity) reach the marketing weight, those animals are sent to the abattoir. It
is customary that the marketing window comprises four or five weeks. When a group of
animals is sent to the abattoir, the farmer is expected to inform of the number of animals
removed and the weight reported by the abattoir. Having the information on the number
of animals present in the farm is very relevant so the application can compute the average
individual feed intake more accurately.

5.1.1. Feed Consumption Estimation

The driver information for estimating the amount (in kg) of feed consumption of the
batch is provided by the sensor. By monitoring the silo level, we can infer the amount of
feed that the batch is consuming. We assume that the amount of feed discharged from the
silo is consumed by the animals disregarding any lost it may happen due to rejection or
waste. There exists several solutions in the market for remotely monitoring a silo contents.
A direct approach to know the silo’s content weight is to install load cells in the silo support
structure [37]. This is the most precise approach but for already installed silos, it demands a
costly installation. An indirect approach is to use level or surface sensors, which are based
on radar, laser or other type of guided wave technology which provides information on the
volume of the silo that is occupied. Therefore, the weight of the feed in a silo needs to be
approximated by combining the measure of the sensor with the feed density. These type of
sensors are usually placed at the top of the silo and require minimal installation. They are
usually powered by a solar cell which removes the need to be connected to a power grid.

In this work, the sensor used is a wireless one-point level sensor developed by Mon-
itoring Control Systems [38] based on laser technology. In order to compute the level,
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it takes into account the height of the silo and it uses a time-of-flight computation to a
specific point, usually the center of the silo. Then, it measures the time that the laser beam
(Class II laser, <1 mW, 635 nm) uses to go to this specific point and to come back (see
Figure 5). This type of sensor is appropriate for small and medium bins with up to a range
of 40 m, such as those used to store feed for animals; otherwise, it may suffer from lack
of accuracy. The reading is done periodically; in this work, an automated CRON job is
executed every two hours. This reading is sent through a radio network of wide coverage
and low electricity consumption (Sigfox network [39]) to the company platform called
Digitplan. We access this information through a REST API in order obtain the silo data via
HTTP protocol.
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The information provided by the sensor is therefore a measure of volume which needs
to be transformed to weight (see Figure 6). For doing so, we need to know the density of the
feed which is different for each truckload that refills the silo. This characteristic demands
to control for the points in which the reading increases due to the feed refilling operation.
To reduce inaccuracies, it is expected that the farmer introduces the real weight of the
added quantity. The system assumes a default density, and by comparing the estimation of
the amount introduced according to the default value and the real value provided, a more
precise estimation of the density can be done. The weight of the contents of the silo is
estimated by multiplying the occupied volume of the silo times the density of the feed.

Sensor Reading 
(volume)

Estimated weight 
of the silo contentsFeed refill?

Get truckload weight

Yes
Get feed density

No

Update feed density

Figure 6. Estimation of the weight of the feed from the readings of the sensor.

To approximate the amount of feed supplied to the batch would suffice to subtract two
consecutive readings expressed as weight. However, the process of discharging the feed
from the silo leaves the surface uneven making the readings fluctuate among consecutive
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periods (instead of being monotonically decreasing within any two refilling operations).
Due to this reason, data cleaning is done by means of a centered moving average. Punctual
missing data are also interpolated using this procedure. Figure 7 illustrates some of the data
cleaning procedures that the application automatically performs. The dots show the days
and the amount in which the silo was refilled. By default, the application assumes a feed
density, but the density is re-estimated with the information about the real weight of the
refilling load. Then, the series of the weight with the refilling-based density is computed
and is cleaned in order to remove sensor noise or missing values.

Oscillations due to refill operations
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Figure 7. Time series of the silo contents estimated from the sensor readings.

There exists other sensors on the market that could be used instead of the sensor
presented [40,41]. Each sensor can use different technologies (radar, 3D level sensor, etc.)
to provide information on the filled volume and each manufacturer provide access to the
collected data in a specific way. The platform allows to include different scripts to import
data such that the different sensors can easily be included. Other solutions directly weight
the feed unloaded [42] which eliminates the need to perform the transformation from
volume to weight, and only the data cleaning step should be performed.

Once the point reading is cleaned, the accumulated weekly consumption is estimated
(see Figure 8). This estimated consumption based on the sensor readings is compared with
a theoretical accumulated feed consumption which is computed according to technical
parameters that reflects usual patterns of the farm and the breed of animals that hosts. These
parameters are provided by the user and are the average daily gain (ADG), the expected
feed conversion rate (FCR), and the age (in weeks). Among the alternatives to estimate
the expected accumulated feed intake (AFI) for a batch of N animals at week t [43],
the exponential function is used:

AFIt = N
A

1 + exp−(b · aget)
(1)

where A is the expected amount of feed taken at adult age and b is a fitted constant.
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Figure 8. Cumulative feed intake of the animals in the batch.

5.1.2. Growth Estimation

Several empirical models exist to estimate the growth curve for the average population
by estimating the average weight along the time. However, the average weight of a group
of pigs is comprised of individuals with differing performance levels and individual growth
curves. Empirically is observed that as live weight increases, weight variation between the
pigs also increases. Therefore, from a farmer’s point of view, the distribution of the weight
conveys better information. In this work, a growth curve from the Gompertz family [44]
has been used to estimate the average weight (AW) of the population at a particular week t:

AWt = A exp− exp(b−k·AFIt) (2)

where AWt is the average body weight (kg) at week t, A is the asymptotic adult body
weight (kg), b is an empirically fitted parameter that makes the starting point flexible, k is
an empirically fitted parameter related to the rate of growth, and AFIt is the average accu-
mulated feed intake (kg) up to week t. Given that a batch may be composed by subgroups
of animals, one for each entry, Equation (2) is applied to each subgroup. Figure 9 shows
the expected weight for each entry of the batch at a specific point in time, computed with
the average feed intake according to the theoretical function and also with the estimated
data from the sensor. This information has commercial significance, as deviations between
those curves alert the farmer to review the animals in order to find the cause of the de-
viance. However, before diving into the causes, data accuracy has to be verified. When
a significant deviation between the theoretical and sensor-based estimations is detected,
an alert message is sent to the farmer to verify that the data corresponding to the weight of
the silo’s refilling information have been provided.

The distribution of the weight at a particular point in time is represented by a Normal
distribution with the mean according to Equation (2) and variance computed from a cubic
polynomial function. To provide a better picture of the weight of the animals in the batch, all
the subgroups distributions are merged to compose the final weight distribution. Figure 10
shows the weight distribution at a particular week with the expected number of animals
within a 5 kg range. This information is especially relevant to plan the delivery of animals
to the abattoir based on a target weight.



Sensors 2021, 21, 5949 17 of 21

Figure 9. Animal average weight.

Figure 10. Animal weight distribution in a specific week.

5.1.3. Data Input Process

The reading and data processing of the sensor data are automated within the appli-
cation. Other information related to the batch is required to be provided by the farmer.
In its current state of development, the user must perform a manual entry. This is gen-
eral information to set up a batch, inventory information about the number of animals
present in the farm either entrances or departures, and the information on the refilling
truck loads. The reader is invited to explore this information with the demo user provided
in the application.

The application also includes a descriptive (and simplified) view to monitor the
available feed in the silo. It shows an already processed range of historical data corrected
by the density estimates and it is compared with the cleaned series.

5.2. Deployment

Figure 11 shows the deployment of the architecture explained in Section 4 applied to
the case study. This proof of concept is deployed using two virtual machines (VM1 and
VM2) under OpenNebula cloud provider. VM1 contains the gateway and is the open-door
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to the internet. VM2 is only accessible from VM1. As we commented, we use Centos7
as operating system in both virtual machines. This figure also highlights all the services
that are started using Docker compose orchestrator (green and yellow boxes). The yellow
boxes represent the services related to the data layer, and the green ones represent the APIs,
scripts, and other services discussed. Note that the data collection service is gathering data
from the sensor every to 2 h and stores it into the database using HTTP communication
protocol. Next, the data cleaning service processes incoming data and checks for errors and
non-consistent data. In parallel, the alarm service checks information from the database to
inform the user, if needed. Finally, the RShinny Application uses farm service (API) and
the growth model to interact using HTTP and HTTPS communication protocols to display
information to the final user (client). This communication is controlled (authenticated and
authorized) through the gateway.
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6. Conclusions and Future Work

The paper concludes by arguing the current need for designing architectures that
support evolving and emerging sensors and devices to facilitate digital transformation in
agricultural contexts. The findings of this study can be understood as general guidelines
of features to be taken into account when designing Information Technology solutions to
assist agriculture. These guidelines are more consistent with current research showing that
most features and requirements are standard in other industrial sectors.

Nevertheless, in this study, we shed light on the challenges and issues of applying
these methodologies and Fog, Edge, and Cloud paradigms to agricultural scenarios.

One of these requirements is to deal with the heterogeneous data of sensors and
external services to connect the physical and virtual worlds. Broadly translated, the state-
of-the-art findings indicate that this requirement can be solved by using Fog and Edge
paradigms or developing scripts in the cloud side (as we propose) that can be worth
operating with these devices by using the corresponding protocol such as HTTP and MQTT
and storing the data into NoSQL databases such as MongoDB.

Furthermore, another important characteristic that must provide the cloud platform is
scalability. We have shown how a modular design using a microservice approach helps
in adjusting the computational resources on demand. Therefore, we show how container
technologies such as Docker can integrate more sensors, analysis methods, and services,
and provide horizontal scaling.
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Together, the present study confirms that Docker technology also facilitates the porta-
bility and interoperability of the platform to other IoT scenarios and Cloud providers by
only installing this technology into the cloud. Moreover, there is also the need to provide
security mechanisms such as roles and authentication to provide access to the needed tools
and prevent undesired access to the platform.

The case study shows a practical implementation of the ideas presented in this work
where all the architecture and the application is developed with open-source initiatives.
The application shows a way to enhance the value of the data gathered by a sensor level
in a silo from where a batch of pigs are fattened. While special care has been taken in the
design of a general and flexible architecture so that it can receive data from other sensor
manufacturers, much attention has also been paid to the integration of advanced modeling
tools, such as the growth model. Note that the code developed at the modeling stage
with the R statistical software was easily transferred to the platform development team,
allowing a fluid flow of work. Although the application is focused to the livestock sector,
the conceptual architecture presented is general and applicable to other agro-industrial
processes. We leave as a future work, performing a proof of concept of the methodologies
in other settings.

Finally, regarding future work, we are interested in integrating new kinds of sensors
to analyze critical tasks for the case study that can be assigned to Edge Nodes and provide
new analysis to provide valuable output. Functionality that would be interesting to
integrate would be registering IoT devices to the platform by using, for example, QR
(Quick Response) codes and the configuration/management of these devices to control
proprietary devices. From a user perspective, having a push notification complement would
enhance the reception of alarms. This and other characteristics may be included in future
developments. Another exciting characteristic for IoT scenarios is product traceability that
can be implemented by leveraging Blockchain technologies. Furthermore, to improve the
analysis performance, a processing distributed framework such as Apache Spark could be
integrated to provide support for R and Python programming to provide complex analysis
with huge amounts of data.
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