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Abstract

Motivation: Long-read sequencing methods have considerable advantages for characterizing RNA isoforms. Oxford
Nanopore sequencing records changes in electrical current when nucleic acid traverses through a pore. However,
basecalling of this raw signal (known as a squiggle) is error prone, making it challenging to accurately identify splice
junctions. Existing strategies include utilizing matched short-read data and/or annotated splice junctions to correct
nanopore reads but add expense or limit junctions to known (incomplete) annotations. Therefore, a method that
could accurately identify splice junctions solely from nanopore data would have numerous advantages.

Results: We developed ‘NanoSplicer’ to identify splice junctions using raw nanopore signal (squiggles). For each
splice junction, the observed squiggle is compared to candidate squiggles representing potential junctions to iden-
tify the correct candidate. Measuring squiggle similarity enables us to compute the probability of each candidate
junction and find the most likely one. We tested our method using (i) synthetic mRNAs with known splice junctions
and (ii) biological mRNAs from a lung-cancer cell-line. The results from both datasets demonstrate NanoSplicer
improves splice junction identification, especially when the basecalling error rate near the splice junction is
elevated.

Availability and implementation: NanoSplicer is available at https://github.com/shimlab/NanoSplicer and archived
at https://doi.org/10.5281/zenodo.6403849. Data is available from ENA: ERS7273757 and ERS7273453.

Contact: heejung.shim@unimelb.edu.au or michael.clark@unimelb.edu.au

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Splicing is an essential mechanism in eukaryotic cells that removes
introns from pre-mRNAs to create mRNA. Alternative splicing varies
which sequences are exonic, enabling a single gene to produce mul-
tiple mRNA products (isoforms). Almost 95% of human genes (Pan
et al., 2008) undergo alternative splicing, creating a diverse set of tran-
script isoforms whose expression can control cell functions in a par-
ticular condition or developmental stage. Short-read sequencing
technologies (e.g. Illumina) successfully identify and quantify local
splicing events, such as exon skipping. However, their read lengths
(�150 nt) are much shorter than transcript lengths, making it difficult
to combine each splicing event and identify the full-length isoform(s)
present (LeGault and Dewey, 2013; Steijger et al., 2013). As such our
understanding of the isoform repertoire expressed in different organ-
isms and those that control cell functions remains incomplete.

Nanopore sequencing by Oxford Nanopore Technologies
(ONT) is a long-read sequencing method that can connect splicing

events by sequencing full-length transcripts (Bolisetty et al., 2015;
De Paoli-Iseppi et al., 2021). Nanopore sequencing works by record-
ing changes in electrical current when a DNA or RNA molecule
traverses through a pore. This raw signal (known as a squiggle) is
then basecalled by computational methods, yielding reads that can
cover the entire transcript and identify the expressed isoform.
However, nanopore reads have a considerably higher basecalling
error rate (�1–10%) and a generally lower throughput than short
reads, making their analysis challenging. In particular, the former
makes read mapping near splice sites difficult (Tang et al., 2020;
Volden et al., 2018; Weirather et al., 2017), making it challenging
to distinguish real splice junctions from mapping errors (Fig. 1A).
Incorrect detection of splice junctions results in the identification of
non-existent isoforms and omission of real isoforms, which inhibits
the study of encoded proteins and isoform functions. In this article,
we develop a method to accurately identify splice junctions using
nanopore sequencing, the performance of which is independent of
sequencing throughput.
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Several authors have developed methods that correct splice junc-
tions from mapped long reads. Methods such as FLAIR (Tang et al.,
2020) and TranscriptClean (Wyman and Mortazavi, 2019) require a
set of splice junctions, either from annotations or from matched
short reads, to be provided to guide their corrections. However, suit-
able annotations may not be available, for example, in a non-model
organism or in a disease causing altered mRNA processing, while
matched short-read sequencing increases costs. Furthermore, in
some circumstances, short-reads covering whole transcripts cannot
be generated. For example, nanopore sequencing is now being per-
formed on single cells using the popular 10� Genomics platform,
however, matched 10� short reads only cover transcript 30 ends
(Lebrigand et al., 2020). Other methods such as StringTie2 (Kovaka
et al., 2019), TAMA (Kuo et al., 2020) and 2passtools (Parker et al.,
2021) use information from other reads (e.g. nearby splice junctions
supported by high read counts) to guide splice junction correction.
A limitation with this approach is that it can lead to the replacement
of rarer splice junctions with those from more highly expressed iso-
forms, causing less abundant junctions to go undetected. Moreover,

methods that depend on other reads are not well suited to relatively
low throughput nanopore datasets, where many isoforms, particu-
larly from lowly expressed genes, have few reads.

The poor performance of nanopore read mapping near splice
sites is largely due to basecalling errors, which arise when basecall-
ing methods misinterpret the raw signal squiggles. Motivated by
this, here we propose a method, NanoSplicer, which exploits the in-
formation in the squiggles to improve splice junction identification.
The key idea is to identify, for each splice junction, which of the
squiggles predicted from potential splice junction sequences best
matches the observed junction squiggle. This ‘squiggle matching’
idea has been successfully applied to map raw signals to a reference
genome (Loose et al., 2016; Kovaka et al., 2021; Zhang et al.,
2021), and we adapt this idea to develop a method for splice junc-
tion identification. By using the squiggle corresponding to each
read, NanoSplicer does not require annotations or matched short
reads and its performance is not affected by other reads and is
independent of read depth, enabling it to identify rare splice junc-
tions. We demonstrate the improved performance of NanoSplicer

Fig. 1. NanoSplicer workflow. (A) Identify junctions within reads (JWRs). The left panel shows an example of inconsistently mapped splice junctions in nanopore reads,

which may require correction. A splice junction refers to a pair of 50 and 30 splice sites, which are the boundaries between introns and exons (shown in green in the

figure). Right panel: NanoSplicer locates JWRs in mapped nanopore reads. The two dotted boxes connected by a black curve show a JWR, which is a subsequence of

the read that is split and mapped to different exons. (B1) Identification of junction squiggles. A basecalled nanopore read and its matched raw squiggle are aligned and

the portion of the squiggle corresponding to the JWR (dotted boxes) is obtained. (B2) Prediction of candidate squiggles. NanoSplicer identifies all possible canonical

(‘GT-AG’) splice junctions within 10 bases of the mapped splice sites. Possible 50 and 30 splice site nucleotides shown in white. Two candidate splice junctions (1 and 2)

are shown (red and orange lines). Candidate junction motifs surrounding the splice junctions are then obtained using the reference genome and candidate squiggles

for these motifs predicted with Tombo. Candidate squiggles include predicted mean current (solid line) 61 standard deviation (dotted line). (C) Alignment of candidate

and junction squiggles. Top: The junction squiggle (blue) is aligned to each candidate squiggle (red/orange) using dynamic time warping. Dotted lines show which loca-

tions of the two squiggles are aligned. Bottom: Each current measurement in the junction squiggle (blue) is shown vertically aligned with its corresponding mean-stand-

ard deviation in the candidate squiggle. (D) The NanoSplicer model provides assignment probabilities for each candidate by quantifying the squiggle similarity of each

alignment (A color version of this figure appears in the online version of this article.)
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compared to competing methods using both synthetic and real data.
Our method is implemented in the software package NanoSplicer,
available at https://github.com/shimlab/NanoSplicer.

2 Materials and methods

We developed NanoSplicer to accurately identify splice junctions
using nanopore sequencing data. It takes as input mapped nanopore
reads, their squiggles and a reference genome sequence. For each
read, it outputs lists of candidate splice junctions and the assignment
probabilities quantifying the support for each of the candidates.
Figure 1 shows an overview of the NanoSplicer workflow. It consists
of the following steps:

A. Locate subsequences in the mapped reads which split and

map to different exons, supporting potential splice junctions.

We refer to these subsequences as junction within reads

(JWRs). See Supplementary Section S1.1 for further details

regarding JWR identification.

For each JWR, we improve splice junction identification as

follows:

B1. Obtain the section of the squiggle corresponding to the JWR

location, referred to as a junction squiggle.

B2. Construct a list of candidate splice junctions, and predict an

expected squiggle for each candidate, referred to as a candi-

date squiggle.

C. Align the junction squiggle to each of the candidate squiggles.

D. Use the NanoSplicer model to quantify the support for each

candidate squiggle (assignment probability).

NanoSplicer also allows users to provide additional information
to guide the choice of candidate splice junctions in step B2 (see
Section 2.2).

We discuss steps B–D in detail in the following sections.

2.1 Obtaining a junction squiggle
For each JWR, we obtain its junction squiggle, i.e. the squiggle
section corresponding to the location of the JWR, as follows. First,
we use the ‘resquiggle’ tool in Tombo (Stoiber et al., 2016) to align
the nanopore read containing the JWR with its squiggle. Tombo
performs the alignment by assigning current measurements in
the squiggle to each base of the read. Then, we extract the part of
the squiggle aligned to the JWR.

Tombo normalizes squiggles during the alignment to remove sys-
temic differences in shift (median value) and scale between squiggles
(https://nanoporetech.github.io/tombo/resquiggle.html#signal-nor
malization). This normalization enables the resulting junction
squiggles to be comparable to candidate squiggles in Sections 2.3
and 2.4. See Supplementary Section S1.3 for additional squiggle
preprocessing.

Basecalling errors create challenges in aligning current measure-
ments to bases within reads and therefore in identifying the squiggle
region corresponding to the JWR. However, matching over longer
regions allows sub-regions with good alignment to be identified and
the approximate position of the JWR to be specified. To implement
this we take �50 nt of the read as the JWR region, which allows us
to identify the corresponding squiggle region even if exact base-
current alignment for each nucleotide is not obtained. Rare cases
where this process still identifies an incorrect region of the squiggle
are filtered out (see Section 2.4.4).

2.2 Obtaining candidate squiggles
We obtain candidate squiggles by first constructing a list of candi-
date splice junctions, and then for each candidate, identifying a can-
didate junction motif and predicting its expected candidate squiggle
(Fig. 1B2). We discuss each step in this section; see Supplementary
Section S1.2 for further details.

Candidate splice junctions: NanoSplicer provides multiple
options to facilitate the selection of candidate splice junctions for
each JWR. This allows users to incorporate pre-existing information
regarding splice junction usage (if available). By default NanoSplicer
will select:

1. The splice junction supported by the JWR (mapped splice

junction).

2. Nearby canonical splice junctions. We define these as introns

that start with GT and end with AG (Fig. 1B2), a motif present

in over �99% of mammalian splice junctions (Burset et al.,

2000).

Inputs for each JWR can also include:

1. Annotated splice junctions.

2. User-defined list of candidate splice junctions (e.g. from short-

read sequencing).

3. Nearby splice junctions supported by other mapped reads (above

a user-specified read count threshold).

4. Nearby GC-AG and AT-AC junctions (the most prevalent non-

canonical junctions in mammals (Burset et al., 2000)).

Unless stated otherwise, we used the default option to choose
candidate splice junctions in this article. This allows NanoSplicer to
identify splice junctions solely from the long-read data and does not
require prior annotations or information from other reads. For
‘nearby canonical splice junctions’, NanoSplicer identified all GT
and AG sequences within 10 nt of the mapped 50 and 30 splice sites,
respectively and included the splice junctions these would create as
candidates.

Candidate junction motifs: Once we construct a list of candidate
splice junctions, we assemble a junction motif for each candidate by
connecting sequences from each side of the candidate splice junction
using the reference genome. Each candidate junction motif for a
JWR extends 50 and 30 from the candidate splice junction to a com-
mon location. This ensures each candidate has the same nucleotide
sequence (and squiggle signal) at the beginning and end, ensuring
differences between candidate squiggles are solely due to the various
splice junctions utilized.

Candidate squiggles: We predict a candidate squiggle for each
candidate junction motif using an ‘expected current level model’ in
Tombo (Stoiber et al., 2016). This model provides the mean and
standard deviation of the current level for each nucleotide in a can-
didate junction motif (https://nanoporetech.github.io/tombo/
model\_training.html describes how Tombo computes these). The
candidate squiggle can then be visualized by fitting a line through
the mean for each nucleotide.

2.3 Aligning the junction squiggle to each candidate

squiggle
For each JWR, we now have its junction squiggle (Section 2.1) and
candidate squiggles (Section 2.2). Before measuring the similarity
between each candidate and junction squiggle, we first align them,
i.e. assign current measurements in the junction squiggle to each
mean and standard deviation in the candidate squiggle, so that their
time axes are comparable (Fig. 1C). We adapt Dynamic Time
Warping (DTW) (Sakoe and Chiba, 1978) to align the two squig-
gles. DTW is an efficient algorithm for aligning two sequences
which may vary in speed; see Keogh and Ratanamahatana (2005)
for background on DTW. Supplementary Section S1.4 describes our
implementation of DTW which makes the following modifications.

1. We treat the junction squiggle as observations from a model that

has the means and standard deviations of each candidate squig-

gle as parameters. Then, we use the support in the junction

squiggle for the model as a measure of similarity in DTW.

2. A single observation has only one mean-standard deviation in a

model. Thus, we assign each measurement in the junction

NanoSplicer 3743

https://github.com/shimlab/NanoSplicer
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac359#supplementary-data
https://nanoporetech.github.io/tombo/resquiggle.html#signal-normalization
https://nanoporetech.github.io/tombo/resquiggle.html#signal-normalization
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac359#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac359#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac359#supplementary-data
https://nanoporetech.github.io/tombo/model_training.html
https://nanoporetech.github.io/tombo/model_training.html
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac359#supplementary-data


squiggle to only one mean-standard deviation in the candidate

squiggle.

3. In practice, the start and end of the junction squiggle may not

perfectly match that of the candidate squiggles. Thus, we include

more nucleotides on each side of the candidate junction motif as

a buffer, and then allow the junction squiggle to be aligned to a

part of the candidate squiggle.

4. The junction squiggle alignment is expected to cover most

nucleotides in the candidate junction motif. Thus, we prevent

current measurements in the junction squiggle from being

aligned to only a small proportion of the candidate squiggle.

2.4 Nanosplicer model: identification of splice junctions
Suppose, for a given JWR, we have its junction squiggle, M candi-
date squiggles, and M alignments, each of which aligns the junction
squiggle to each candidate squiggle. Let x ¼ ðx1; . . . ; xKÞ denote a
junction squiggle with length K, where xk is the k-th current meas-
urement. The m-th candidate squiggle, cm, is the sequence of the
mean-standard deviation of the current level for each nucleotide in
its junction motif. The M alignments can be represented by
an M�K matrix A ¼ ½amk�, where amk indicates the index of the
mean-standard deviation in cm where xk is aligned. Supplementary
Figure S5 provides a toy example.

2.4.1 Junction squiggle segmentation

Motivated by basecalling methods (Rang et al., 2018), we partition
x into multiple segments, combine noisy measurements of x into a
more stable summary value (e.g. mean, median) at each segment,
and use the summary values as data in our NanoSplicer model
(Section 2.4.2). Specifically, we define a segment of x as consecutive
measurements whose alignments to the M candidate squiggles (the
columns of A) are the same; see Supplementary Figure S5 for a toy
example and Supplementary Section S1.6 for our practical imple-
mentation of the segmentation. Suppose we have N segments in x.
Then, we compute the summary y ¼ ðy1; . . . ; yNÞ, where yi summa-
rizes information in x at its i-th segment. In this article, we use
medians for the summary as they are relatively robust to outliers.

We then compute the candidate squiggles and alignments of y
(denoted by c1

s ; . . . ; cM
s and As, respectively) from that of x; see

Supplementary Section S1.6 for details. The NanoSplicer model for
y uses c1

s ; . . . ; cM
s as model parameters and As provides alignments

between y and the model parameters.

2.4.2 Nanosplicer model

For a given JWR, we build a mixture model to identify a splice junc-
tion among the M candidates. We introduce a latent variable z 2
f1; . . . ;Mg indicating which candidate the junction squiggle came
from. The mixture model for y ¼ ðy1; . . . ; yNÞ can be written as

PðyjHÞ ¼
XM

m¼1

Pðyjz ¼ m;HÞPðz ¼ mjHÞ; (1)

where H ¼ ðc1
s ; . . . ; cM

s ;AsÞ. We assume that y1; . . . ; yN are inde-
pendent conditional on their means and standard deviations,
yielding

Pðyjz ¼ m;HÞ ¼
YN

n¼1

N�ðyn; lm
i ; r

m
i Þ; (2)

where lm
i ; rm

i are the mean and standard deviation in the candidate
squiggle cm

s aligned to yn through As (i.e. i ¼ as
mn). We model yn

using modified normal distributions (denoted by N�) which have
flat tails, making our method robust to measurements that match
none of the M candidate squiggles; see Supplementary Section S1.5
for details. Such measurements could appear, for example, due to
genetic variants which are not currently incorporated into our junc-
tion motifs (see Section 2.2).

When there is other information reflecting the propensity of a
candidate to be a splice junction, we can model the mixing propor-
tion Pðz ¼ mjHÞ as a function of that information (e.g. nucleotide
composition near splice sites for eukaryotes (Irimia and Roy, 2008);
see Section 4 and Supplementary Section S1.8). Otherwise,
Pðz ¼ mjHÞ ¼ 1

M.

2.4.3 Identification of splice junctions

Identification of splice junctions can be performed by computing the
posterior probability for each JWR:

Pðz ¼ mjy;HÞ ¼ Pðyjz ¼ m;HÞPðz ¼ mÞ
XM

m0¼1

Pðyjz ¼ m0;HÞPðz ¼ m0Þ (3)

We call this the assignment probability that quantifies the sup-
port of the junction squiggle for each candidate. In practice, we re-
strict our identification to JWRs where a single candidate has strong
support (e.g. we required an assignment probability > 0.8 in this
article).

2.4.4 Squiggle information quality

In practice, we implement the following step to improve perform-
ance: the NanoSplicer model assumes that the junction squiggle cor-
responds to the location of the JWR; however, Tombo can
potentially align the JWR to an incorrect squiggle location.
Therefore, we add a step to filter out junction squiggles that do not
have a high-quality alignment to any candidate squiggle, suggesting
they emanate from an off-target read subsequence. First, we measure
the alignment quality between a junction squiggle and each of its
candidate squiggles using the average log likelihood over the nucleo-
tides of the candidate squiggle; see Supplementary Section S1.7 for
details. Then, we compute the maximum of these alignment qual-
ities across M candidates, referred to as squiggle information quality
(SIQ). In practice, we restrict our splice junction identification to
JWRs with SIQ bigger than a threshold to ensure their junction
squiggles have high-quality alignments at least one of their candidate
squiggles. To choose a suitable threshold, we use an empirical distri-
bution of SIQ constructed by pooling SIQ values from multiple
JWRs in the analysis. Assuming that most JWRs are well aligned to
correct squiggle locations, we choose an SIQ threshold that identi-
fies junction squiggles whose SIQ values are much smaller than the
majority of SIQs in the distribution. We illustrate our choice of
thresholds in Sections 3 and 4. See Supplementary Section S2.10.1
for a discussion on how the choice of thresholds involves trade-offs
between accuracy and the ability to identify splice junctions.
Although we utilize this SIQ step to filter out junction squiggles
from off-target regions, it also helps remove poor quality junction
squiggles due to experimental artifacts (e.g. current spikes, pore
blockages, or uneven dwell time of nucleotides in the pore, etc.) as
they can also lead to poor alignments.

3 Synthetic RNA data analysis

A potential advantage of NanoSplicer is that it can exploit the infor-
mation in squiggles. To assess the benefit of this feature, we com-
pared the accuracy, defined as the proportion of correctly identified
splice junctions, of NanoSplicer to the initial mapping results. We
assessed the performance of NanoSplicer using sequin RNA stand-
ards (Hardwick et al., 2016). Sequins are a set of synthetic spliced
mRNA isoforms whose sequences and quantities are precisely
known. An in-silico sequin chromosome contains each sequin gene
and isoform, creating a known ground truth for the position of each
splice junction, which mapping- and NanoSplicer-based results can
be compared to. Sequins contain 160 isoforms from 76 genes and
745 splice junctions (all but 3 are canonical GT-AG junctions). We
used a nanopore sequins cDNA dataset generated using the ONT
GridION platform with a R9.4.1 MinION flowcell from Dong et al.
(2021); see Supplementary Section S2.1 for details of the data. We
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basecalled raw signals (squiggles) using Guppy 3.6.1 and mapped
basecalled reads to the sequin genome using minimap2 (Li, 2018),
resulting in 1 919 600 mapped reads to 76 genes and 4 320 441
JWRs. We deactivated the ‘splice flank’ sequence preference option
in minimap2 as this preference is not present in sequins.
Supplementary Sections S2.2 and S2.3 provides Guppy and mini-
map2 command lines for our analyses.

For the purpose of assessment, we first assigned one of the 745
sequin splice junctions as the ground truth for each JWR as follows.
We mapped the reads to the sequin isoforms using minimap2, pro-
viding a 1-1 correspondence between each read and a sequin isoform
(Supplementary Section S2.3.2). We restricted our assessment to
1 525 817 reads with the maximum mapping quality (mapQ¼60 in
minimap2), for which we can accurately identify their correspond-
ing isoforms. These reads contained 3 526 941 JWRs. Then, on the
strand the isoform maps to, we searched for a sequin splice junction
whose splice sites are within 10 bases of the mapped JWR splice sites
and treated it as a ground truth for that JWR. All the JWRs have ei-
ther one or zero known sequin splice junctions within 10 bases, sup-
porting their correct assignment. The 190 815 JWRs (5.1%) without
a nearby known splice junction have no ground truth and we refer
to them as completely missed JWRs.

3.1 Nanosplicer improves upon the initial mapping

results
We used the 3 526 941 JWRs to assess the performance of
NanoSplicer (Table 1). The initial mapping failed to identify the
ground truths for 286 336 JWRs, (8.1%), including 193 054 com-
pletely missed JWRs and 93 282 within 10 bases of the known se-
quin splice junction. Although any splice junctions identified by
NanoSplicer for the completely missed JWRs will be incorrect, we
include them in the analysis to assess how well the SIQ (Section
2.4.4) and assignment probability (Section 2.4.3) thresholds in
NanoSplicer recognize and filter out these JWRs.

We applied NanoSplicer to the dataset to improve upon the ini-
tial mapping results; see Supplementary Section S2.14 for
NanoSplicer run time. We chose candidates using the default option
in Section 2.2; used a uniform prior for mixing proportion (Section
2.4.2); chose �0.8 as a threshold for SIQ using an empirical distri-
bution in Supplementary Figure S10 and required a strongest assign-
ment probability of >0.8. This meant all JWRs had the ground truth
as a candidate, except for the completely missed JWRs, as well as
JWRs where the ground truth was non-canonical and was not iden-
tified as the mapped splice junction. NanoSplicer reported identified
splice junctions for 3 066 881 JWRs with an accuracy of 95.7% (see
Supplementary Section S2.11 for an explanation of the 4.3% incor-
rectly identified JWRs). Therefore, NanoSplicer improved the over-
all accuracy of splice junction detection compared to the initial
mapping.

3.2 Nanosplicer improvement is greatest when junction

alignment quality (JAQ) is low
To better understand the advantages of NanoSplicer we next asked
under what circumstances it improved splice junction detection.
Basecalling errors can result in low-quality alignments between the
JWR and the reference genome. Therefore, we hypothesized that the
initial mapping would perform poorly for JWRs with high

basecalling errors and that the advantage of NanoSplicer will be
greatest for these. We quantified the junction alignment quality
(JAQ) for each JWR, which we defined as the percentage of matched
bases in its alignment (using 25 bases upstream and downstream of
mapped splice sites), to test this. For example, a JAQ of 0.96 can be
interpreted as 4% of bases in an alignment being inserted/deleted or
mismatched; see Supplementary Section S2.6 for further details.

Figure 2A shows the accuracy of each approach for JWRs with
different ranges of JAQ. NanoSplicer and minimap2 are both simi-
larly accurate (98.3 vs 98.4%) when the JAQ is >0.95 and the JWR
sequence aligns almost perfectly. In such a circumstance there is lit-
tle extra information to be obtained from the squiggle. However, at
an alignment quality of 0.95 and below (51.8% of all JWRs),
NanoSplicer improves upon the initial mapping accuracy, displaying
progressively larger improvements as alignment quality decreases.
For junction alignment qualities �0.8, NanoSplicer increased the
raw accuracy by 23.6% and decreased the proportion of incorrect
JWRs by 49.6%. Furthermore, most multi-exon genes have more
than one splice junction and JAQ can vary over a read. We find that
20.0% and 77.8% of multi-exon reads have a JWR whose JAQ is
�0.8 and 0.95, respectively. These results demonstrate that
NanoSplicer has the potential to improve splice junction identifica-
tion in a significant proportion of reads.

While the initial mapping reports splice junctions in all JWRs,
NanoSplicer identified splice junctions for 3 066 881 JWRs and its
accuracy was evaluated on this smaller set. Thus, multiple factors
could contribute to its increased accuracy. These include the ability
of SIQ and assignment probability to identify wrongly mapped
JWRs, as well as NanoSplicer correction. To investigate the contri-
butions of these factors, we computed the accuracy of the initial
mapping on two additional sets of JWRs: the 3 319 482 remaining
after SIQ filtering and the 3 066 881 remaining after SIQ and assign-
ment probability filtering prior to NanoSplicer correction
(Supplementary Section S2.8 and Table S2). All factors contribute to
the increase in accuracy. NanoSplicer correction showed a clear
benefit when JAQ�0.9, while the contribution of SIQ filtering is
larger for low-quality alignments (JAQ�0.8). Moreover, we
observed that JWRs filtered by SIQ or assignment probability are
enriched in completely missed JWRs (Supplementary Section S2.9),
demonstrating these procedures help identify JWRs without true
junctions as candidates.

3.3 Example of splice junction correction with

NanoSplicer
Figure 3A demonstrates how squiggles can provide extra informa-
tion to identify splice junctions. In the reference genome (Fig. 3A1)
there are two ‘AG’ 30 splice motifs 5 bases apart. The ground truth
reveals the upstream site is correct; however, the first 5 exonic bases
were basecalled as ‘TG’ instead of ‘CCCAG’, causing the JWR to be
mapped to the wrong site. We compared the junction squiggle of
this JWR to the candidate squiggles obtained from the true splice
junction and the initial mapping (Fig. 3A2). The squiggle from the
true candidate splice junction is visually a closer match to the junc-
tion squiggle. NanoSplicer quantified this squiggle similarity, giving
an assignment probability of 0.988 to the true candidate for this
JWR. This example demonstrates how nanopore squiggle signal can
be used to correct read alignments and accurately identify splice
junctions. See Supplementary Section S2.12 for more examples.

Table 1. Accuracy of splice junction identification from initial mapping (minimap2) and NanoSplicer for synthetic (Section 3) and biological

(Section 4) data

Total JWRs Correct Incorrect Accuracy

Synthetic data Initial mapping 3 526 941 3 240 605 286 336 91.9%

NanoSplicer 3 066 881 2 934 832 132 049 95.7%

Biological data Initial mapping 1 880 011 1 797 512 82 499 95.6%

NanoSplicer 1 724 883 1 674 133 50 750 97.1%

Note: NanoSplicer ‘Total JWRs’ are analyzable JWRs (Supplementary Section S2.7) with SIQ >�0.8 and strongest assignment probability >0.8.
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4 Biological RNA data analysis

In this section, we assess the performance of NanoSplicer on real
biological data. We used a nanopore cDNA dataset (see
Supplementary Section S2.1 for detailed data description) generated
from the lung cancer cell line NCI-H1975, for which short read data
is also available (Holik et al., 2017). We basecalled all squiggles
using Guppy 3.6.1 and mapped basecalled reads to the human
GRCh38 assembly using minimap2. We focused our analysis on
758 009 reads mapped to chromosome 1, yielding 2 220 118 JWRs.
Note, we retained the ‘splice flank’ sequence preference option in
minimap2 for this analysis.

For the purpose of assessment, we defined a ground truth for
each JWR using short-read data from Holik et al. (2017), as short
reads are expected to accurately identify the locations of splice
junctions. We mapped the short reads to GRCh38 using STAR
(Dobin et al., 2013) and considered splice junctions with at least
three mapped short reads to be ‘known’; see Supplementary
Sections S2.4 and S2.5 for details. Then, for each JWR, we
searched for a known splice junction within 10 bases of the
mapped splice sites and treated it as a ground truth for that JWR.

To avoid ambiguity in determining the ground truth, we restricted

our assessment to 1 880 011 JWRs that had at most one nearby
known splice junction.

4.1 Nanosplicer improves upon the initial mapping

results
We assessed the performance of NanoSplicer on the 1 880 011 JWRs
(Table 1); see Supplementary Section S2.14 for the run time. As pre-

viously, we compared the accuracy (i.e. the proportion of correctly
identified splice junctions) of NanoSplicer to the initial mapping
results. The initial mapping failed to identify the ground truths for

82 499 JWRs (4.4%), including 52 169 completely missed JWRs. In
this analysis, we incorporated ‘splice flank’ sequence preferences,

like those in minimap2, as prior mixing proportions in NanoSplicer;
see Supplementary Section S1.8 for details. Other steps in the
NanoSplicer workflow were as per the synthetic data analysis.

NanoSplicer identified splice junctions for 1 724 883 JWRs with an
accuracy of 97.1%, confirming it improves splice junction detection
from biological data (Table 1).

Fig. 2. Splice junction identification accuracy of NanoSplicer and minimap2. (A) Accuracy of splice junction identification in synthetic data. (B) Accuracy of splice junction

identification in biological data. A and B: all JWRs were binned based on junction alignment quality (JAQ). The interval ‘a-b’ in the x-axis represents ‘a < JAQ � b’. Initial

mapping (from minimap2) is based on all JWRs. NanoSplicer accuracy is based on the JWRs where NanoSplicer identifies the splice junction (SIQ > �0.8, strongest assign-

ment probability > 0.8). The number of JWRs in each JAQ bin, including completely missed JWRs, is shown in Supplementary Table S1

Fig. 3. Examples of NanoSplicer correcting wrongly mapped JWRs. (A1 and A2) Synthetic RNA data and (B1 and B2) biological data. (A1 and B1) JWR mapping. Reference

genome sequence shown in purple. Green line shows the location of the known ground truth splice junction. The mapped nanopore read (blue) shows the basecalled nucleoti-

des of the JWR and how they were aligned to the reference genome. Orange line shows the splice junction identified by the initial mapping of the JWR. Insertion—basecalled

nucleotides in read that were not part of genome alignment. (A2 and B2) Alignment between the junction squiggle for the JWR (blue) and the corresponding candidate squig-

gles from A1 and B1 (orange and green). Each junction squiggle current measurement is vertically aligned with its assigned mean-standard deviation in the candidate squiggle.

The junction motifs for each candidate are shown at the top of each panel. Each nucleotide in the motifs is aligned with its corresponding squiggle position. Panels focus on the

junction squiggle areas that distinguish between the candidates (grey background), where the absolute difference in log likelihood between the two candidate models is bigger

than 1.35; see Supplementary Section S2.13 for details (A color version of this figure appears in the online version of this article.)
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Similar to the synthetic data analysis, the improvement in splice
junction identification with NanoSplicer increased as JAQ decreased
(Fig. 2B). NanoSplicer improved upon the initial mapping when
JAQ�0.95 and was particularly pronounced below a JAQ of 0.8
(13.4% increase in accuracy, �55% decrease in incorrect JWRs).

As the accuracy of NanoSplicer is evaluated on a smaller set of
JWRs (1 724 883) than the initial mapping, we again investigated
the contributions of SIQ, assignment probability and NanoSplicer
correction to the increased accuracy. Results were consistent with
the synthetic data analysis: all factors contribute to the increased ac-
curacy; NanoSplicer correction is beneficial when JAQ�0.95 and
SIQ filtering has a relatively larger contribution when JAQ�0.8
(Supplementary Section S2.8).

4.2 Example of splice junction correction with

NanoSplicer
Figure 3B shows an example JWR from the biological dataset. Two
‘GT’ splice motifs only 3-bases apart at the 50 splice site create two
candidate splice junctions (Fig. 3B1). One of the candidate splice
junctions is supported by the short read data and is assumed to be
true. However, the nanopore read in Figure 3B1 was mapped to the
other candidate splice junction due to basecalling errors at the 50

splice site (the ‘GTG’ bases preceding the splice junction were base-
called as only ‘G’). We compared the junction squiggle of this JWR
to the squiggles obtained from both candidate splice junctions
(Fig. 3B2). The shape of the squiggle for the true candidate is clearly
a better match for the junction squiggle, while the initial mapping
candidate misses clear signal changes indicative of additional bases.
NanoSplicer quantified this squiggle similarity, leading to an assign-
ment probability of 0.997 to the true candidate for this JWR. See
Supplementary Section S2.12 for more examples.

4.3 Identification of non-canonical junctions
A small proportion of splice junctions do not use the canonical GT-
AG motif and are challenging to identify from error prone reads.
Comparing JWRs from the NCI-H1975 long-reads to the short-read
data revealed 8861 (0.47%) had a non-canonical truth. Minimap2
correctly identified 4127 of these (46.6%), while NanoSplicer iden-
tified 3661 of 7373 (49.7%) after SIQ and assignment probability
filtering. Using the default option NanoSplicer can only consider
non-canonical junctions as candidates if they are the mapped splice
junctions, meaning it cannot correct the 4734 JWRs where mini-
map2 was incorrect. However, NanoSplicer provides the option to
also include the most common non-canonical splice junctions (GC-
AG and AT-AC) as candidates and/or use user supplied lists of can-
didate splice junctions (e.g. non-canonical splice junctions from
GENCODE v39 (Frankish et al., 2021)). Utilizing these options
increased accuracy to 83.8% (5300 of 6323, see Supplementary
Section S2.15) and 95.9% (7744 of 8071) respectively for JWRs
with a non-canonical truth that passed filtering. These results dem-
onstrate the flexible inputs NanoSplicer can utilize and how
NanoSplicer performance for non-canonical splice junction identifi-
cation can benefit from their use.

4.4 Improved accuracy when there are rare,

unannotated or multiple nearby splice junctions
Methods such as StringTie2 (Kovaka et al., 2019) correct splice
junctions using information from other mapped reads, potentially
causing less abundant junctions to go undetected. To demonstrate
the advantage of NanoSplicer in rare junction identification, we
compared NanoSplicer with StringTie2 at all sites where we could
ascertain if rarer splice junctions were being replaced. Specifically,
we focused on 492 sites where there are multiple nearby splice junc-
tions in use (evidenced from matched short-reads). Among the 492
sites, StringTie2 detected the rarer splice junctions for 10 (2%),
while NanoSplicer was successful for 273 (55.5%). This result illus-
trates the benefits of NanoSplicer, whose performance is independ-
ent of other reads, in identifying rare junctions. See Supplementary
Section S2.16 for more details and an example.

While NanoSplicer does not require annotations, it provides the
option to utilize them in organisms where comprehensive annota-
tions are available. We compared the output of FLAIR (which
requires input splice junctions) with NanoSplicer, including human
GENCODE v39 annotations as input, to understand the relative
performance of each on different categories of JWRs. We find that
NanoSplicer provides increased accuracy when there are multiple
annotated junctions within 10 nt of the JWR, or the true junction
utilized unannotated splice site(s) (Supplementary Fig. S17).
NanoSplicer can also be run in ‘annotation only’ mode, which only
uses annotated junctions as candidates and hence JWRs can only be
corrected to annotated junctions (if present). This mode provides a
significant speed increase (�20 times faster) and outperforms
FLAIR when there are multiple nearby annotated junctions while
giving equivalent results otherwise (Supplementary Fig. S17). See
Supplementary Section S2.17 for further details.

5 Conclusion

We have developed a novel method, NanoSplicer, to accurately
identify splice junctions using nanopore sequencing. The method,
adapting the ‘squiggle matching’ idea, exploits the information in
squiggles to improve identification. This enables NanoSplicer to
identify splice junctions solely from the nanopore data without
requiring annotations or matched short reads. It also enables its per-
formance to be independent of other reads or read depth, having the
potential to better identify rare splice junctions. Using both synthetic
and real data, we show that NanoSplicer improves upon the initial
mapping, particularly when the basecalling error rate near splice
junctions is high, demonstrating the contribution of squiggle infor-
mation to splice junction identification. We also show that
NanoSplicer outperforms competing methods when there are rare,
unannotated or multiple nearby splice junctions.

To our knowledge, this is the first method that exploits squiggle
information for splice junction identification. Therefore, there are
many opportunities for potential improvements. First, the
NanoSplicer model treats the summary values of junction squiggles
as observed data and ignores their uncertainty, possibly leading to a
decreased accuracy. One potential way to incorporate the uncer-
tainty is to exploit the likelihood approximation as described in
Shim et al. (2021), yielding likelihoods expressed by the estimates of
model parameters and their standard errors. Second, very short or
long dwell times (i.e. the duration of a translocation event) may not
reflect typical translocation events (D�ıaz Carral et al., 2021), poten-
tially causing misleading results. Here, we partly address this issue
by filtering out summary values based on a very small or large num-
ber of measurements, but a more principled approach, such as mod-
eling dwell time, could potentially improve performance. Third,
here we predict expected squiggles from junction motifs using the
‘expected current level model’ in Tombo (Stoiber et al., 2016), but
this can be achieved by using other models that are appropriate for
the chemistry in use. Indeed, the optimal choice of models may be
one learned from the data at hand. Finally, NanoSplicer has been
comprehensively tested only for analysis of Nanopore cDNA data
and the R9 pore but will be tested on direct RNA sequencing and
the R10 pore in the future.

NanoSplicer identifies splice junctions only among candidates,
potentially leading to false detection when the true junctions are not
included. We are not alone in having this limitation; for example,
other tools restrict their correction to junctions from annotations or
matched short reads (Tang et al., 2020; Wyman and Mortazavi,
2019), and/or to junctions supported by mapped reads (Kovaka
et al., 2019; Kuo et al., 2020; Parker et al., 2021). However,
NanoSplicer provides flexible options for candidate selection
(Sections 2.2 and 4.3), enabling users to use context-dependent can-
didates. Moreover, our empirical analysis in Supplementary Section
S2.9 shows that SIQ and assignment probability help filter out
JWRs without true junctions as candidates, reducing false
identifications.

NanoSplicer has been designed and tested for accurate identifica-
tion of splice junctions. The identified junctions could be leveraged in
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different types of downstream analyses, including isoform identifica-
tion and quantification. For example, lists of high confidence splice
junctions from NanoSplicer can be inputs into tools such as FLAIR
and Stringtie2 to improve their performance. Alternatively,
NanoSplicer can examine the read-level support for novel isoforms
identified by other tools. For some analyses, however, NanoSplicer’s
outputs should be used with care as it identifies splice junctions only
for JWRs whose squiggles are informative. For example, if the out-
puts are used to quantify usage of splice junction(s), excluding JWRs
without identified outputs or correcting them using splice junctions
from other reads may lead to less accurate quantification because
they are not a random subset of all JWRs (Supplementary Fig. S19).
Additionally, utilizing mapped junctions from these JWRs to supple-
ment NanoSplicer outputs would decrease overall accuracy as such
JWRs tend to have lower JAQs (Supplementary Fig. S20). We are
currently investigating to what extent this limitation can be overcome
to allow NanoSplicer to accurately quantify splice junctions and pro-
duce corrected isoforms instead of corrected JWRs. This would en-
able NanoSplicer to take full advantage of its potential to improve
identification of unannotated, rare or closely related isoforms.

NanoSplicer provides flexible options to be run on JWRs from
genes, genomic regions or reads of interest; as well as transcriptome-
wide, shortening run time. Our analysis shows that NanoSplicer im-
provement is greatest when JAQ is low, while initial mapping results
tend to be correct for JWRs with high JAQs because their sequences
align almost perfectly. In practice, the first step in our software is
calculation of JAQs for JWRs, which provides useful and quickly ac-
cessible information on long-read junction quality for an experiment
or read of interest. Thus, our software offers an option to output
JAQs without running the identification step. Additionally,
NanoSplicer provides an option to run it on JWRs below a user-
specified JAQ threshold (default 0.95) to reduce its run time and
focus on the JWRs it is most likely to correct. Nanopore sequencing
accuracy is increasing over time, however even as median read ac-
curacy has increased, Nanopore read accuracy distributions still ex-
hibit a long tail of reads with lower accuracy. Therefore, there
remains a significant proportion of reads for which splice junction
identification (and subsequent isoform identification) can be enabled
by NanoSplicer.
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