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Aims Sodium–glucose co-transporter 2 (SGLT2) inhibitors improve clinical outcome in patients with heart failure (HF), but
the mechanisms behind their beneficial effects are not yet fully understood. We examined the effects of empagliflozin
on renal sodium and glucose handling in patients with acute HF.
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Methods
and results

This study was a pre-defined sub-study of a double-blind, randomized, placebo-controlled, multicentre study
(EMPA-RESPONSE-AHF). Patients were allocated within 24 h of an acute HF admission to either empagliflozin
10 mg/day (n = 40) or placebo (n = 39) for 30 days. Markers of glucose and sodium handling were measured daily
during the first 96 h and at day 30. Patients were 76 (range 38–89) years old and 33% had diabetes. The use of loop
diuretics during the first 96 h was similar in both groups. Empagliflozin increased fractional glucose excretion with a
peak after 24 h (21.8% vs. 0.1%; P< 0.001), without affecting plasma glucose concentration, while fractional sodium
and chloride excretion and urinary osmolality remained unchanged (P >0.3 for all). However, empagliflozin increased
plasma osmolality (delta osmolality at 72 h: 5± 8 vs. 2± 5 mOsm/kg; P = 0.049). Finally, there was an early decline in
estimated glomerular filtration rate with empagliflozin vs. placebo (−10± 12 vs. −2± 12 mL/min/1.73 m2; P = 0.009),
which recovered within 30 days.
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Conclusion In patients with acute HF, empagliflozin increased fractional glucose excretion and plasma osmolality, without affecting
fractional sodium excretion or urine osmolality and caused a temporary decline in estimated glomerular filtration
rate. This suggests that empagliflozin stimulates osmotic diuresis through increased glycosuria rather than natriuresis
in patients with acute HF.
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Graphical Abstract
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Graphical representation of changes in urinary and plasma volume and osmolality. As more glucose is excreted as a result of sodium-glucose
co-transporter 2 (SGLT2) inhibition, more water is drawn to the urine keeping osmolality constant. As a result of increased electrolyte free water
excretion, plasma osmolality is moderately increased and total volume of plasma and interstitial fluid is decreased.
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Introduction
In patients with diabetes and/or chronic kidney disease,
sodium–glucose co-transporter 2 (SGLT2) inhibitors consis-
tently showed beneficial effects on cardiovascular outcomes and
particularly on heart failure (HF) hospitalizations.1–4 Recently, one
larger randomized clinical trial demonstrated that dapagliflozin
reduced cardiovascular death and HF hospitalizations in patients
with established chronic HF with reduced ejection fraction
(HFrEF) with and without diabetes.5 A post-hoc analysis showed
that treatment with dapagliflozin was safe and effective regardless
of diuretic use or dose.6 The beneficial effects of SGLT2 inhibitors
on HF outcomes have been attributed to cardiometabolic and
renal protective qualities, as well as to its diuretic properties.
These were even described in chronic ‘stable’ euvolaemic HF.6–8 In
acute HF, we recently showed that early addition of empagliflozin
to standard diuretic treatment increased cumulative diuresis after
4 days with a possible reduction in HF-related events.9 However,
the mechanisms behind increased diuresis of SGLT2 inhibitors
in acute HF are unknown.10,11 In the present mechanistic study,
we investigated the effect of SGLT2 inhibition on renal function,
and urinary sodium, chloride and glucose excretion in acute HF
patients randomized to either empagliflozin or placebo.

†These authors contributed equally. ..
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. Methods
Patients
The present study is a pre-defined analysis of the EMPA-
RESPONSE-AHF trial of which the rationale and main results
have been published recently.9 In short, EMPA-RESPONSE-AHF was a
double-blind, placebo-controlled multicentre pilot study enrolling 79
patients in five centres in the Netherlands, on the safety and efficacy
of empagliflozin in patients with acute HF. Within 24 h of hospital
admission, patients were randomized 1:1 to either empagliflozin
10 mg (for 30 days) (n = 40) or matching placebo (n = 39). The trial
was approved by the ethics committee at each study centre and the
study was conducted in accordance with the Declaration of Helsinki
and the International Conference on Harmonization Guidelines for
Good Clinical Practice. All patients participating in the trial provided
written informed consent.

Biomarkers

Spot urine and plasma samples were collected at baseline, daily during
the first 96 h of hospitalization and after 30 days. Serum sodium,
glucose, and creatinine and spot urinary creatinine and sodium were
measured as part of safety monitoring and were analysed according
to procedures of the local laboratories of each participating hospital.
Urinary glucose, chloride and osmolality were measured at a central

© 2020 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Table 1 Baseline characteristics

Empagliflozin (n = 40) Placebo (n = 39) P-value
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Age (years) 79 (73–83) 73 (61–83) 0.141

Female sex 16 (40) 10 (26) 0.263
Systolic blood pressure (mmHg) 128± 22 121± 25 0.253
eGFR (mL/min/1.73 m2) 53±18 54±16 0.824
Plasma osmolality (mOsm/kg) 305 (302–309) 305 (302–312) 0.691

Urine osmolality (mOsm/kg) 330 (322–379) 341 (324–384) 0.530
Plasma levels of:

Creatinine (mg/dL) 1.3± 0.4 1.3± 0.4 0.723
Urea (mmol/L) 11.0 (7.5–12.8) 9.0 (7.3–13.1) 0.916
Sodium (mmol/L) 140 (137–142) 140 (138–142) 0.806
Potassium (mmol/L) 3.9 (3.5–4.2) 3.9 (3.5–4.4) 0.406
Glucose (mmol/L) 7.9 (6.2–9.6) 7.7 (6.3–8.8) 0.323
Renin (pg/mL) 12.4 (4.8–63.4) 80.1 (14.0–179.3) 0.011

Aldosterone (pg/mL) 182.3 (130.5–292.0) 192.7 (114.6–344.3) 0.653
Urinary levels of:

Creatinine (mmol/L) 3.5 (1.9–5.5) 3.4 (2.0–5.1) 0.944
Urea (mmol/L) 111 (60–142) 98 (78–140) 0.976
Sodium (mmol/L) 100 (68–110) 92 (69–112) 0.734
Potassium (mmol/L) 27 (21–33) 29 (20–41) 0.399
Glucose (mmol/L) 0.2 (0.1–0.3) 0.1 (0.1–0.2) 0.264

Fractional excretion of (%):
Sodium 2.1 (0.9–4.1) 2.2 (0.9–4.4) 0.964
Glucose 0.1 (0.1–0.1) 0.1 (0.0–0.1) 0.890

Categorical variables are depicted as n (%), normally distributed variables are depicted as mean± standard deviation, non-parametric variables are depicted as median
(interquartile range).
eGFR, estimated glomerular filtration rate.

laboratory in the University Medical Center Groningen (UMCG)
in frozen samples. All samples were stored at –80∘C within 2 h of
collection and thawed before analysis. Urinary glucose was measured
only after database lock to ensure maintenance of the double-blind
nature of the trial. Urinary chloride and potassium were measured
using ISE indirect reagents for COBAS C, the measuring range for
potassium is 3–100 mmol/L with an analytical variation of <5%, the
measuring range for chloride is 20–250 mmol/L, with an analytical
variation of <5%. Urinary glucose was measured using the GLUC3
pack for COBAS C, the measuring range for urinary glucose is
0.11–249.6 mmol/L (normal range: 0.06–0.83 mmol/L), with a varia-
tion of ∼1%. Urinary osmolality, the total number of solute particles
(or osmoles) per kilogram of fluid, was both measured and calculated
in order to gain insight in the constituents of urine osmolality. Urine
osmolality was measured using an automatic freezing point depression
osmometer (Osmo Station OM-6050, ARKRAY), with a measuring
range of 0–2000 mOsm/kg and an analytical variation of <1%. Between
measurements tubes were capped to prevent evaporation.

Aldosterone concentrations were measured using the Aldosterone
RIA kit by MT Diagnostics. Renin concentrations were measured using
the Renin Kit III by Cis Bio International. Aldosterone and renin
measurements were performed in the Pharmacology Laboratory of the
Erasmus Medical Center Rotterdam.

Calculation of urinary osmolality was done according to the follow-
ing formula: osmolality = 2× [Na+]+ 2× [K+]+ [Glucose]+ [Urea],
with all concentrations being concentrations of molecules in urine.
The same formula was used to calculate plasma osmolality. All frac-
tional excretion percentages were calculated by a standard formula: ..
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. 100%× FEx = (Ux × Pcreat)/(Px ×Ucreat), in which Ux is the urinary con-

centration of the analyte and Px represents the plasma concentration
of the analyte. Ucreat and Pcreat represent urinary and plasma concen-
trations of creatinine, respectively. In sensitivity analysis, estimated 24 h
urinary sodium excretion was calculated using the earlier defined for-
mula by the International Cooperative Study on Salt, Other Factors,
and Blood Pressure (INTERSALT) investigators.12

Statistical analysis
Baseline characteristics were explored using a t-test for normally
distributed variables and a Mann–Whitney U test for non-normally
distributed variables. For further analysis, variables were normal-
ized by logarithmic transformation where necessary. The effect of
empagliflozin use on changes in clinical outcomes [i.e. estimated
glomerular filtration rate (eGFR); systolic blood pressure; plasma and
urinary osmolality; fractional excretion of sodium (FeNa), chloride
(FeCl) and glucose (FeGlu); renin; aldosterone] during 96 h and
30 days were analysed with repeated measures linear mixed-effect
(LME) models, which account for individual variations in changes
and intercepts by estimating the random effects per individual. To
correct for their highly skewed nature, renin and aldosterone were
log-transformed before being analysed in the linear mixed models. For
each clinical variable, change from baseline was calculated and used
as an outcome in the LME model. We performed a nested model
adjusted for baseline values and time, whereas for each outcome a
second model was performed including baseline values, time, treat-
ment arm and the treatment x time interaction term. Further, we

© 2020 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Table 2 Urinary parameters over the course of treatment

Empagliflozin (n = 40) Placebo (n = 39) P-value
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Spot urinary sodium (mmol/L)
Baseline 90± 31 87± 35 0.706
24 h 69± 28 85± 37 0.040
48 h 56± 29 79± 44 0.011

72 h 63± 41 70± 27 0.400
96 h 56± 29 69± 32 0.089
30 days 60± 30 56± 28 0.683

Fractional excretion of sodium (%)
Baseline 2.1 (0.9–4.1) 2.2 (0.9–4.4) 0.964
24 h 1.4 (0.9–2.4) 1.5 (0.6–3.2) 0.874
48 h 1.0 (0.3–1.7) 1.4 (0.7–2.1) 0.256
72 h 1.4 (0.8–1.7) 1.0 (0.6–2.3) 0.840
96 h 0.8 (0.4–1.9) 1.0 (0.7–1.7) 0.476
30 days 0.7 (0.3–1.7) 0.7 (0.4–2.0) 0.388

Spot urinary glucose (mmol/L)
Baseline 0.2 (0.1–0.3) 0.1 (0.1–0.2) 0.264
24 h 50.4 (17.1–94.8) 0.2 (0.1–0.3) <0.001

48 h 41.3 (17.2–79.1) 0.2 (0.1–0.3) <0.001

72 h 35.2 (16.2–96.2) 0.2 (0.1–0.3) <0.001

96 h 30.3 (9.9–75.2) 0.2 (0.1–0.4) <0.001

30 days 13.1 (1.6–58.9) 0.2 (0.1–0.3) <0.001

Fractional excretion of glucose (%)
Baseline 0.1 (0.1–0.1) 0.1 (0.0–0.1) 0.890
24 h 21.8 (10.1–29.8) 0.1 (0.1–0.1) <0.001

48 h 13.6 (5.4–24.0) 0.1 (0.0–0.1) <0.001

72 h 16.0 (4.2–24.4) 0.1 (0.0–0.1) <0.001

96 h 6.0 (2.5–21.8) 0.1 (0.0–0.1) <0.001

Spot urinary urea (mmol/L)
Baseline 108.0 (60.8–142.1) 97.5 (77.6–139.5) 0.881

24 h 136.0 (93.3–172.7) 124.0 (91.3–191.6) 0.935
48 h 160.2 (116.0–194.0) 159.3 (111.3–105.7) 0.840
72 h 154.5 (122.9–185.0) 157.5 (128.5–207.5) 0.426
96 h 179.6 (121.0–256.7) 172.2 (144.9–233.0) 0.427
30 days 214.0 (141.0–272.6) 166.6 (85.2–294.5) 0.333

Fractional excretion of urea (%)
Baseline 37.9 (30.3–45.0) 37.6 (28.0–48.5) 0.984
24 h 33.1 (28.6–41.9) 35.3 (21.4–43.0) 0.664
48 h 29.6 (22.2–39.3) 30.5 (25.7–39.7) 0.572
72 h 31.1 (26.3–37.1) 32.0 (24.9–39.2) 0.952
96 h 32.4 (24.2–38.0) 33.5 (29.5–39.0) 0.346

compared the two models without and with the treatment interaction
term using analysis of variance (ANOVA), where a P-value <0.05 was
considered significant for a treatment effect during the full treatment
period (either 96 h or 30 days depending on the variable). The effects
of empagliflozin on changes in outcome at specific time point were
considered significant for interaction terms P< 0.05. LME models
were conducted using the lme function in the ‘nlme’ package. All
analyses were performed in R studio, version 1.3.959.13

Results
Baseline characteristics of the study population have been
published elsewhere.9 In brief, patients were 76 (range 38–89)
years old, 33% were female and median N-terminal pro B-type ..
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. natriuretic peptide (NT-proBNP) was 5236 [interquartile range

(IQR) 3482–8276] pg/mL. Background medical treatment at
baseline was similar between the groups and there were no
differences in loop diuretic doses, vasodilator or inotrope use
or guideline-recommended HF medication. Baseline eGFR was
54±17 mL/min/1.73 m2, median plasma glucose was 7.8 (IQR
6.2–8.9) mmol/L and 33% had a history of type 2 diabetes mellitus.
In urine, glucose concentrations at baseline were 0.1 (IQR
0.1–0.2) mmol/L, with low FeGlu [0.1 (IQR 0.1–0.1)%]. In urine,
baseline osmolality was 335 (IQR 322–380) mOsm/kg, whereas
median plasma osmolality was 305 (IQR 302–311) mOsm/kg.
Before start of randomized treatment but within 24 h of admission
and after initiation of loop diuretic therapy, spot urinary sodium
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Figure 1 Progression of fractional excretion of sodium (A), chloride (B) and glucose (C) over the course of treatment. For each clinical variable,
changes from baseline were calculated and used as outcomes in linear mixed-effect models. Two models were performed, one adjusted for
baseline values, the second model adjusted for baseline values and the interaction term between treatment and time. In each panel, the results
for the ANOVA tests between the two models is depicted (likelihood ratio and P-value). For placebo and empagliflozin, mean values are shown
with dots, the bars represent standard error. A P-value for interaction between each time point and treatment is shown.

was 99 (IQR 67–111) mmol/L, with a FeNa of 2.2 (IQR 0.9–4.3)%.
No between group differences were observed between patients
treated with empagliflozin or placebo for any of these baseline
variables (Table 1).

Table 2 shows plasma and spot urinary electrolytes over time,
stratified by treatment arm. Empagliflozin significantly decreased
spot urinary sodium concentration as compared with placebo. The
most pronounced effect was seen after 48 h (56.2 vs. 79.0 mmol/L,
P = 0.011). In contrast, treatment with empagliflozin did not ..
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. change FeNa at any time point as compared with placebo (Table 2,
Figure 1A, P = 0.956 for ANOVA difference between models
with and without treatment interaction), indicating that while
net urinary sodium concentration decreases, a similar amount
of glomerularly filtered sodium is reabsorbed in the renal tubuli
compared with placebo. In sensitivity analysis, median calculated
24 h sodium excretion after 24 h also did not show differences
between patients treated with empagliflozin compared with
placebo (P = 0.235). Moreover, no differences in the occurrence
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of hyponatraemia were seen between both treatment arms
(P> 0.2); delta serum sodium from baseline to 96 h also did not
change between the treatment arms (−0.17 vs. −0.18 mmol/L,
P = 0.99), nor did empagliflozin change serum sodium at any time
point (P = 0.302 for ANOVA difference between models with
and without treatment interaction). Likewise, urinary chloride
excretion was lower in patients treated with empagliflozin, but
FeCl was unaltered by empagliflozin use (Figure 1B, P = 0.922 for
ANOVA difference between models with and without treatment
interaction).

Empagliflozin significantly increased both urinary glucose con-
centration and FeGlu, with a peak in FeGlu after 24 h (median
21.8% vs. 0.1%, P< 0.001; Table 2, Figure 1C). Although FeGlu
decreased over the course of treatment, it was still significantly
higher in patients treated with empagliflozin compared with
placebo after 96 h (median 6.0% vs. 0.1%, P< 0.001). A similar
pattern was seen for urinary glucose concentration up to 30 days
of treatment (Table 2). Plasma glucose levels, however, were
not changed by empagliflozin use (P = 0.763 for ANOVA differ-
ence between models with and without treatment interaction).
FeGlu was similar in patients with and without diabetes in the
empagliflozin arm (P = 0.182 for interaction, online supplementary
Figure S2). Plasma urea was additionally increased in patients
treated with empagliflozin, while fractional excretion of urea and
urinary urea remained unaffected (P = 0.036, 0.99 and 0.782 for
ANOVA difference between models with and without treatment
respectively).

During the first 72 h, empagliflozin caused a significant decrease
in eGFR (−10±12 vs. −2±12 mL/min/1.73 m2) compared with
placebo (P = 0.009), as shown in Table 3 and Figure 2A. This
significant decline in eGFR was attenuated at 96 h and 30 days
(P = 0.133 and 0.681 respectively). In addition, empagliflozin signif-
icantly increased urinary output (cumulative urinary output after
48 h: 6084± 2480 mL vs. 4222±1911 mL, P = 0.010; n = 41),
which resulted in a greater negative fluid balance [cumulative ..
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.. fluid balance after 48 h: −3050 (IQR −1280 to −4753) mL vs.

−1200 mL (IQR −710 to −2425), P = 0.010; n = 38].

Although urinary volumes significantly increased after initia-

tion of empagliflozin, no impact on urinary osmolality was seen

(Figure 2C). In other words, the number of particles per kilogram

of urine did not change despite a larger urinary volume. How-

ever, a significant shift was seen in the constituents making up

urine osmolality, with glucose making up a larger proportion of the

total urinary particles compared with placebo (Figure 3 and Graph-

ical Abstract). Measured and calculated urine osmolality showed

a strong correlation (r of log-transformed variables 0.91–0.99)

(online supplementary Table S1).

At baseline, plasma osmolality was similar in both groups. During

the first 72 h, empagliflozin modestly increased plasma osmolality

(delta plasma osmolality 5± 8 mOsm/kg vs. 2± 5 mOsm/kg;

P = 0.049). Moreover, we found a significant interaction for plasma

osmolality between time at 72 h and treatment effect (P = 0.031,

Figure 2D).

Median baseline renin was 28.8 (1.0–1820) pg/mL, median

baseline aldosterone was 185.9 (31.0–1810) pg/mL. Median

plasma renin concentration at baseline was higher in the placebo

group than in the empagliflozin group (12.4 pg/mL vs. 80.1 pg/mL,

P = 0.011). Empagliflozin significantly increased renin with a peak

after 72 h, after which a plateau was reached and significance was

lost (P = 0.016 for ANOVA between models with and without

treatment effect) (Figure 4A). Aldosterone was not altered by

empagliflozin use (P = 0.217 for ANOVA between models with

and without treatment effect) (Figure 4B).

No significant correlations, as analysed with linear regression,

could be seen for log FeGlu and log FeNa, for log FeGlu and fluid

balance or for log FeNa and fluid balance (online supplementary

Figure S1).

Table 3 Estimated glomerular filtration rate over the course of treatment

Empagliflozin (n = 40) Placebo (n = 39) P-value
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

eGFR (mL/min/1.73 m2)
Baseline 53 ± 18 54 ±16 0.824
24 h 44 ± 14 52 ±19 0.022
48 h 43 ± 16 53 ±19 0.013
72 h 42 ± 16 54 ±18 0.006
96 h 45 ± 18 53 ± 20 0.101

30 days 50 ± 21 54 ±19 0.511

Change in eGFR from baseline (mL/min/1.73 m2)
24 h −9 ± 9 −2 ± 8 0.002
48 h −10 ±12 −2 ± 10 0.004
72 h −10 ±12 −2 ± 12 0.009
96 h −7 ±11 −3 ± 15 0.133
Day 30 −6 ±15 −4 ± 16 0.681

eGFR, estimated glomerular filtration rate.

© 2020 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Figure 2 Delta estimated glomerular filtration rate (GFR) (A), delta systolic blood pressure progression (B), delta urine osmolality (C) and
delta plasma osmolality (D) over the course of treatment. For each clinical variable, changes from baseline were calculated and used as outcomes
in linear mixed-effect models. Two models were performed, one adjusted for baseline values, the second model adjusted for baseline values
and the interaction term between treatment and time. In each panel, the results for the ANOVA tests between the two models is depicted,
(likelihood ratio and P-value). For placebo and empagliflozin, mean values are shown with dots, the bars represent standard error. A P-value
for interaction between each time point and treatment is shown.

Discussion
In this pre-defined post-hoc analysis of the EMPA-RESPONSE-AHF
trial, we found that patients with acute HF receiving empagliflozin
had a higher urinary output and a more negative fluid balance. Inter-
estingly, FeNa did not increase and urinary osmolality remained
similar between both groups. Nonetheless, FeGlu significantly
increased after initiation of empagliflozin. Moreover, empagliflozin ..

..
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..
..

..
..

..
..

..
..

. temporarily reduced renal function in the first days after an acute
HF hospital admission.

The increase in FeGlu with SGLT2 inhibition by empagliflozin was
expected, as blocking the receptor responsible for tubular reab-
sorption of glucose would intuitively lead to increased excretion of
filtered glucose. Importantly, FeGlu was similar in patients with and
without diabetes and plasma glucose levels remained unchanged,
suggesting that pre-existing diabetes and/or plasma glucose supply
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to the glomerulus do not play an important role. Our finding that
FeNa was not increased with empagliflozin was somewhat unex-
pected, since blockage of the SGLT2 receptor in the proximal
tubule prevents reabsorption of both glucose and sodium. How-
ever, it is well known that in contrast to glucose, sodium can be
reabsorbed throughout the entire tubule. Therefore, our findings
suggest that sodium reabsorption might have been blocked by
empagliflozin in the proximal tubule, and that this was compensated
by an increased reabsorption of sodium in the rest of the tubule
and collecting duct.14

Similar to a post-hoc analysis of the EMPA-REG OUTCOME
trial, a transient decline in eGFR was seen after initiating treatment
with empagliflozin.15 This course in eGFR over time was seen in the
CANVAS Program as well.16 This has been postulated to be related ..
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..
..

..
..

..
..

. to the juxtaglomerular feedback mechanism and a correction in
glomerular hyperfiltration.17,18 Loss of chloride is sensed by the
macula densa in the distal convoluted tubule and leads to release
of adenosine, causing afferent vasoconstriction and a decreased
renal blood flow, in order to spare salt. If we assume that the
established drop in glomerular filtration rate is indeed the result
of activation of the macula densa, there should still be high levels
of sodium and chloride present in the distal convoluted tubule in
order for juxtaglomerular feedback mechanism to be activated.19

This would mean that although we do not find increased concen-
trations of sodium in the urine, proximal tubular sodium resorption
is indeed diminished. This notion is further supported by the fact
that renin levels were increased compared with placebo for the
first 72 h, following a similar pattern compared to drop in eGFR.
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Figure 4 Delta renin (A) and aldosterone (B) over the course of treatment. For renin and aldosterone (both log-transformed), changes from
baseline were calculated and used as outcomes in linear mixed-effect models. Two models were performed, one adjusted for baseline values,
the second model adjusted for baseline values and the interaction term between treatment and time. In each panel, the results for the ANOVA
tests between the two models is depicted (likelihood ratio and P-value). For placebo and empagliflozin, mean values are shown with dots, the
bars represent standard error. A P-value for interaction between each time point and treatment is shown.

The increased osmotic diuresis resulting from glycosuria probably
leads to an increase in renin levels. Of course, these results need
to be interpreted in light of background therapy and one should
be wary to draw conclusions based on these data alone. Conse-
quently, sodium is likely reabsorbed distally from the macula densa,
e.g. in the collecting duct. In the collecting ducts, multiple media-
tors regulate urine dilution and sodium reabsorption, one of which
is vasopressin.20 Yet, since urinary osmolality remained unchanged
and vasopressin only plays a minor role in sodium reabsorption, it
is unlikely that an increase in vasopressin is truly responsible for
this increase in sodium reabsorption in the collecting duct. We did
not find an increase in aldosterone after initiation of empagliflozin,
making aldosterone an unlikely cause for distal tubular or col-
lecting duct sodium reabsorption. Other drivers of sodium reab-
sorption include insulin and insulin-like growth factor-1, while
endothelin-1 and nitric oxide decrease sodium reabsorption.21–23

The precise contribution of each of these factors on sodium reab-
sorption in the collecting duct after blocking the SGLT2 receptor
and treatment with loop diuretics should be assessed in future
studies.

Interestingly, our data show a modest increase in plasma osmo-
lality. These effects were even more pronounced in patients with
lower serum sodium and lower plasma osmolality. In our data no
effect on serum sodium could be found, which might be explained
by the fact that only a small proportion of patients presented with
hyponatraemia and the lowest measured sodium upon admission
was 129 mmol/L. Moreover, this might position SGLT2 inhibitors
as a treatment for tissue congestion or residual congestion as ..
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. increased plasma osmolality attracts fluid from the interstitial space
into the blood stream.24 This notion is supported by earlier find-
ings that the SGLT2 inhibitor dapagliflozin has been calculated to
reduce interstitial fluid volume three times more than it reduces
blood volume, compared to an interstitial fluid reduction of only
66% of the reduction in blood volume by bumetanide.25 The fact
that empagliflozin did not lower blood pressure in these severely
diseased patients despite larger negative fluid balance also sup-
ports the theory of a more stable refill rate from interstitial fluid
to plasma as a result of increased plasma osmolality (Figure 2B).
However, we should account for the small study group here and
the fact that other larger trials did find a reduction of 5–10 mmHg
in systolic blood pressure after initiation of a SGLT2 inhibitor.26,27

Still, this increase in plasma osmolality might also be expected since
distal diluting segments receive higher tubular flow as a result of
empagliflozin. The kidneys perceive this as a state of hypervolaemia
which, through stimulation of the countercurrent system of the
vasa recta, leads to more distal sodium reabsorption and less free
water clearance.28

As described earlier, the majority of HF patients are discharged
with residual congestion with consequent impaired prognosis.29

Our analyses might provide insights into new possibilities to
overcome residual congestion due to significantly improved net
fluid loss (negative fluid balance) and increased plasma osmolality.
Naturally, our data need to be validated in other (larger) clinical
cohorts.

Taken together, our findings that empagliflozin increased FeGlu,
while both FeNa and urinary osmolality remained unchanged,
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suggest that empagliflozin most prominently stimulates osmotic
diuresis as a result of increased FeGlu instead of natriuresis. Our
results are in line with earlier studies that reported that SGLT2
inhibitors increased urinary volume without an increase in FeNa.8,30

In another study comprising of patients with type 2 diabetes
and stable chronic HF (median NT-proBNP: 399 pg/mL), an early
increase in urinary sodium excretion was seen. However, in this
study fluid administration was high in these patients, sodium intake
was not standardized per protocol, and intermittent urinary mea-
surements were only obtained throughout the first 6 h. There-
fore, the circadian rhythm in sodium excretion could still have
affected these findings. Since we included acute HF patients with
more signs and symptoms of fluid congestion (median NT-proBNP:
5236 pg/mL), differences might further be explained by our sicker
cohort with likely even higher neurohumoral activation potentially
leading to increased sodium reabsorption and eventually maintain-
ing FeNa constant. This is in contrast to a study in patients with
euvolaemic, stable HF, where empagliflozin increased both FeGlu
and FeNa, and even exhibited a small synergistic effect of concomi-
tant treatment with intravenous bumetanide.7

Limitations
Several potential limitations of the present study can be identified.
The first limitation of this study is the relatively small sample size.
Second, we collected spot urine samples and not 24 h measure-
ments. Consequently, we do not know the total sodium output
over the course of hospitalization. Conceivably, increased volumes
of urine, even with a lower concentration of sodium, will eventually
lead to an increased absolute total of urinary sodium. As per pro-
tocol, treating physicians were blinded to the treatment arm and
urinary excretion of glucose. However, urinary levels of sodium
excretion were measured in the local labs and could therefore be
perceived in the electronic medical records. Third, plasma levels of
glucose were not measured at the 30-day follow-up visit, as this was
not incorporated in the study protocol. Therefore, no FeGlu could
be calculated at day 30. Fourth, the timing of loop diuretic admin-
istration was not standardized. This was left to the discretion of
the treating physician. Therefore, some patients were on continu-
ous loop diuretic infusion, while others were on intravenous bolus
loop diuretic treatment. So, the natriuretic effect of a recent loop
diuretic bolus, rather than that of empagliflozin cannot be ruled out.
Still, considering the randomized nature of this trial, these treat-
ment differences should be equal in both arms. Moreover, patients
in both treatment arms were on equal total doses of intravenous
and oral loop diuretics, and the number of patients on either oral or
intravenous loop (bolus vs. continuous) diuretics was similar as well
(online supplementary Table S2). Additionally, calculating fractional
excretion levels relies on measured plasma creatinine levels. These
values changed throughout follow-up, which might have affected
calculated values of fractional excretion.

Conclusion
In patients hospitalized with acute HF, empagliflozin caused an
increase in urinary output, FeGlu and plasma osmolality, without ..
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.. affecting FeNa or urine osmolality. Additionally, a significant, tem-
porary decline in eGFR was seen. These results suggest that
empagliflozin primarily stimulates osmotic diuresis in patients with
acute HF through increased glycosuria rather than through natri-
uresis.

Supplementary Information
Additional supporting information may be found online in the
Supporting Information section at the end of the article.
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