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Renal tubular epithelial cells (TECs) are the primary targets of ischemia–reperfusion injury
(IRI) and rejection by the recipient’s immune response in kidney transplantation (KTx).
However, the molecular mechanism of rejection and IRI remains to be identified. Our
previous study demonstrated that kynurenine 3-monooxygenase (KMO) and
kynureninase were reduced in ischemia–reperfusion procedure and further decreased
in rejection allografts among mismatched pig KTx. Herein, we reveal that TEC injury in
acutely rejection allografts is associated with alterations of Bcl2 family proteins, reduction
of tight junction protein 1 (TJP1), and TEC-specific KMO. Three cytokines, IFNg, TNFa,
and IL1b, reported in our previous investigation were identified as triggers of TEC injury by
altering the expression of Bcl2, BID, and TJP1. Allograft rejection and TEC injury were
always associated with a dramatic reduction of KMO. 3HK and 3HAA, as direct and
downstream products of KMO, effectively protected TEC from injury via increasing
expression of Bcl-xL and TJP1. Both 3HK and 3HAA further prevented allograft
rejection by inhibiting T cell proliferation and up-regulating aryl hydrocarbon receptor
expression. Pig KTx with the administration of DNA nanoparticles (DNP) that induce
expression of indoleamine 2,3-dioxygenase (IDO) and KMO to increase 3HK/3HAA
showed an improvement of allograft rejection as well as murine skin transplant in IDO
knockout mice with the injection of 3HK indicated a dramatic reduction of allograft
rejection. Taken together, our data provide strong evidence that reduction of KMO in
the graft is a key mediator of allograft rejection and loss. KMO can effectively improve
allograft outcome by attenuating allograft rejection and maintaining graft barrier function.
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HIGHLIGHTS

Immunosuppressants reduce allograft rejection to prolong
allograft survival in kidney transplantation. However, the long-
term use of these medications often results in complications that
can lead to diseases or even allograft loss. Thus, endogenous
immunosuppressive metabolites may represent more ideal
medical therapies. Indoleamine 2,3-dioxygenase (IDO) has
been reported to prevent allogeneic fetal rejection. To date,
neither the molecular mechanism of tolerance induced by IDO
nor its downstream enzymes have been clearly defined. This
paper demonstrates that kynurenine 3-monooxygenase (KMO),
a downstream enzyme of IDO, is the main player in tolerance
induced by the kynurenine metabolites, as its direct and
downstream products, 3HK and 3HAA, can prevent T cell-
induced allograft rejection and protect the tubular epithelial
cell from injury caused by the cytokine storm formed in
ischemia–reperfusion and early allograft rejection procedure.
INTRODUCTION

Kidney transplantation (KTx) is the best treatment for patients
with renal failure. Current KTx requires overcoming two major
obstacles, including the shortage of available organs for transplant
and significant side effects of antirejection medications. Scientists
are developing novel organ resources for clinical transplantation.
Among all, swine are the most ideal organ donor for clinical
transplants due to: (i) the similar size of kidneys and ease of
transplantation; (ii) similar renal metabolic function for
unrestricted food intake and metabolism; (iii) a variety of swine
leukocyte antigens that offer biological diversity and antigen-
driven rejection mechanisms similar to humans. Additionally,
researchers are also using blastocyst complementation combined
with gene editing to increase organs favorable for human
transplant (1–3). Although pigs can provide enough organs
for transplantation, there is still some distance from the
laboratory bench to clinical application. The major barrier is
the transmission of infectious microorganisms from pigs to
humans (4–9). Although many studies have reported that there
are no transmissions of virus in xenotransplantation (10–13),
inactivation of endogenous porcine retroviruses using CRISPR-
Cas9 technology makes xenotransplantation safer and potentially
possible in the future (14, 15).

Rejection of the recipient’s immune system to imported
allografts forms the main barrier for successful clinical
transplantation and future xenotransplantation (16, 17).
Currently, the combination of immunosuppressants to
deactivate the recipient’s immune response is used to prevent
rejection. These immunosuppressants can temporarily inhibit
acute rejection to prolong an allograft’s survival but have less
impact on long-term allograft outcomes. The toxicity of
immunosuppressants causes complications leading to new
diseases that can ultimately lead to graft loss. Endogenous
metabolites with antirejection properties may make ideal drugs
owing to less toxicity and higher specificity.
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Indoleamine 2, 3-dioxygenase (IDO) is the first enzyme in the
metabolic pathway from which tryptophan is metabolized to
kynurenines. IDO has been shown to prevent allogeneic fetal
rejection (18). This antirejection specifically relies on tryptophan
depletion and the production of kynurenines (19, 20). IDO
downstream enzymes, kynurenine 3-monooxygenase (KMO)
and kynureninase produce kynurenine derivatives 3HK
(hydroxyl-3 kynurenine) and 3HAA (hydroxyl-3 anthranilic
acid), which have been shown to effectively inhibit T cell
proliferation (21), thus improving tolerance (22–26). Although
induced IDO can increase tolerance in some rodent
transplantation models (18, 26–35), our recent study and other
scientists’ observations have indicated that IDO, itself, only
predicts allograft rejection (36–40). Using our own porcine
kidney transplant model, we showed that rejection allografts
was associated with down-regulation of KMO and kynureninase
and up-regulation of IDO (40).

Tubular epithelial cell (TEC) injury, not glomerular injury, is
the primary target of the recipient’s immune system during acute
rejection (41, 42). Ischemia–reperfusion, an unavoidable part of
the KTx procedure, can also cause ischemia–reperfusion injury
(IRI) to TEC. This has been identified through three key
signaling pathways (43). Furthermore, a 1-h extension of cold
ischemia time increases the risk of rejection by 4% post-
transplant (44, 45). Our previous study revealed that
alterations of cytokine expression in early allograft rejection
were associated with an increase in IDO and a decrease in
KMO and other kynurenine metabolic enzymes (40). In the
present study, we investigate the influence of cytokine exposure
on the gene expression of kynurenine metabolites and cell injury
proteins in human primary TEC and allograft rejection. A crucial
role of KMO and kynureninase in preventing TEC injury and
attenuating allograft rejection will be demonstrated.
MATERIALS AND METHODS

Animal Study
Studies were performed on 30–40 kg outbred female Yorkshire
piglets (Palmetto Research Swine, Reevelville, South Carolina)
as we have described previously (40). Briefly, one pair of pigs
was operated simultaneously such that the left kidneys were
exchanged (allotransplants) or retransplanted (autotransplants).
All transplants were ex vivo perfused at 4°C and orthotopically
transplanted, followed by right nephrectomy and closure (40). No
immunosuppressants were used. All auto- and allotransplanted
kidneys and other physiological samples were collected 72 h post-
transplantation from the live animals before euthanasia. These
studies were approved by Augusta University Institutional
Animal Care and Use Committee. Tissues from collected
organs were processed for future examination of histology,
enzymatic assay, protein expression, and mRNA alterations.

Murine Skin Transplantation
Murine skin transplantation was performed with a modification
of the previous protocol (46). Briefly, mouse-ear skin was
July 2021 | Volume 12 | Article 671025
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TABLE 1 | Primers used for qPCR.

Gene Name Forward Primer Reverse Primer

b-actin gtcaccaactgggacgacat tcttctcacggttggctttg
IDO1 gcacatctggttctggggta gaggcagtccaagcttctca
KMO-1 atcgcctgtgacctcatctt aacttcatgtagccgtgagg
KMO-2 aatttgcacgtggaagaagc tggggataccttgggataca
KMO-3 aagataccatgaggccatgc ccggtaaggtaggtggt
DDC ctggagacagtgatgatggact aaggtagcttcactggcacttc
HAAO cctatgagacccaggtaatcgt ctctccttccattgtcaccact
ACMSD gtccaagagaactgctggaatc gaagctggcacaggtctaaagt
Bcl-xL ggtattggtgagtcggatcg tctcagctgctgcattgttt
TJP1 tcgcattgtagagtcggatg ccacgacacggaatacctct
TJP2 gagacaacccccactttgaa accacccgatcattttcttg
N-cadherin cctcgtcagagaccacctgt ggcatatgtcgccagagaat
IL6 ttcacctctccggacaaaac tctgccagtacctccttgct
IL17 gacggccctcagattactcc ttccttcccttcagcattga
IL18 ctgctgaaccggaagacaat aggttcaagcttgccaaagt

ACMSD, Aminocarboxymuconate-semialdehyde decarboxylase; DDC, dopa
decarboxylase; N-cad, N-cadherin; HAAO, 3-hydroxyanthranilate 3,4-dIoxygenase;
TJP1, tight junction protein; TJP2, tight junction protein 2; Bcl-xL, B-cell lymphoma-
extra large.
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utilized as a graft onto the back of a recipient mouse. Balbc and
C57/B6 mice between 10 and 13 weeks old were used in
syngeneic and allogeneic transplants. Rather than suturing, the
graft was held in place with a four layer flexible bandage which
remained in place in a standard length of time until dressing
removal (Fang X, unpublished).

Human Primary Cell Culture
Human cortical renal TEC (HREC, #CC-2554, Lonza) was
cultured with a specific medium (#CC-3190, Lonza). TEC
expansion, passage, and stocking were performed by following
vendor protocols (#CC-5034, Lonza). Cells were seeded in a 1:3
split in six-well plates and grown to 85% confluency with media
changes every other day. Then cells were replaced with fresh
media and pretreated in the presence or absence of 5–100 mM
3HK (Sigma) or 10–40 mM 3HAA (Sigma) for 16 h. Then cells
were challenged with or without cytokine cocktail (15 nM of
IFNg + 6 nM of TNFa + 3 nM of IL1b) for 24 h prior to
harvesting. Trizol was utilized for RNA isolation and assays.
RIPA buffer was used to lyse cells for Western blot.

Human Peripheral Blood Pan-T Cell
Proliferation
Human peripheral blood Pan-T cells (hPBTs, Stemcell
Technologies, Canada) were grown in ImmunoCult™-XF T
cell expansion medium plus ImmunoCult™-human CD3/
CD28/CD2 (25 µl/ml, StemCell Technologies, Canada) and IL-
2 (10 ng/ml, StemCell Technologies, Canada) for 4 days.
Following this period of expansion/activation, the activated
hPBTs were labeled with CellTrace™ Cell Proliferation Kits
(#C34557, Invitrogen). Labeled or unlabeled activated hPBTs
were grown in proliferation assay medium [PAM, ImmunoCult™-
XF T cell expansion medium plus ImmunoCult™-Human CD3/
CD28/CD2 (25 µl/ml)] and IL2 (2 ng/ml) in the presence of 3HK.
The cells were collected and washed with PBS, and then the cells
were fixed with 1% paraformaldehyde in PBS for 20 min at room
temperature. The proliferation of T cells was determined with
flow cytometry.

Histology and Immunostaining
Freshly dissected kidneys were fixed overnight with 4%
paraformaldehyde in PBS (pH 7.2) at 4°C, and kidneys were
cut into 4-mm sections. The immunostaining procedure was
performed as described previously (40). Immunochemistry was
completed using a KMO antibody (Novus Biologicals,
Cat.NBP1-86335) and Cyclophilin A (Abcam. Cat. Ab154388)
with 1:400 dilutions in 5% donkey serum in standard TBS buffer.
The staining was viewed with color developed from horseradish
peroxidase complex (Vector Laboratories) and counterstained
with hematoxylin.

Quantitative RT-PCR
Quantitative RT-PCR was carried out as previously described
(40, 47). Total RNA was isolated from renal tissue and cultured
cells with TRIZOL. The RNA was converted to cDNA using
SuperScript III First-Strand Synthesis System (Invitrogen). PCR
primers producing 100–130 bp amplicon were designed using
Frontiers in Immunology | www.frontiersin.org 3
Primer 3 Input software, the primers for candidate genes were
shown in Table 1, and quantitative PCR was performed with
SsoAdvanced Universal SYBR Green Kit (Bio-Rad Lab) on a CFX
Connect real-time PCR detection system (Bio-Rad Lab). b-actin
mRNA was used for normalization.

TUNEL Staining
TUNEL staining was performed with the ApopTag Plus
Peroxidase In Situ Apoptosis Detection Kit (Millipore S7101)
according to the manufacturer’s protocol. TUNEL-positive cells
were randomly counted from five different 20× microscopic
vision fields for each pig. Total TUNEL-positive cells were
quantified from the tissues of four to eight pigs per group.

LDH Assay
3HK toxicity to TEC, tubular endothelial cells (TEndo), and
hPBT were assessed with lactate dehydrogenase (LDH) assays
using Pierce LDH Cytotoxicity Assay Kit and the chemical
compound-mediated cytotoxicity assay protocol (Thermo
Scientific). Briefly, TEC, TEndo, and hPBT were grown in their
growth media to 85% confluency, while hPBT was grown in the
mixture of TEC media and hPBT media in a 2:1 ratio to reduce
hPBT medium background in the LDH assay. TEC, TEndo, and
hPBT were then treated with different doses of 3HK. LDH assay
was performed by following the manufacturer’s instructions.

Western Blot
Renal tissue and cells were lysed in RIPA buffer containing the
cocktail of proteinase inhibitors (Roche) and phosphatase
inhibitors. Protein concentrations were determined using a
bicinchoninic acid protein assay reagent kit (Pierce). Proteins
were separated by SDS-PAGE, and Western blotting was carried
out as previously described (40). The following antibodies were
used as probes for Western blotting: b-actin (Sigma, A5316);
KMO (NBP1-86335), kynureninase (AF4887-SP), alpha-smooth
muscle actin (NB300-978SS), snail (NBP2-27184SS), E-cadherin
July 2021 | Volume 12 | Article 671025
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(NBP2-19051SS), tight junction protein 1 (NBP1-85047) were
from Novus Biologicals; Bax (sc-7480), Bcl-xL (sc-8392), BID
(sc-373939), caspase 3 (sc-7272), caspase 8 (sc-56070), VDR (sc-
1008), AhR (sc-133088), pNFkB65-S536 (sc-136548), NFkB65
(sc-8008), ERK-Th202/Ty204 (sc-136521), MHCI (sc-55582),
ERK (sc-514302) were from Santa Cruz Biotechnology. Akt-
S473 (9271S), Akt (9272S), pPTEN-S380 (9551), and PTEN
(9552), MHCII (LGII-612.14), and Bcl2 (4223T) were from
Cel l S igna l ing ; IDO1 (M256) was obta ined f rom
CalBioreagents. Secondary antibodies were horseradish
peroxidase-conjugated anti-rabbit or anti-mouse IgG (Pierce
Biotechnology), and signals were detected using SuperSignal
West Pico or Dura Extended Duration Substrate (Pierce).
b-actin was used for loading normalization. The relative amount
of each protein was quantified using NIH ImageJ software.

DNA Nanoparticles
DNA nanoparticles (DNP) were prepared as previously described
(48). Briefly, 21 µg of pCpG free–Lacz DNA (InvivoGen, CA) was
mixed with 200 µl of 10% of D-(+)-glucose solution at room
temperature. Then 7 µl of 150 mM polyethylenimine (PEI,
Polysciences Inc, PA) was mixed with another 200 µl of 10% of
D-(+)-glucose solution in room temperature. The DNA–glucose
solution was then added to PEI–glucose solution under gentle
vortex. The mixture of PEI–DNA was kept at room temperature
for 10–15 min to form DNA complex. Twenty-one micrograms of
DNA in 0.4 ml 10% glucose solution was intravenously injected
into 20 g mice or ex vivo perfused into 20 g of pig kidney. For the
kidneys larger than 20 g, the ratio of DNA micrograms per PEI in
microliters was maintained at 3:1. Thus the amount of DNA, PEI,
and 10% glucose solution increased proportionately in accordance
with the increase in kidney weight.

Statistical Analyses
Data were presented as means ± SEM. Statistical comparisons
were carried out using unpaired t-test or one-way ANOVA as
appropriate, with p <0.05 considered as statistically significant.
RESULTS

Pathology and Gene Expression of Grafts
in Pig Kidney Transplantation
Many factors influence the outcome of allografts in KTx. These
factors include the results of ischemia–reperfusion which
accompanies the surgical procedure and rejection by the
recipient’s immune system. Allograft injury is always the first
phenomenon in early stage post-transplant before allograft
failure and loss. A number of observations have indicated that
tubular epithelial cells are the primary targets of IRI and rejection
(41–43, 49). Therefore, the alterations of TEC gene profile and
cell phenotype as well as TEC death change cell structure and
physiological function leading to allograft failure. We first
explored cell death patterns in autograft and allograft in pig
kidney transplantation. A huge number of cells with positive
staining for necrotic biomarker cyclophilin A are seen in allograft
Frontiers in Immunology | www.frontiersin.org 4
rejection within infiltrated recipient circulatory cells and graft’s
interstitial structural and tubular cells. No necrotic cells were
found in autograft (Figure 1A). Interestingly, both H&E staining
and TUNEL staining for apoptotic cells indicated specific tubular
injury and increasing apoptotic cells in allograft tubules.
Apoptotic cells are increased four-fold in autografts and
increased 16-fold in allografts (Figures 1A, C).

Transplantation procedures were performed on 52 pigs.
Among them, 20 pigs underwent allotransplant without any
drug treatment. Five of the twenty pigs (two of which were twins)
experienced allograft rejection rated IIA on the Banff scale, while
six pigs experienced allograft rejection below IIA on the Banff
scale. Pigs with allograft rejection rated IIA and lower had
normal physiological parameters (40, 50). Nine of the twenty
pigs had allograft rejection rated above Banff scale IIA and
abnormal physiological function (Figure 1A). We picked one
pig allograft with Banff scale IIA to group with allografts rated
higher on the Banff scale to investigate the expression of
apoptotic markers Bcl2 and caspase 3 (Casp 3).

Bcl2 family proteins play an important role in cell apoptosis.
Western blot showed that anti-apoptotic Bcl2 is moderately
reduced in the autograft and dramatically decreased in allograft.
Bcl2 reduction is further associated with the activation of Casp 3
(Figures 1B, D). Allografts with Banff II had normal physiological
function which was only shown on reduction of Bcl2 but no
activation of Casp 3 (Figure 1B). Bcl-xL is another anti-apoptotic
protein in the Bcl2 family (51). Quantitative real-time PCR
indicated that Bcl-xL was greatly decreased in allograft rejection
(Figure 1E). In addition to cell death, epithelial–mesenchymal
transition (EMT) is another phenotype of epithelial cell injury
which results in changes in epithelial cell physiological function.
Western blot indicated that the biomarker of EMT, N-cadherin
(N-cad), was reduced in allograft rejection and was associated with
the reduction of tight junction protein 1 (TJP1) and tight junction
protein 2 (TJP2) expression (Figure 1E).

Rejection and Biological Function of
Allograft Were Associated With Expression
of KMO and Its Downstream Genes in
Kynurenine Metabolism
Our recent article in pig KTx demonstrated the dramatic increase of
IDO and a decrease of KMO in allograft rejection (40). KMO is a
mitochondrial outer membrane protein. Immunohistochemistry
(IHC) of KMO on human kidney tissues from antibody
providers indicated that KMO was specifically located in tubular
epithelial cells. We further confirmed that high expression of KMO
was observed in pig kidney tubular cells. However, KMO expression
was reduced in autografts and was almost silenced in allograft
rejection (Figure 2A). Recipient cells that infiltrate the allograft also
have a high expression of KMO (arrows in Figure 2A). The ratio of
KMO mRNA in allograft rejection to average KMO mRNA from
19 normal grafts was positively associated with allograft biological
function measured by creatinine (Figure 2B) and was negatively
associated with the grade of allograft rejection on the Banff scale
(Figure 2C). However, the ratio of KMO mRNA in allograft
rejection to average KMO mRNA from normal grafts was not
July 2021 | Volume 12 | Article 671025
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FIGURE 2 | The expression of KMO and other kynurenine metabolic enzymes in grafts. KMO mRNA in grafts were determined by real-time PCR via using three pairs of
PCR primers which amplify the 5 terminal (161–265 bp), middle (493–600 bp), and 3 terminal (1,239–1,349 bp) specific sequence of KMO gene; the real-time PCR from
three pairs of primers showed almost the same result. b-actin mRNA for normalization, an average of KMO mRNA was calculated from the results of real-time PCR from
19 normal pig kidneys. The ratio of KMO mRNA in allograft rejection to the average of KMO mRNA in normal kidneys is KMO mRNA fold alterations. (A) IHC of KMO on
graft tissue section. (B–D) Correlation of KMO mRNA ratio in allograft rejection with serum creatinine, allograft Banff scale, and BUN in recipients. (E–G) Quantitative
analysis of HAAQ, DDC, and ACMSD in grafts. ****P < 0.0001, one-way ANOVA, Auto versus CTR, Allo versus Auto. The scale bar is 500 µm.
A B

D EC

FIGURE 1 | Histology, pathology, and gene expression of kidney tissues. (A): (a) Histology of a representative control right kidney (CTR), an autotransplant kidney
(auto), and 2 Banff level III rejection allografts (allo). N-18 for the CTR group, n = 5 for the auto group, and n = 18 for the allo group. (b) Apoptotic cells of TUNEL
positive staining on representative CTR, auto, and allograft. (c) Necrotic cells of cyclophilin A (CypA) positive staining on representative CTR, auto, and allograft.
(B): Gene expression of anti-apoptotic protein Bcl2 and caspase 3 in representative CTR, auto, and allograft. (C) The quantitative average number of apoptotic cells
on the 20× microscope view field from random five pictures on each animal tissue. n = 4 for the CTR group, n = 5 for the autotransplant group, n = 7 for the
allotransplant group. (D) Quantitative analysis of Bcl2 protein expression in representative graft. (E) Quantitative PCR of Bcl-xL, tight junction proteins 1 and 2, and
N-cadherin mRNA in grafts. ***P < 0.001, ****P < 0.0001, one-way ANOVA, auto versus CTR, allo versus auto. The scale bar is 50 µm.
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associated with the BUN level (Figure 2D). The expression of more
genes in the kynurenine metabolic pathway was analyzed with
quantitative PCR. The results indicated that 3-hydroxyanthranilic
3,4 dioxygenase (HAAO), aminocarboxymuconate-semialdehyde
decarboxylase (ACMSD), and dopa decarboxylase (DDC) were
dramatically reduced in autografts and further decreased in allograft
rejection (Figures 2E–G).

Cytokine Storm From IRI and Rejection
Induced Gene Expression and Signaling
Alterations on TEC
Our previous study showed that many cytokines were over-
produced in autografts and allografts (40). IL17 is associated with
rejection (52–55). IL17 and IL6 are associated with rejection
injury (56–58), while IL18 induces local cytokines and
chemokine expression in the allograft (59, 60). Quantitative
PCR analysis showed that IL17 expression did not change in
autografts but is increased 3.03-fold in the allografts. IL18
increased 1.38-fold in autografts and increased 2.34-fold in the
allografts. IL6 increased 2.11-fold in the autografts, but decreased
a little in allograft rejection (data not shown). Furthermore,
allograft rejection in pig KTx had increased expression of IFNg,
TNFa, and IL1b (40). Therefore, allografts are exposed to many
altered cytokines or chemokines from ischemia–reperfusion and
early rejection procedure.

Next, we used TEC to investigate their injury caused by
cytokine storm using a cytokine cocktail consisting of IFNg,
Frontiers in Immunology | www.frontiersin.org 6
TNFa and IL1b. Western blot indicated TEC challenged with
cytokine cocktail showed increased IDO, KY, andMHC I & II. We
also found both E-cadherin (E-cad) and a-smooth muscle actin
(SMA) increased. KMO, AhR, and TJP1 were greatly decreased.
Snail expression was reduced (Figure 3). We also found the
expression of Bax was unchanged while BID was greatly
induced, and Bcl2 and Bcl-xL were dramatically reduced. Both
total Casp 3 and caspase 8 (Casp 8) were increased (Figure 4).
Alterations of Bcl2 family members’ expression and activation of
caspases causing epithelial cell apoptosis in allograft rejection
confirmed cell apoptosis in allograft rejection in vivo (Figure 1B).

Western blot also indicated that multiple signaling pathways
including AktS473, pNFkB65, ErkTh202/Ty204, and PTenS38 in
TEC challenged with cytokine cocktail were activated in different
time-points (Figure 5). These activated pathways showed the
complex biological responses in allograft rejection. Indeed, three
signaling pathways can be activated in TEC just from ischemia–
reperfusion injury only (43). It is expected that allograft rejection
in KTx will activate much more complex biological procedures.

The 3HK and 3HAA From KMO and Its
Downstream Partners in Kynurenine
Metabolism Effectively Protected TEC
From Cytokines-Induced Injury and
Inhibited T Cell Proliferation
KMO was down-regulated in autografts and was almost
completely silenced in allograft rejection (40). KY was also
A B

DC

FIGURE 3 | Western blot analysis of function protein expression on primary human renal cortical epithelial cells challenged with cytokines. Primary human renal
tubular epithelial cells are challenged with cytokine cocktail (15nM IFNg, 6nM TNFa, and 3nM IL1b). (A, B) Expression of Snail, E-Cad, TJP1, SMA. AhR, IDO, KMO,
KY, MHCI & II. (C, D) Densitometric quantitation of protein in (A, B). All Western blots are representative of at least three independent experiments. *P < 0.05, ***P <
0.0001 versus to cells without treatment, analysis is multiple t-tests, pairwise comparison of individual time-point to control indicated same p-value.
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decreased in autografts and further reduced in allograft rejection,
negatively affecting the production of 3HK and 3HAA. This
contrasts with greatly increased IDO expression in allograft
rejection. Upon exposing TEC to the cytokine cocktail in the
presence of 3HK and 3HAA, Western blot showed that both
3HK and 3HAA caused up-regulation of Bcl-xL and TJP1
expression (Figures 6A–C). 3HAA, but not 3HK, reversed cell
tolerance protein AhR expression (Figure 6A). These findings
suggest that both compounds have a different specific function,
and both play crucial roles in protecting TEC from injury.

Flow cytometry analysis shown that cytokine cocktail
dramatically increased T cell proliferation (Figures 7A, B),
whereas 3HK and 3HAA effectively inhibited T cell
proliferation at 100 and 10uM (Figures 7C–F), which
Frontiers in Immunology | www.frontiersin.org 7
confirmed previous observations (24, 25, 61). 3HK is toxic to
neurons and pancreatic tissue in high doses (62–64). We
performed an LDH assay to address the toxicity of 3HK on
TEC, TEndo, and hPBT. We found that 3HK had a protective
role on TEC and TEndo at the concentration below 100 µM and
is toxic to hPBT even at the concentration of 10 µM (Figure 7G).

DNP-Induced KMO Expression or
Increasing 3HK Specifically Reduced
Allograft Rejection and Saved Graft
Biological Function
Induced or transgene IDO has been reported to attenuate
allograft rejection in rodent transplantation model (27, 30, 31,
33, 34, 65), while tolerance was found to be dependent on
A B

FIGURE 4 | Western blot analysis of apoptotic protein expression on primary human renal cortical epithelial cells challenged with cytokines. (A) The expression of
Bcl2, Bcl-xL, BID; Bax caspase 3 and 8 (Casp 3 and 8), activated caspase 8 (Act Casp 8) in cells treated with cytokine cocktail. (B) Densitometric quantitation of
proteins in (A). All Western blots are representative of three independent experiments. NS, no significant, *P < 0.05, ***P < 0.0001, ****P < 0.00001 versus cells
without treatment; analysis is multiple unpaired t-tests. Pairwise comparison of individual time-point to control indicated the same p-value.
A B C

FIGURE 5 | Activation of multiple signaling pathways in TEC challenged by cytokines. Primary human renal TECs were treated with the cytokine cocktail.
(A, B) Western blot of PI3K–Akt pathway, NFkb pathway, and Erk signaling pathway in cells treated with cytokine cocktail. (C) Densitometric quantitation of
AktS473, pNFkB65, ErkTh202/Ty204, and pTenS380. All Western blots are representative of two independent experiments.
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kynurenines (36–38). However, IDO was greatly induced in
allograft rejection in pig kidney transplantation (40). Thus, we
subjected the skin transplant from the ear of mice with balb/c
background to the trunk of mice and IDO knockout mice with
Frontiers in Immunology | www.frontiersin.org 8
C57black/6 background. Free CpG-Lacz DNA nanoparticles
(DNPs) were reported to induce IDO and mediate Treg-
relevant tolerance (48, 66). We performed DNP injection to
skin transplanted mice for 13 days post-transplant. DNP
A B

D

C

FIGURE 6 | Protective role of 3HK and 3HAA in TEC stimulated with cytokines. Primary human renal TEC pre-incubated with different doses of 3HK or 3HAA
overnight; the cells are challenged with the cytokine cocktail (15 nM IFNg, 6 nM TNFa, and 3 nM IL1b) for 24 h; protein expression was assayed with Western blot:
(A, B) 3HK and 3HAA cannot reverse IDO, MHC I, BID expression induced by cytokines. 3HK and 3HAA effectively restore Bcl-xL and Tjp1 expression. 3HAA
shows its different function in up-regulation of AhR expression in TEC in inflammatory conditions. (C) Qualification of protein expression in TEC challenged with
cytokine cocktail in the presence of 3HK. ***P < 0.0001 versus cell treated with Cyto. (D) Qualification of protein expression in TEC challenged with cytokine cocktail
in the presence of 3HAA. ***P < 0.0001, ****P < 0.00001 versus cell treated with Cyto. Pairwise comparison of individual dose to control indicated same p-value. All
Western blots are representative of three independent experiments; analysis is multiple one-way ANOVA.
A B

D E F

G

C

FIGURE 7 | Effects of 3HK and 3HAA on hPBT proliferation and 3HK toxicity on TEndo, TEC, and hPBT. hPBT cell proliferation in (A) normal medium, (B) cytokine
cocktail; (C) cytokine cocktail plus 3HK (50 µg/ml); (D) cytokine cocktail plus 3HK (100 µg/ml); (E) cytokine cocktail plus 3HAA (10 µg/ml) and (F) cytokine cocktail
plus 3HAA (20 µg/ml); the data of flow cytometry is representative of four independent experiments. (G) Cytotoxicity of 3HK on Endo, TEC, and hPBT. The assay is
representative of four independent experiments. ***P < 0.001 versus cells without treatment; analysis is the unpaired t-tests.
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effectively attenuated skin allograft rejection in wild-type
C57black/6 mice but did not reduce skin allograft rejection on
IDO knockout C57Black/6 mice (Figure 8). Meanwhile 3HK
injection effectively reduced allograft rejection on IDO knockout
C57Black/6 mice (Figure 8) and wild-type C57black/6 mice
(data not shown).

We further investigated whether DNP treatment attenuated
allograft rejection in a pig kidney transplantation model. Ex vivo
perfusion of allografts with DNP pretransplantation resulted in a
2.4-fold increase in IDOmRNA (Figure 9A), a 2.7-fold increase in
IDO protein, and a 2.45-fold increase in IDO activity (data not
shown). In association with increased IDO, KMOmRNA was also
increased 2.5-fold (Figure 9B). The allograft treated with DNP
showed less rejection (Figure 9C). IHC of KMO also indicated that
allografts pretreated with DNP had less cell infiltration, and TEC
retained high expression of KMO in graft tubules (Figure 9D).
DISCUSSION

Rejection of renal allograft and acquired complications of long-
term immunosuppressant medication aimed at attenuating
rejection by the recipient’s immune system are the major
causes of subsequent allograft loss. Therefore, investigation of
the molecular mechanism of rejection and treatment of rejection
Frontiers in Immunology | www.frontiersin.org 9
has been the foremost subject of interest since the establishment
of allogeneic transplantation. Targeted improvements in
immunosuppressive therapy could have a substantial impact
on patients’ long-term survival. Although immunosuppressants
have already improved in terms of specificity and lower toxicity
secondary to a better understanding of molecular mechanism
and pathology of rejection, the renal complex structure and
complicated cell biological function in glomeruli and tubules,
especially the cells in different tubular segments, have a different
biological function, which restricts the dose and usage of
antirejection drugs. In multiple organs or many types of cells
in one organ, the drugs may favor some specific cells but injure
other cells. Therefore, the overdose or long-term usage of
antirejection medication results in a series of complications.
Indeed, current clinical use of antirejection drugs in KTx
including glucocorticoids, cyclophosphamide, chlorambucil,
azathioprine, mycophenolate salts, cyclosporine, and
tacrolimus can cause toxicity to allograft and other organs (67–
73). Thus immunosuppressants with low toxicity and high
efficiency are in high demand. The ideal drugs are metabolites
preventing rejection of the transplanted organ while also
providing normal physiological function, effectively optimizing
the recipient’s immune response with diminished toxicity.

IDO has been reported to prevent allogeneic fetal rejection by
depletion of tryptophan or increase the ratio of kynurenine to
A

B

C

FIGURE 8 | Tolerance effect of kynurenine and its metabolic derivatives in skin graft rejection. (A) Eight-week-old B6 or IDO knockout (B6IDO−/−, IDO-KO) recipients
were transplanted with skin from donor Balb/c (Balbc) mice and treated with DNP or 3HK (i.p. injection) on day 0 (the day before operation). Each panel shows the
appearance of donor ear skin tissues immediately following grafting onto the recipient on day 1 (operation day). (B) Skin grafts on day 14 from the same mice as (A).
(C) Graft remaining area in percent on day 14 compared to day 1 from different treatments. *P < 0.05, ***P < 0.001, ****P < 0.0001 versus Balb/B6; analysis is
multiple one-way ANOVA.
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tryptophan (18). Studies have indicated that induced or
transgene IDO can attenuate allograft rejection in rodent
transplant models (18, 26–35). Given these findings, we
planned to improve the outcome of allograft rejection in pig
mismatch kidney transplantation via inducing IDO expression.
We found that IDO activity increased from 10 to 100-fold
without a clear correlation with allograft function. Some
allografts with high IDO activity had normal physiological
function, while some allografts with high IDO activity had an
abnormal function other allografts with low IDO activity lost
function. Interestingly, allografts with normal function had low
IDO activity and relatively high KMO expression. KMO
expression had an inverse association with creatinine
concentration in the serum of the recipient holding allograft
rejection. This led us to hypothesize that KMO may be the main
mediator preventing rejection in IDO-initiating tryptophan to
kynurenine metabolites. Indeed, a 2.5 to 5.2-fold kynurenine
increase and a 6.6 to 58.3-fold 3HAA increase have been found in
cord blood (74). As the intermediate between kynurenine and
3HAA in the kynurenine metabolic pathway, 3HK should play
an important role in preventing fetus rejection.

TECs are the primary targets in IRI and acute allograft
rejection (43, 75), and they exist in recipient urine as a
biomarker of acute rejection in the early stage of KTx (76).
However, the molecular mechanism of TEC injury and allograft
rejection has not been fully described. We and other scientists
found that many increased cytokines in the early allograft
rejection stage were associated with TEC injury (40, 77–82).
These secreted cytokines should play the important role in
inducing TEC injury, which leads to graft failure from
epithelial to mesenchymal transition (EMT) (83) or cell death
including necrosis and apoptosis (76, 84, 85).

Since a number of cytokines have been found to induce TEC
injury, and TEC injury is relevant to rejection (86–88), scientists
Frontiers in Immunology | www.frontiersin.org 10
investigate their relationship in order to provide effective
prevention and treatment of allograft rejection. Altered gene
expression in the ischemia–reperfusion process may induce
reversible injury for allograft organ and tissues or may cause
an irreversible chain of injuries which lead to rejection. In this
study, three cytokines in low-dose induced TEC injury via
activation of many signaling pathways; injured cells had an
abnormal physiological function, altered cell phenotype, and
finally resulting in cell death. These cytokines possibly induced
dramatic accumulation of MHC I & II on TEC cell surface to
trigger direct and indirect immune response by recipient’s
immune response. Additionally, the three cytokines almost
silenced KMO expression resulting in the reduction of 3HK,
which also inevitably affected the tandem enzymatic reaction of
kynureninase together with KMO to produce 3HAA. Although
3HAA can also be produced by the combination of kynureninase
and anthranilic acid 3-hydroxylase to biologically avoid KMO
involvement in producing 3HAA, a previous study revealed 3HK
is a stronger inhibitor of T cell proliferation than 3HAA in
physiological condition (21). In addition, 3HK has other
important biological functions as the metabolic precursor of
kynurenine aminotransferase to produce important biological
product xanthurenic acid and downstream metabolites. Our
current study also revealed that 3HK is a stronger protector of
the epithelial cell barrier (Figure 6A). Thus, KMO showed its
importance in kynurenine metabolism and kynurenines’
immune regulation.

The novel findings here indicated 3HK and 3HAA prevented
TEC from injury via increasing Bcl-xL to prevent TEC apoptosis
and increasing the expression of tight junction protein 1 to
maintain the epithelial cell barrier intact. These findings suggest
that reduction of KMO in the ischemia–reperfusion process
is responsible for TEC and allograft injury in the early stage
of KTx.
A B

D

C

FIGURE 9 | Reduction of allograft rejection by DNP-induced KMO upregulation. Grafts were ex vivo perfused with DNP, transplanted, and harvested at 72hours
post-transplantation. (A) DNP-induced IDO expression (B) DNP-induced KMO expression, (C) Effect of DNP treatment on renal function (serum creatinine) from
mismatched transplants. (D) Representative KMO IHC expression from normal graft right kidney as control (CTR), and autograft (Auto), mismatched allograft (Allo),
and mismatched allograft treated with DNP (Allo+DNP). ****p < 0.0001, analysis is multiple unpaired t-tests. The scale bar is 500mm.
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Half a century ago, experimental observation on murine skin
transplant indicated that graft perfusion with allogeneic RNA
attenuated allograft rejection to prolong allograft survival (89). It
was further discovered that allograft perfused with any RNA and
DNA had a better outcome (90). DNA-nanoparticles (DNPs)
increase tolerance by IDO-induced Tregs (48). The free-CpG
LacZ DNP administration through blood circulation can
improve allograft survival in an IDO dependent manner (48,
66). 3HK and 3HAA effectively reduced rejection through
inhibition of T cell proliferation, which suggested that
kynurenine derivatives are the real players in preventing
rejection. IDO initiates the production of kynurenine, which is
further metabolized by downstream enzymes KMO and
kynureninase to produce 3HK and 3HAA respectively; both
kynurenine derivatives strongly prevent allograft rejection.

Ex vivo perfusion of graft pre-transplant with DNP induced
IDO and KMO in grafts in a concerted regulation action similar
to the molecular regulation of IDO and KMO in the brain (91).
KMO was dramatically down-regulated in allograft rejection and
TEC in cytokine pool (40); the administration of DNP with ex
vivo perfusion increased KMO expression associated with
reduction of allograft rejection. A previous study revealed
increasing KMO may be unfavorable in the brain and pancreas
(62–64, 91), but the real risk of pancreatitis from KMO requires
further investigation. KMO likely has dual functions that may or
may not favor some specific cells (92). Although the reduction of
KMO has recently been reported to induce abnormal kidney
function (93), the beneficial functions of KMO on other tissues
or organs may have been overlooked. The administration of 3HK
to the recipient of skin transplant can effectively improve the
outcome of allograft on the IDO knockout model; this clearly
defines the tolerogenic role of KMO.

When pig grafts were ex vivo perfused with DNP, we
found that pig grafts are very sensitive to lipid toxicity; the
ratio of lipid to DNA is very crucial for attenuation of allograft
rejection and improvement of allograft function. Some liposomes
and nanomedicine can induce complement activation-related
pseudoallergy on pig models (94). The ideal nano-therapeutic
should be carefully tested to remove lipid toxicity on
drug treatment.

The combination of IFNg–TNFa–IL1b causing TEC injury
with increased MHC I and II provides the potential molecular
mechanism of rejection on TEC and allograft during
transplantation. The expression and regulation as well as
location of MHC I and II induced by cytokines should be
further investigated in the future, which may decipher the
molecular mechanism of allograft rejection from ischemia–
reperfusion and early stage of rejection procedure in organ
transplantation. In current study, KMO served as a crucial
mediator in linking ischemia procedure to rejection as
Frontiers in Immunology | www.frontiersin.org 11
evidenced by its dramatic down-regulation in ischemia–
reperfusion resulting in low 3HK and 3HAA production and
ultimately leading to loss of TEC self-protection. This allowed
disruption of endogenous metabolites in TEC in preventing T
cell proliferation with the final consequence of rejection.

The formation, prevention, and outcome of allograft rejection in
KTx is a very complex subject, which relies on many factors such as
ischemia–reperfusion procedure and operation procedure,
instinctive genetic match, and side effect of long-term medication.
The early disruption of gene expression will trigger a reaction chain
to result in graft rejection and loss. The current study demonstrated
that down-regulation of KMO caused by ischemia and early stage of
rejection is a key mediator to cause allograft rejection due to
reduction of 3HK and 3HAA production. 3HK and 3HAA
strongly prevent allogeneic T cell proliferation and effectively
protect graft barrier function via increasing Bcl-xl and TJP1
expression. In addition, an effective elimination of cytokine storm
caused in IRI procedure or blocking cytokine-induced reduction of
KMO, and moderate supplementation of 3HK and 3HAA after
transplantation can provide graft better outcome.
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