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SUMMARY
COVID-19 exhibits extensive patient-to-patient heterogeneity. To link immune response variation to disease
severity and outcomeover time, we longitudinally assessed circulating proteins aswell as 188 surface protein
markers, transcriptome, and T cell receptor sequence simultaneously in single peripheral immune cells from
COVID-19 patients. Conditional-independence network analysis revealed primary correlates of disease
severity, including gene expression signatures of apoptosis in plasmacytoid dendritic cells and attenuated
inflammation but increased fatty acid metabolism in CD56dimCD16hi NK cells linked positively to circulating
interleukin (IL)-15. CD8+ T cell activation was apparent without signs of exhaustion. Although cellular inflam-
mation was depressed in severe patients early after hospitalization, it became elevated by days 17–23 post
symptom onset, suggestive of a late wave of inflammatory responses. Furthermore, circulating protein tra-
jectories at this time were divergent between and predictive of recovery versus fatal outcomes. Our findings
stress the importance of timing in the analysis, clinical monitoring, and therapeutic intervention of COVID-19.
INTRODUCTION

COVID-19 is a potentially fatal disease caused by infection

with the coronavirus SARS-CoV-2 (Zhou et al., 2020b), which

has been fueling a global pandemic since December 2019

with more than 117 million confirmed cases and 2.6 million

deaths to date (https://www.who.int/emergencies/diseases/

novel-coronavirus-2019). The clinical course of COVID-19

exhibits extensive heterogeneity: the infection can result in little

to no symptoms, or mild disease with complete recovery, but

also critical illness, hospitalization, and progression to acute res-

piratory distress syndrome (ARDS), tissue damage, and death

(Wu and McGoogan, 2020). Variables such as age and host
1836 Cell 184, 1836–1857, April 1, 2021 ª 2021 Published by Elsevie
genetic variations (e.g., TLR7 in men [van der Made et al.,

2020] or genes involved in type I interferon [IFN] production

[Pairo-Castineira et al., 2020; Zhang et al., 2020c]), presence of

autoantibodies (Bastard et al., 2020; Wang et al., 2020), and

preexisting conditions, including obesity, diabetes mellitus,

and cardiovascular disease have been identified as risk factors

for severe disease and poor outcomes (CDC COVID-19

Response Team, 2020; Williamson et al., 2020). The research

community has rapidly mobilized to investigate how human im-

mune response variations can contribute to disease severity,

progression, and outcome (for review, see Grigoryan and Pulen-

dran, 2020). Understanding the mechanisms underlying immune

response dynamics and differences across patients is critical for
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designing effective therapeutics, prognostic tools, and preven-

tion strategies better tailored to individual patients.

The immune system protects the host but can also drive life-

threatening inflammatory pathologies (Matheson and Lehner,

2020; Tay et al., 2020). Human immune responses to SARS-

CoV-2 infection are highly dynamic; most of the data thus far

have come from studies of hospitalized patients following symp-

tom onset (Arunachalam et al., 2020; Laing et al., 2020; Lucas

et al., 2020; Mathew et al., 2020; Rydyznski Moderbacher

et al., 2020; Schulte-Schrepping et al., 2020; Su et al., 2020).

COVID-19 patients are broadly characterized by elevation in

neutrophils and monocytes concomitant with lymphopenia in

blood, particularly with decreases in CD4+ and CD8+ T cells

(Lucas et al., 2020; Mathew et al., 2020), including subsets

such as gd T cells (Laing et al., 2020). However, consistent

with ongoing adaptive responses, increases in the frequency of

activated and cycling CD4+ and CD8+ T cells as well as activated

B cells and plasmablasts have been detected (Laing et al., 2020;

Mathew et al., 2020). Accordingly, robust humoral responses

have been observed with marked elevation of antibodies against

SARS-CoV-2 proteins, such as the spike and nucleocapsid

(Burbelo et al., 2020; Ju et al., 2020; Laing et al., 2020; Long

et al., 2020; Zheng et al., 2020). However, lack of coordination

among, and delay in, antigen-specific T and B cell responses

tend to mark severe disease (Rydyznski Moderbacher et al.,

2020). The level of proinflammatory cytokines such as interleukin

(IL)-6, IL-8, IL-18, and tumor necrosis factor alpha (TNF-a) are

often elevated in COVID-19 patients, and higher levels of IL-6

have been found to be predictive of poor outcomes in several

studies (Liu et al., 2020; Mandel et al., 2020). TNF-a, inter-

feron-g-inducible protein 10 (IP-10 or CXCL-10), and IL-10 levels

have also been shown to carry prognostic information (Abers

et al., 2021; Del Valle et al., 2020; Laing et al., 2020; Lucas

et al., 2020).

Innate immunity shows signs of dysregulation in COVID-19.

Early reports noted the low levels of type I IFN activity detected

in peripheral blood or lungs of COVID-19 patients (Acharya et al.,

2020; Blanco-Melo et al., 2020; Hadjadj et al., 2020), suggesting

a potential defect in viral defense. However, later reports found

type I IFN transcriptional signatures (IFN-I signatures) in cells

from bronchoalveolar lavage (BAL) fluids or peripheral blood of

patients (Arunachalam et al., 2020; Liao et al., 2020; Schulte-

Schrepping et al., 2020). The levels of both circulating IFN-a pro-

teins and IFN-I signature in blood were negatively associated

with the time post symptom onset and more mildly, with disease

severity (Arunachalam et al., 2020; Hadjadj et al., 2020), suggest-

ing that timing plays an important role in both the induction and

experimental detection of type I IFN activities. In addition to the

genetic evidence linking the type I IFN pathway to severe COVID-

19 mentioned above, auto-antibodies against type I IFN have

been found in some patients with life-threatening disease

(Bastard et al., 2020; Wang et al., 2020), further implicating the

importance of type I IFN response to protection against severe

disease. Aside from infected epithelial cells, plasmacytoid den-

dritic cells (pDC) are another major producer of type I IFNs in

response to viral infections. The frequency of pDCs in peripheral

blood has been found to be lower in COVID-19 patients than

healthy controls (HCs) and negatively correlated with disease
severity (Arunachalam et al., 2020; Kuri-Cervantes et al., 2020;

Laing et al., 2020), but substantial changes in pDC levels have

not been found in BAL fluids or lung autopsies (Chua et al.,

2020; Liao et al., 2020; Nienhold et al., 2020; Wauters et al.,

2020). In addition, cell surface levels of HLA-DR have also

been found to be lower in classical monocytes (Giamarellos-

Bourboulis et al., 2020; Moratto et al., 2020; Schulte-Schrepping

et al., 2020) and myeloid DCs (Arunachalam et al., 2020), sug-

gesting that patients undergoing active inflammation and

immune responses to SARS-CoV-2 have attenuated innate

immune functions.

Given the importance of timing (Matheson and Lehner, 2020)

and the involvement of diverse immune cells with evolving states

in COVID-19, here we used multimodal single-cell profiling and

computational approaches to longitudinally assess hospitalized

COVID-19 patients. In addition to providing a time-resolved sin-

gle-cell atlas of COVID-19 for further integration with other sin-

gle-cell datasets (Schulte-Schrepping et al., 2020; Su et al.,

2020; Unterman et al., 2020; Wilk et al., 2020; Yao et al., 2020;

Zhang et al., 2020b), we revealed a network of dynamically

evolving cell-type-specific signatures linked to disease severity.

Strikingly, our analyses uncovered a late time window during

which the host immune response undergoes divergences corre-

lated with disease severity and predictive of fatal outcomes. Our

results raise the prospect of more personalized intervention stra-

tegies and stress the importance of timing in the analysis and

clinical monitoring of COVID-19.

RESULTS

Study design and approach
Peripheral bloodmononuclear cells (PBMCs)were obtained from

33 hospitalized patients from Brescia, Italy (Figures 1A and S1A)

and 14 age- and gender-matched HCs (see STARmethods). The

patients were classified as moderate (n = 3), severe (n = 5), and

critical (n = 25 with 4 deceased during hospitalization) based

on the National Institutes of Health guidelines (http://www.

covid19treatmentguidelines.nih.gov/overview/clinical-presentation/)

(Table S1). This distribution of disease severity is reflective of the

early pandemic in Northern Italy when only the most severe

patients were hospitalized due to capacity limitations. Longitudi-

nal samples were obtained at up to four time points from each

patient (time 0 [T0] to time 3 [T3]) that covered a range of times

post symptom onset, thus providing a unique opportunity for

linking immune state variations at T0 (at or near the time of

hospital admission) to disease status and severity as well as

reconstructing temporal immune response trajectories by

pooling information across patients (Figure 1A).

Peripheral single immunecells were profiled by cellular indexing

of transcriptomes and epitopes by sequencing (CITE-seq)

(Stoeckius et al., 2017), simultaneously measuring (1) the expres-

sion of 188 surface protein markers (plus 4 isotype control anti-

bodies) (Table S2), (2) the mRNA transcriptome, and (3) B and

T cell receptor (BCR/TCR) sequences of the variable/diversity/

joining (V(D)J) region. In addition to total PBMCs, we sorted

non-naive B and T cells to increase their representation for T/B

cell clonality and repertoire analysis. We integrated T cell clonality

data here, while the corresponding B cell data will be reported
Cell 184, 1836–1857, April 1, 2021 1837
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separately. The data were analyzed at both the single cell and

‘‘pseudobulk’’ levels—the latter capturing the average gene

expression profiles of cell clusters and states while mitigating sin-

gle-cell mRNA measurement noise (Kotliarov et al., 2020;

Soneson and Robinson, 2018). In addition to multimodal single-

cell profiling, we have obtained and, in our analyses below, inte-

grated blood cell count data and serum protein profiles (Abers

et al., 2021) covering 63 circulating proteins including cytokines.

Our analyses focused on the gene expression program within

cell clusters (capturing cell types and states). We built mixed

effect statistical models to link these parameters to disease

status (COVID-19 patients versus HCs), disease severity (after

adjusting for the effects of timing; see below), and timing

(time since symptom onset [TSO]) after accounting for age and

experimental batch (Figure 1B). The goal was to first uncover

cell type specific gene expression correlates of disease status

and severity at T0 (near admission) followed by a dissection of

how immune cell states evolve over time. Given the dynamic

nature of the immune response to SARS-CoV-2, accounting for

and disentangling the effects of timing when analyzing disease

severity correlates were particularly important.

Empowering disease severity correlate analysis:
development of a multi-parameter disease severity
metric
Given the large proportion of patients classified as ‘‘critical’’ (or a

World Health Organization [WHO] ordinal score of R5) in our

cohort, we first sought to use established clinical, inflammatory,

and cell count parameters to develop a quantitative disease

severity score; such a metric would allow us to delineate finer

shades of disease severity (e.g., breaking ties among patients

in the same severity category) and thus better power down-

stream analyses. Based on the literature (Del Valle et al., 2020;

Lucas et al., 2020; Mandel et al., 2020; Schett et al., 2020), we

selected circulating proteins associated with inflammation

(TNF-a/b, IL-6, and IL-18), IFN responses (IP-10 and CXCL9), im-

mune responses (IFN-g, IL-4, IL-13, and IL-17), and clinical

markers known to be correlated with COVID-19 severity, namely
Figure 1. Study design and a multi-parameter disease severity metric

(A) COVID-19 patient cohort overview and sample collection timeline. The distribu

the top while the sampling for each of the 33 donors (age and gender indicated i

points. One patient (P098) with unknown TSO is depicted here by using his hospita

after initial quality control as they did not have a sufficient number of cells (see S

(B) Experimental design, analysis questions, and approach. Frozen PBMCs from

thawed and pooled, followed by combined surface protein/mRNA single-cell expr

a combination of SNP-based and ‘‘hashtag’’ antibody staining (see STAR me

identified bymanual gating) and cell subset identification based on surface protein

each sample per cell cluster/population and then used for downstream analysis us

TSO, while controlling for other variables such as TSO (when characterizing the

(C) Heatmap of 18 clinical and serum protein measurements of patients after corre

across subjects. Samples are divided into four groups based on unsupervised hier

hospitalization are denoted with an asterisk (*) next to their labels. None of the T

(D) Parameter importance of the fitted coefficient values from partial least squares

their absolute median coefficient values from independent training iterations in le

across all iterations. CXCL9/MIG, monokine induced by g interferon; IP-10, inter

(E) Distribution of patient disease severity metric (DSM) groups based on the d

(left panel, see STAR methods) and an independent set of 64 patients from Bresc

Significance of group difference is determined by two-tailed Wilcoxon test. *p %

See also Figure S1 and Table S1.
C-reactive protein (CRP), neutrophil/lymphocyte ratio (NLR),

lymphocyte and platelet counts, fibrinogen, D-dimer, lactate de-

hydrogenase (LDH), and pulse oximetry to fraction of inspired

oxygen (SpO2/FiO2) ratio. Excluding three patients with very

late initial sample time points (TSOR30 days), hierarchical clus-

tering of the T0 patient samples using these parameters revealed

several distinct patient profiles (Figure 1C), including (1) a profile

of the most critical patients characterized by high levels of in-

flammatory markers but low in TNF-b and lymphocyte counts,

(2) the moderate/severe patients with higher IL-17 and lympho-

cyte counts with either high or low levels of several cytokines,

and (3) most of the critical-alive patients with a more mixed pro-

file, consistent with the notion that a finer quantitative delineation

of disease severity could be useful to characterize these

patients.

Using ordinal partial least squares regression and leave-one-

out cross validation within the CITE-seq cohort, we performed

feature selection to identify parameters most predictive of the

four severity-outcome categories (Figure 1D) (SpO2/FiO2 ratio

was not used because it was used to define clinical disease

severity). Those positively associated with severity include NLR,

LDH, IP-10, D-dimer, IL-6, and IL-13, while lymphocyte count

and TNF-b were correlated with less severe disease. These top

parameters were then used along with the SpO2/FiO2 ratio to

derive a severity score for each patient. As expected, this disease

severity metric (DSM), was significantly associated with the

severity-outcome categories within our CITE-seq cohort (Fig-

ure 1E) and also with the WHO ordinal score (Figure S1B). This

was validated in an independent set of 64 patients from Brescia

for whom DSM was computed using the same formula derived

from our CITE-seq cohort only (Figure 1E). The DSM of the crit-

ical-alive patients in both the CITE-seq and the validation cohorts

spanned a wide range, from levels comparable to the moderate

and severe categories, to those of the critical-deceased patients

(Figure 1E). As a further indication that DSM can delineate clini-

cally relevant disease severity, DSM was significantly associated

with intensive care unit (ICU) admission status in the validation

cohort, even when assessed in the critical-alive patients only
(DSM)

tion of sample collection timing since symptom onset (TSO) is summarized on

n parentheses) is plotted below indicating individual T0 (1st) up to T3 (4th) time

l admission date as the reference. Some samples were excluded from analysis

TAR methods).

the collected samples indicated in (A) and age-matched healthy controls were

ession analysis (CITE-seq); data from individual sampleswere demultiplexed by

thods). After automated clustering (plus additional targeted cell populations

profiles, pooled RNA data (‘‘pseudobulk’’) libraries were generated in silico for

ingmixed effect statistical modeling to assess the effect of disease severity and

effect of disease severity), age, and experimental batch.

ction for days since hospital admission. Measurement values are standardized

archical clustering. Patients admitted to the intensive care unit (ICU) during their

0 samples were collected at the ICU.

(PLS) ordinal regressionmodels of disease severity. Parameters are ordered by

ave-one-out cross validation. Error bars indicate SD of coefficient distribution

feron-g-inducible protein 10.

isease severity-outcome classification for the 30 patients with CITE-seq data

ia (right panel). The DSM formula was trained using the CITE-seq cohort only.

0.05, **p % 0.01, and ***p % 0.001.
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(Figure S1C). DSM thus provides a quantitative tool to order pa-

tients on a continuous severity scale; in our analyses below, we

also used DSM to bin patients into discrete balanced groups of

lower (DSM-low: DSM % median DSM) versus higher disease

severity (DSM-high: DSM > median DSM).

A multimodal time-resolved single immune cell atlas of
COVID-19 patients and matching HCs
Given the interpretability of immune cell subsets identified using

surface protein markers, we used the 188 surface protein profile

to cluster �400,000 single cells and derived 30 coarse-resolution

cell clusters (Table S3) spanning diverse innate and adaptive im-

mune cell types and subsets (Figures 2A and 2B, small clusters

not shown; Tables S2 and S3). Additional higher resolution clus-

tering within each coarse level subset identified finer subpopula-

tions (e.g., distinct memory subsets within the CD4+ memory

T cell cluster) (Figure 2C). Manual gating was also used to obtain

specific cell populations such as plasmablasts and circulating T

follicular helper cells (cTfh). The relative frequency of the major

cell populations obtained by CITE-seq is largely concordant with

that obtained independently from 27-color flow cytometry (Fig-

ure S2A). Furthermore, after accounting for TSO and age, we

confirmed several previously reported associations between pe-

ripheral immune cell frequencies and disease status or severity

near hospital admission (T0) (Figures S2B and S2C), including

the negative correlation between severity (here captured by

DSM) and the frequency of pDCs, CD8+ central memory T cells,

and non-classical monocytes (Arunachalam et al., 2020; Gri-

goryan and Pulendran, 2020; Kuri-Cervantes et al., 2020; Laing

et al., 2020; Mathew et al., 2020; Schulte-Schrepping et al., 2020).

Due to the relatively lower number of cells obtained per sample

by CITE-seq compared to flow cytometry, the frequency of

rarer cell subsets showed weaker correlation between these two

assays (Figure S2A). However, the power of CITE-seq lies in its

ability to assess gene expression within cell subsets defined by

surface proteins. As an example, a mRNA-only uniform manifold

approximation and projection (UMAP) visualization of classical

monocytes (identified by surface proteins only) shows separation

of cells based ondisease status, DSM, and to a lesser extent, TSO

(Figures 2D–2F). Surface protein expression also differs across

cells with distinct underlying RNA expression; for example, cells

expressing CD163 or HLA-DR protein (Figures 2G and 2H) group

together and are present inmultiple donors (Figure 2I). Thus, these

data (GEO: GSE161918) constitute a rich multimodal time-

resolved single-cell dataset for exploring cell-type-specific tran-

scriptomic and pathway signatures of disease severity and their

dynamic trajectories.
Figure 2. A multimodal single peripheral immune cell atlas of COVID-1

(A) Average DSB-normalized protein expression (see STARmethods) in each coar

are shown.

(B) UMAP visualization of single cells based on protein expression profiles for inn

coarse-level cluster.

(C) Average expression of selected surface protein markers in example finer-re

EM.TE, terminal/effector memory).

(D–I) Transcript-based UMAP visualization of classical monocytes defined by sur

group (only COVID-19 samples are shown) (E), days since symptom onset (only CO

HLA-DR expression (H), and donor (I).

See also Figure S2 and Tables S2 and S3.
Type I interferon signatures are negatively associated
with disease severity and decrease over time
We systematically searched for transcriptional correlates of dis-

ease status (COVID-19 versus HCs), severity (DSM), and time

(TSO) within individual cell clusters. Our goal was to first examine

correlates at or close to hospital admission (T0) after accounting

for TSO differences across patients (Figures 3A and 3B),

followed by incorporation of longitudinal data within patients to

reveal the effects of time (TSO) and the temporal evolution of

cell-type-specific immune signatures in DSM-high and DSM-

low patients separately (Figures S3A andS3B).We fit the expres-

sion of each gene within individual cell clusters (Figure 2A, plus

additional manually gated populations) via a model that incorpo-

rated the primary effect (COVID-19 versus HCs or DSM

and TSO), age, and experimental batch, followed by gene set

enrichment analysis (GSEA) (Subramanian et al., 2005) to

uncover the biological processes and pathways involved.

IFN-I and early viral responsegenesignatures from live influenza

challenge (Woods et al., 2013) or yellow fever vaccination (Querec

et al., 2009) (see STAR methods for signature compilation) were

elevated inCOVID-19 relative toHCsacrossmyeloidand lymphoid

cell lineages (Figure 3A; Table S4A). These signatures were nega-

tively associated with DSM (Figures 3B and 3C; Table S4B): the

DSM-high patients tended to have weaker IFN-I signatures than

DSM-low patients even after accounting for TSO, although even

someof themostcritical patientshadelevated IFNsignatures rela-

tive to HCs (Figure 3C). IFN-I signatures decreased over time and

the extent of thedropwasmoreprecipitous inDSM-lowpatients in

most cell types, partly because those patients started off at a

higher level (Figures 3D and 3E).

Translation and ribosomegenes tended to be lower inmost cell

types with elevated IFN-I signatures (Figures 3A, 3G, and S3C;

Table S4A, translation/ribosome signatures). Elevated type I

IFNs are known to suppress protein translation to limit virus pro-

duction (Ivashkiv and Donlin, 2014). Consistently, as IFN-I signa-

tures decreased over time, translation increased (Figure S3D).

Interestingly, even though IFN-I signatureswere negatively asso-

ciated with DSM in most cell types, translation signatures were

not positively associated with DSM in the same cell types

(Figure 3B; Table S4B), indicating that additional regulation was

involved to tune protein translation in COVID-19 patients.

pDC apoptosis is associated with elevated disease
severity and reduced pDC frequency
pDCs are major producers of type I IFNs and orchestrators of T

and B cell responses upon viral infection (Swiecki and Colonna,

2015). It has been unclear why peripheral pDC frequencies were
9

se-level cell cluster. Only proteins with a DSB value >3 in at least 1%of the cells

ate and adaptive groupings of cells labeled by the name of the corresponding

solution CD4+ T cell clusters (CM, central memory; TM, transitional memory;

face proteins. Cells are colored according to donor class (D), disease severity

VID-19 samples are shown) (F), surfacemarker CD163 expression (G), surface
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(A) Gene set enrichment analysis (GSEA) result of COVID-19 versus HCs at T0. Selected gene sets (rows, see STARmethods) are grouped into functional/pathway

categories. Differential expressionmoderated t statistics were computed from a linear model accounting for age, and experimental batch (TSO not accounted for
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decreased in COVID-19 patients and negatively correlated with

disease severity (Figures S2B and S2C) (Arunachalam et al.,

2020; Kuri-Cervantes et al., 2020; Laing et al., 2020; Lucas

et al., 2020); a better understanding of this observation could

help explain the attenuated IFN-I signatures in the most severe

patients (Figure 3B; Table S4B).

There is no evidence thus far that blood pDCs migrate into

tissues after SARS-CoV-2 infection (Chua et al., 2020; Liao

et al., 2020; Nienhold et al., 2020; Wauters et al., 2020); pDC

infiltration was also not evident in bronchoscopy (Sánchez-

Cerrillo et al., 2020). Alternatively, our analysis revealed that

apoptotic gene signatures in pDCs, including BRCA2,

CASP3,CASP8, BID, BAK1, and XBP1, were positively associ-

ated with disease status and severity (some of the most critical

patients had few or no pDCs, so they were filtered out), as were

oxidative stress-induced senescence genes such as FOS,

HIST1H2AC, PHC3, MDM4, CBX6, and CDKN2D (Figures 3A,

3B, and 3F; Tables S4A and S4B). We further validated that

the pDC apoptosis signature was significantly increased in

COVID-19 patients relative to HCs using publicly available

single-cell RNA sequencing (RNA-seq) data from two indepen-

dent COVID-19 cohorts from Germany (Figures S3E–S3G)

(Schulte-Schrepping et al., 2020), although the positive associ-

ation with disease severity was not as apparent, likely due to

weak statistical power given low cell numbers. The apoptotic

gene signature score was also negatively correlated with

pDC frequency (Pearson r =�0.72, p = 0.045), which was posi-

tively associated with IFN-I signatures in several cell popula-

tions (Figure 3G), suggesting that pDC apoptosis might have

contributed to lower peripheral pDC numbers, which then led

to the depressed IFN-I signatures in cells. We also confirmed

that circulating IFN-a2a levels in serum were positively corre-

lated with IFN-I signatures in cells (Figure 3G; CD8+ memory
were adjusted using the Benjamini-Hochberg method. The sign of the NES corre

populations (columns) are grouped by lineage/type. See Table S4A for detailed r

(B) Similar to (A) but the enrichment analysis was performed based on association

denotes the sign of the association with DSM. See also Table S4B.

(C) Heatmap of type I IFN response in classical monocytes. Heatmap showing the

for a given subject) of shared leading-edge (LE) genes from the GSEA analysis of C

genes are labeled by gene symbol and only the sample from the first time poin

grouped by HC and DSM classes; also shown are the DSM value and severity-out

number of cells not included in the GSEA test are marked by a # (cell number <8

(D) Per-sample gene set signature scores of the GO_Response to type I IFN gene s

shown as an example. Individual samples are shown as dots and longitudinal sam

LOESS smoothing, see STAR methods) were fitted to the groups separately with

gender-matched HCs is shown as a green dotted line. Gene set scores were ca

severity (DSM) association models using gene set variation analysis (see STAR m

(E) Scatterplot comparing the effect size of association between TSO and the GO

patients. Each dot corresponds to a cell type/cluster. The effect size reflects the ch

the enrichment decreasing with time). Cell types are colored by their statistical

significantly different between the two DSM groups (based on a model with a DSM

corresponds to cell types with more precipitous drop of IFN signature over time

(F) Heatmap of apoptosis/cell death signature in pDCs. Similar to (C), but instead o

with DSM are shown. Shared LE genes and genes in the REACTOME_Oxidative

(G) Heatmap showing the sample-level pairwise Pearson correlations among seru

as the IFN-I and protein translation signature scores in classical monocyte, CD

scatterplots are shown, and the corresponding entry in the heatmap is indicated us

or less than 40,000 unique molecular identifiers (UMI) in the pseudobulk library.

subject and is colored by the severity-outcome category.

See also Figure S3 and Table S4.
T cell shown; similar for other cell types). These analyses

further confirmed the negative association between IFN-I and

translation signatures within cell types discussed above (Fig-

ures 3A and 3G). Together, these results suggest that pDC

apoptosis is a potential culprit of lower pDC frequencies and

IFN-I signatures in severe COVID-19.

Conditional independence network analysis suggests
IL-15-linked fatty acid metabolism and attenuated
inflammation in CD56dimCD16hi NK cells as primary
correlates of disease severity
Thus far, our analyses identified cell-type-specific signatures

associated with DSM near hospital admission (T0) after account-

ing for TSO (Figure 3B; Table S4B), but many of them might not

reflect primary correlates of disease severity and could have

emerged because they correlated with ones that were. Thus,

we next applied conditional independence network analysis to

infer primary (or direct) correlates of DSM (see STAR methods).

Nodes in the resultant network represent the gene expression

state of a biological process in a cell population, except that

DSM itself is one of the nodes; two nodes are connected if the

correlation between them across patients is statistically inde-

pendent of their correlations with other nodes in the network.

We found four nodes directly connected to DSM (Figure 4A;

the rest of the network is captured in Table S5). Oxidative

stress-induced senescence in pDCs and fatty acid (FA) meta-

bolism in CD56dimCD16hi NK cells were inferred as the primary

positive correlates of DSM (Figure 4A; Tables S4B and S5).

The senescence signal is reflective of the aforementioned pDC

apoptosis signature (Figures 3B and 3G; Table S4B), e.g., the

senescence and apoptosis signature scores in pDCswere signif-

icantly correlated across patients even though JUN is the only

shared leading-edge gene in these two gene sets (Figure S4A).
sponds to increase/decrease of change in COVID-19 compared to HCs. Cell

esults of all gene sets which passed the adjusted p value cutoff of 0.2.

with DSM at T0, and the model controlled for TSO. The sign of the NES score

scaled average mRNA expression (within the indicated cell cluster/population

OVID-19 versus HCs (see A) and association with DSM (see B). Selected top LE

t for each patient (T0) is shown. For gene expression heatmaps, subjects are

come classification of each patient (top of the heatmaps). Subjects with a small

).

et versus TSO (in days) in DSM-low and DS-high groups. Classical monocyte is

ples from the same individual are connected by gray lines. Trajectories (using

the shaded areas representing standard error. The median score of age- and

lculated using the union of LE genes from both the timing (TSO) and disease

ethods).

_Response to type I IFN gene set in the DSM-high (y axis) and DSM-low (x axis)

ange of type I IFN signature enrichment with time (effect size <0 corresponds to

significance (adjusted p value <0.05) of whether the association with time is

-TSO interaction term, see STAR methods). The area framed by blue borders

in the DSM-low than DSM-high groups.

f the shared LE genes, all LE genes fromCOVID-19 versus HCs and association

stress-induced senescence gene set are annotated on the right.

m IFN-a2a level, pDC frequency, the apoptosis signature score in pDCs, as well

56dimCD16hi NK, and CD8 memory T cell clusters (*p value <0.05). Selected

ing bold borders. Samples were filtered to remove those with fewer than 8 cells

Note that not all subjects had IFN-a2a measurements. Each dot indicates a
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Figure 4. Conditional independence network analysis points to IL-15-associated fatty acid metabolism and attenuated inflammation in

CD56dimCD16hi NK cells as primary correlates of disease severity

(A) Disease severity network showing cell-type-specific gene set signatures directly connected with DSM (see STAR methods). Direct connections between the

nodes to each other are also shown in a lighter shade. Edge value and width indicate Spearman correlation and its statistical significance, respectively, between

DSM and the gene set signature score. In the legend: % leading-edge (LE) genes denotes the proportion of genes from the gene set that are in the LE based on

(legend continued on next page)
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Thus, this result further supports that pDC apoptosis was a

potential driver of disease severity.

The role of natural killer (NK) cell metabolism in COVID-19 is

not known. However, CD56dimCD16hi NK cells are a cytolytic

subset activated rapidly within hours of infection or after stimu-

lation by cytokines such as IL-15 (Carson et al., 1994; De Maria

et al., 2011). Strikingly, circulating levels of IL-15 were indeed

positively correlatedwith the FA signature score in theseNK cells

(Figure 4B), and this association was DSMdependent: IL-15 was

itself correlated with DSM (Figure 4C) and IL-15 and the FA

signature were no longer correlated once their associations

with DSM were statistically removed (Figure S4B). Both FA

biosynthetic and catabolic/oxidative genes were elevated in

the most severe (e.g., the critical-deceased subjects) versus

the less severe patients, who tended to express these genes at

lower levels than HCs (Figure 4D). By using single-cell RNA-

seq data from two independent German COVID-19 cohorts

(Schulte-Schrepping et al., 2020), we confirmed that this FA

signature was indeed significantly associated with disease

severity (Figures S4C–S4E).

Despite the positive association between IL-15 (a proinflam-

matory cytokine) and the FA signature, the FA signature was

negatively correlated with inflammation related processes,

including the nuclear factor kB (NF-kB) (Figures 4E and 4G;

Pearson r = �0.55, p = 0.004) and IL-1 response signatures

(see below) (Figures 4F and 4G; Table S4A), as well as with the

mTORC1 signature (HALLMARK_mTORC1_signaling) (Pearson

r = �0.63; p = 0.0008) and the IFNG transcript (Pearson r =

�0.46; p=0.02) (Figures 4Hand4I). This negative association be-

tween the FA andNF-kB related inflammation signature was also

confirmed in the two independent German cohorts (Figure S4F)

(Schulte-Schrepping et al., 2020). Thus, CD56dimCD16hi NK cells

from the most critical patients were residing in a potentially

dysfunctional state with attenuated inflammation (relative to

less severe cases) and low IFNG transcription despite exposure

to increased IL-15, as well as elevation in both FA biosynthesis
gene set enrichment analysis. The top three LE genes based on effect size (associa

the biology are shown for each gene set.

(B, C, G, and I) Scatterplots showing the correlation of circulating IL-15 level v

REACTOME_Fatty acid metabolism score versus HALLMARK_TNFa signaling vi

acid metabolism score versus HALLMARK_mTORC1 signaling score and normal

were computed using pairwise complete observations (see STAR methods). Eac

(D) Heatmap of REACTOME_Fatty acid metabolism LE genes from the GSEA an

genes are grouped based on annotations obtained from Gene Ontology. Genes

Genes in red are those in the fatty acid oxidation set.

(E and F) Similar to (D), heatmaps of inflammation related gene sets in CD56dimC

response to IL1 and KEGG_Chemokine signaling pathway (see A) (F). Heatmaps s

population for a given subject) of LE genes from the GSEA analysis of DSM asso

labeled by gene symbol. For all gene expression heatmaps (D–F), subjects are g

outcome classification of each patient (top of the heatmaps in D). Subjects with

number <8).

(H) Average IFNG mRNA expression of CD56dimCD16hi NK cells; (D), (E), (F), and

(J and K) Per-sample gene set signature scores of REACTOME_Fatty acid metab

IL-1 (K) versus TSO (in days) in DSM-high (red) and DSM-low (blue) groups of CD

samples from the same individual are connected by gray lines. Trajectories (using

representing standard error. The median score of age- and gender-matched HC

union of LE genes from both TSO association and DSM association models refle

(L) Circulating IL-15 levels in DSM-low and DSM-high groups versus TSO.

See also Figures S4 and S5 and Table S5.
and oxidation genes. Consistent with this notion, while

CD56dimCD16hi NKcells are known toproduce IFN-gearly (within

hours) after cytokine stimulation, IFN-g production decreases or

stops by 16 h (De Maria et al., 2011); prolonged exposure of NK

cells to inflammatory cytokines like IL-15 can actually lead to

hyporesponsiveness to subsequent stimulation, partly via a

loss in FAoxidation (Felices et al., 2018). Thus, here the increased

FA oxidation genes may reflect a compensatory mechanism to

counteract this dysfunctional metabolic state, although it is

unclear why FA biosynthetic genes were also increased.

Consistently, the two primary negative correlates of DSM,

chemokine signaling and IL-1 response signatures in the same

subset of NK cells (Figures 4A and 4F), shared genes with the

NF-kB and inflammation signatures, such as RELA, NFKB1B,

STAT1, and IL8, although they also contained additional genes

such as XCL1 and XCL2, which are chemokines that can be pro-

duced and secreted early after NK cell activation following an

infection (Dorner et al., 2002). This inflammatory attenuation in

the most severe patients was also found in other cell types

including classical monocytes (Figures S4G and S4H), as re-

ported earlier by others (Arunachalam et al., 2020; Schulte-

Schrepping et al., 2020). Thus, the increased FA, together with

the attenuated inflammatory and mTORC1 signatures in the

most severe patients, might reflect an exhaustion-like NK cell

state due to persistent exposure to inflammatory signals

including IL-15.

Similar to the IFN-I signatures, the FA signature decreased over

time, but here particularly in theDSM-highpatients, because those

had themost elevated expression of the FAgenes near T0 (Figures

4J, S3A, and S3B). In contrast, the inflammation signatures

increased, including the NF-kB (HALLMARK_TNFa_signaling_

via_NF-kB) and IL-1 signatures (Figure 4K; Tables S4C and S4D),

and the IFNG transcript (data not shown). Consistently, circulating

IL-15 levels decreased particularly in the DSM-high patients (Fig-

ure 4L). Unlike the IFN-I signatures, however, both the FA and

inflammationsignaturesdeviated further fromtheHCseven though
tion with DSM; see STARmethods) and other selected genes representative of

ersus REACTOME_Fatty acid metabolism signature score (B) and DSM (C);

a NF-kB score and GO_Cellular response to IL-1 score (G); REACTOME_Fatty

ized IFNG mRNA expression (I). Pearson correlation (R) and associated p value

h dot indicates a subject and is colored by the severity-outcome category.

alysis of DSM association in CD56dimCD16hi NK cells at T0 (see Figure 3B). LE

with an asterisk (*) are those with both biosynthetic and catabolic annotations.

D16hi NK cells at T0: HALLMARK_TNFa signaling via NF-kB (E), GO_Cellular

howing the scaled average mRNA expression (within the indicated cell cluster/

ciation in CD56dimCD16hi NK cells (see Figure 3B). Selected top LE genes are

rouped by HC and DSM classes; also shown are the DSM value and severity-

a small number of cells not included in the GSEA test are marked by a # (cell

(H) are aligned column wise.

olism (J), HALLMARK_TNF-a signaling via NF-kB and GO_Cellular response to

56dimCD16hi NK cells. Individual samples are shown as dots and longitudinal

LOESS smoothing) were fitted to the groups separately with the shaded areas

s is shown as a green dotted line. Gene set scores were calculated using the

cting the change over time and severity differences at T0 (see STAR methods).
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IL-15 droppedover time (Figures 4J-L). Thus,whereas exposure to

IL-15 earlier in the disease course might have contributed to the

dysregulated phenotypes in these NK cells, a reduction in IL-15

alone seemed insufficient to reset these cells; additional signals,

such as those from other inflammatory cytokines, might have

contributed as well (see below).

Exogenous corticosteroid use was associated with DSM (p =

0.001, F test from a linear model accounting for age, sex, ICU

and intubation statuses, and TSO) and thus might have played

a role in driving the inflammatory attenuation signature in the

CD56dimCD16hi NK cells. However, DSM was not associated

with a glucocorticoid transcriptional response signature derived

from human immune cells (Franco et al., 2019) (Figure S5A).

Importantly, both this glucocorticoid transcriptional signature

or another well-known marker of glucocorticoid or IL-10 expo-

sure (TSC22D3/GILZ transcript [Berrebi et al., 2003; Cannarile

et al., 2001]) was not negatively associated with the NF-kB, in-

flammatory, and mTORC1 signatures and also not positively

correlated with the FA signature (Figures S5B and S5C).

Although TSC22D3 mRNA level was trending higher in COVID-

19 patients than HCs, it was similar between patients on or off

corticosteroids (Figure S5D). Unexpectedly, the NF-kB and

glucocorticoid signatures were positively correlated across pa-

tients (Figure S5B). These observations together suggest that

the glucocorticoid response signaturemight be driven by endog-

enous glucocorticoids as a part of negative feedback regulation

resulting from earlier inflammatory activation in COVID-19

patients (Jamieson et al., 2010; Newton et al., 2017). Thus, a

‘‘burnt-out’’/exhausted, low inflammation, high FA gene expres-

sion state in CD56dimCD16hi NK cells could contribute to severe

COVID-19 independent of exogenous corticosteroid use.

Extensive single-cell and clonal expansion
heterogeneity without signs of exhaustion in CD8+

T cells
T cell signatureswere interestingly not implicated as primary cor-

relates of disease severity. Consistent with an acute viral infec-

tion, signs of T cell activation and proliferation such as cell cycle

and related metabolic signatures appeared in both CD4 + and

CD8+ T cells in COVID-19 patients compared to HCs (Figures

3A and 3B). Examining CD8+ T cells further at the single-cell level

including clonality information (utilizing our simultaneous TCR

and gene expression measurements) revealed extensive hetero-

geneity (Figures S6A and S6B), including subsets of activated

cells with high clonality that were more abundant in COVID-19

(i.e., cluster 14 in Figures S6A–S6D). Similar patterns of hetero-

geneity were observed in CD4+ T cells, but most CD4+ subclus-

ters were not expanded or less expanded compared to the CD8+

T cells (data not shown). Surprisingly, although clonality in all

CD8+ memory T cells was unchanged between HCs and

COVID-19 patients at T0, it was significantly higher in the

DSM-high than the DSM-low patients after accounting for TSO

(Figure S6E; p = 0.023 from linear model testing the effects of

DSM while accounting for age, batch, and TSO), suggesting

increased diversification (or depletion of clonal cells) in less se-

vere patients relative to those with more severe disease.

Despite signs of activation and proliferation, we did not detect

a cluster of ‘‘exhausted’’ CD8+ T cells associated with COVID-19
1846 Cell 184, 1836–1857, April 1, 2021
as suggested earlier (Laing et al., 2020; Zhang et al., 2020b),

based on surface markers such as PD-1 (CD279) (Figures S6B

and S6C). Furthermore, we did not detect association of exhaus-

tion with disease status or severity by using surface markers or

surface marker combinations (e.g., CD39+PD1+) (Gupta et al.,

2015) in clonally expanded CD8+ memory T cells in our cohort

(Figures S6F and S6G). Assessment using transcriptional signa-

tures of exhaustion (Wherry et al., 2007) in our cohort and in two

German cohorts (Schulte-Schrepping et al., 2020) revealed a

more complex picture given that these signatures overlap with

those of cellular activation and translation/ribosome (Figures

S6H–S6K), which were detected earlier as disease status or

severity correlates of COVID-19 (Figures 3A and 3B). Thus, tran-

scriptional signatures alone are not sufficiently specific to indi-

cate whether the cells were more exhausted or merely more

activated. Although we uncovered an exhaustion related meta-

bolic gene signature in CD56dimCD16hi NK cells as a primary dis-

ease severity correlate (Figure 4A), CD8+ T cells did not show

signs of exhaustion beyond the transcriptional signatures ex-

pected of cellular activation or regulation by type I IFNs (Ivashkiv

and Donlin, 2014), even in patients with critical disease.

Analysis of timing effects suggests a late immune
response juncture
As shown earlier, although inflammatory signatures (e.g.,

HALLMARK_TNFa_signaling_via_NF-kB) were less elevated in

the DSM-high patients than DSM-low patients early, they

increased over time and stayed elevated compared to HCs as

late as day 20 post symptom onset in cell subsets such as

CD56dimCD16hi NK cells and classical monocytes (Figures 3B,

4K, S3A, and S3B; Tables S4C and S4D). Gene signatures of

cytokine-mediated signaling pathways (e.g., IL-4/13 and IL-17

signaling) in classical monocytes also showed significant in-

creases over time, particularly in the DSM-high patients (Fig-

ure S3B). Consistent with an earlier report (Lucas et al., 2020),

the frequency of classical monocytes and its CD163hi subset

increased in both patient groups over time and peaked around

day 20 (Figure 5A). The same was true for absolute monocyte

and neutrophil counts in blood (Figure 5B). Thus, we next further

examined the dynamics around day 20, particularly to assess dif-

ferences between the DSM-high versus DSM-low patients.

We divided samples into three groups by TSO: before day 17

(27 samples), the week around day 20 (days 17–23, 16 samples),

and after day 23 (5 samples), then fitted mixed effect models to

evaluate changes between the first two periods in cell-type-spe-

cific gene expression differences between DSM-high and DSM-

low patients (Figure S7A; Table S4F; STAR methods). We

detected several statistically significant ‘‘flips,’’ for example, in-

flammatory signatures in CD56dimCD16hi NK cells and classical

monocytes were lower in DSM-high patients before day 17 but

rose to be higher than the DSM-low patients by days 17–23

(Figure 5C). We then assessed differences between the DSM-

high and DSM-low groups during days 17–23 (Figure 5D; Table

S4E). In addition to CD56dimCD16hi NK cells and classical mono-

cytes, the NF-kB gene signature was elevated in non-classical

monocytes, other NK cell subsets, mucosal-associated invariant

T (MAIT) cells, and memory and naive B cells in DSM-high

compared to DSM-low patients (Figure 5D). The inflammation
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Figure 5. Analyses of timing effects suggest a late immune response juncture
(A) Time course of monocyte subset frequencies in DSM-low and DSM-high groups. Classical monocyte is expressed as fraction of total PBMCs; the CD163hi

classical monocyte subset is expressed as a fraction of classical monocytes. The median cell frequency of age- and gender-matched HCs is shown as a green

dotted line. Individual samples are shown as dots and longitudinal samples from the same individual are connected by gray lines. P values shown are frommixed

effect linear models indicating the statistical significance of the timing effect (i.e., TSO) accounting for age and experimental batch in DSM-low and DSM-high

groups, respectively. Trajectories (using LOESS smoothing) were fitted to DSM-low and DSM-high groups separately. TSO = days 17–23 period is highlighted

with purple.

(B) Similar to (A) but showing the absolute blood neutrophil andmonocyte counts. The two green dotted linesmark the approximate reference range of cell counts

in healthy adults. The shaded areas around trajectories denote standard error.

(C) Effect size (normalized enrichment score from GSEA) comparison of the period before day 17 (TSO <day 17, green) and during the TSO = days 17–23 period

(purple) for inflammatory related gene sets. Effect sizes correspond to differences between DSM-high versus DSM-low groups (e.g., effect size <0 corresponds to

the gene signature being less enriched in the DSM-high group than DSM-low group). p values shown are FDR adjusted (via the Benjamini-Hochbergmethod) from

the test reflecting the temporal changes in the difference between DSM-high and DSM-low groups from before the day 17 period to the days 17–23 time window

(see STAR methods).

(D) Similar to Figure 3A, but showing GSEA results for assessing differences between the DSM-high versus DSM-low groups using only samples from days 17–23

since symptom onset. See Table S4E for detailed results of these selected gene sets and all sets that passed the adjusted p value cutoff of 0.2.

(E) Time course of gene set signature scores of inflammatory related gene sets in DSM-low and DSM-high patient groups in CD56dimCD16hi NK cells and classical

monocytes. The gene set signature scores were calculated using the LE genes identified from the enrichment analysis shown in (C) above to highlight differences

between the DSM-high versus DSM-low groups during the days 17–23 period. The median score of age- and gender-matched HCs is shown as a green dotted

line. The shaded areas around trajectories denote standard error.

(F) Time course of serum protein levels from DSM-low and DSM-high patients, respectively. Similar to (E). Top 4 serum proteins significantly different between

DSM-high versus DSM-low groups during the days 17–23 period are shown. See Table S6 for the full list of differentially expressed proteins.

See also Figure S7 and Tables S4 and S6.
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signature (i.e., the HALLMARK_Inflammatory_response gene set)

behaved similarly (Figures 5D and 5E; Table S4E). Heightened sig-

nals of cellular activation and proliferation were also detected,

such as cell-cycle signatures in CD8+ memory T cells (Figure 5D;

Table S4E). We also assessed circulating proteins to reveal that

several markers of inflammation (e.g., IL-6, soluble TNF receptors

1 and 2) were elevated in the DSM-high versus -low patients (Fig-

ure 5F; Table S7). Thus, this relative late period, or ‘‘juncture,’’ in

the disease course (days 17–23) was characterized by increased

inflammatory divergence associated with disease severity.

Divergences at the juncture predict fatal COVID-19
We next hypothesized that the immune statuses and trajectories

at the juncture period are also divergent between the critically ill

patients with distinct survival outcomes (Figure 6A). Because our

CITE-seq cohort only has a few patients with fatal outcomes, we

started from the larger Brescia cohort with circulating protein

measurements (175 patients; see also Abers et al. [2021]) and

generated two age- and gender-matched sub-cohorts of critical

patients with either recovery (n = 21) or fatal (n = 17) outcomes.

ICU status, intubation, and corticosteroid use were not signifi-

cantly different between these two groups during days 17–23

(Table S6).

As seen above (Figure 5B), blood monocyte and neutrophil

counts also peaked around day 20 in these patients (Figure S7B).

We found 20 proteins significantly different between the

deceased and recovered groups during the days 17–23 period

(p < 0.05 based on a mixed effect model and the estimated false

discovery rate [FDR] is 16%) (Table S7; STAR methods),

including proinflammatory cytokines such as TNF-a, IL-6, and

IFN-g. These were consistent with the DSM-high versus -low

comparison (Figure 5F; Table S7), with 45/63 proteins showing

the same direction of change between the deceased versus

recovered patients as that between DSM-high versus DSM-

low groups (p = 0.0896, Fisher’s exact test; Figure S7C), sug-

gesting that the inflammatory divergences between patients of

high versus low disease severity were qualitatively similar to

those between critical patients with distinct survival outcomes.

Similarly, a majority of the differentially expressed (DE) proteins

at the juncture had the same direction of change between the

deceased and recovered individuals in an independent US

cohort (Lucas et al., 2020) (Figure S7D).

We next reasoned that if, as suggested by the observations

above, the days 17–23 window is an immune response juncture

in the disease course, markers of inflammatory and other im-

mune processes would not only differ between the two patient

groups at the juncture but also exhibit temporal shifts during or

after the juncture period relative to the period before the junc-

ture—i.e., the juncture is a period of change and/or an inflection

point orchestrating later changes. We thus searched for proteins

that were DE between the patient groups during (days 17–23) or

after the juncture (days 24–30, ‘‘post-juncture’’) and also

required that the differences between the deceased and recov-

ered patients changed significantly over time between the pre-

juncture (days 7–16) and juncture or between the pre- and

post-juncture periods (Figure 6A). We found 12 proteins that

satisfied these search criteria (Figure 6B) (all p < 0.05 and overall

FDR = 14% based on a permutation test [i.e., �2 proteins are
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expected to be false positives]) and are predictive of fatal

outcomes based on cross-validation machine learning analysis

(Figure 6C).

These proteins revealed striking divergences between

deceased and recovered patients around the juncture (Figures

6B and 6D). Several markers of tissue inflammation or damage

started to increase more at the juncture in the deceased cohort,

such as E-selectin, a marker of endothelial inflammation/

leukocyte transmigration and lipocalin-2/NGAL, which is known

to be associated with acute kidney injury and innate immune

response to bacterial infections (Flo et al., 2004; Haase et al.,

2009) (Figure 6D). Consistent with the IFN-I signatures above (Fig-

ures 3D, 3E, S3A, and S3B), IP-10, an IFN-stimulated protein

product, was decreasing prior to the juncture with a steeper

decline in the recovered cohort to reach lower levels than the

deceased group by day 20 (Figure 6D). As observed earlier in

the DSM-high versus DSM-low patients (Figure 5F), markers of

inflammation and immune responses (e.g., IL-6, TNFRSF1B,

and IL-17) were increasing at a higher rate or persisting (e.g.,

IL-18) at an elevated level in the deceasedgroup (Figure 6D). How-

ever, antibody responses to both the SARS-CoV-2 spike and

nucleocapsid appeared slower in the deceased compared to

the recovered cohorts (Figure 6E), consistent with the delay and

potential miscoordination of antigen-specific adaptive immune

responses in the most severe patients (Rydyznski Moderbacher

et al., 2020). Together, these findings further support our

hypothesis that the days 17–23 period represents a critical junc-

ture in the disease course characterized by a heightened wave

of inflammatory responses in critical patients with fatal outcomes.

DISCUSSION

Here, we integrated circulating cytokine and multimodal single-

cell profiling and computational approaches to assess the cell

surface protein phenotype, transcriptome, and T cell clonality

of peripheral immune cells of COVID-19 patients over time. We

revealed a network of cell-type-specific signatures linked to dis-

ease severity, dissected timing effects, and uncovered a late

period during which the host immune response undergoes strik-

ing divergences between patients with distinct disease severity

and outcomes.We validated key observations using public data-

sets in independent cohorts, including gene signatures of

apoptosis in pDCs and FA metabolism and inflammatory

attenuation in CD56dimCD16hi NK cells linked to disease severity.

Timing is a critical variable when assessing the host immune

response to viral infections (Bernardes et al., 2020; Dunning

et al., 2018; Huang et al., 2011; Zhang et al., 2020a). Live influenza

challenge studies in humans and animal models have painted a

prototypical immune response trajectory involving antiviral/IFN-I

signatures in blood a few days after infection concomitant with

symptom onset, which peak by days 5–7 and wane shortly after,

followed by T cell activation, germinal center reaction, and plas-

mablast expansion during days�7–14, culminating in peak circu-

lating antibody levels by �3–4 weeks after infection (Brandes

et al., 2013; Huang et al., 2011; Pommerenke et al., 2012; Woods

et al., 2013). In contrast, SARS-CoV-2 infections often have

asymptomatic upper respiratory infections early (Matheson and

Lehner, 2020), but more than 90% of cases displayed signs of
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Figure 6. Divergence of deceased and recovered patients at the late juncture

(A) Approach for assessing and validating the late immune response juncture hypothesis by using serum protein profiles of critical ill patients with either recovery

or deceased outcomes.

(B) Effect size plots of circulating serum proteins comparing the difference between critical deceased versus recovered patients before (days 7–16), during

(days 17–23), and after (days 24–30) the juncture period. Mixed effect models were fitted to assess whether this difference between deceased and recovered

groups changed significantly between (1) pre-juncture and juncture (top panel showing effect sizes in each period and its right bar plots showing the p value

assessing the temporal difference), or (2) pre-juncture and after the juncture (bottom panel). The size of the circle denotes the statistical significance of the

difference between deceased and recovered groups in the indicated period (p < 0.05 is marked by solid outlines). See also Table S7.

(C) Outcome prediction performance (recovered versus fatal) at (17–23 days; purple) or post (24–30 days; blue) juncture using leave-one-out cross-validation.

Feature selection was performed using the same procedure that identified proteins shown in (B). Area under the curve (AUC) and permutation p values are shown.

(D) Similar to Figure 6F but showing serum protein levels of critical ill patients with recovered or deceased outcomes (see A). Trajectories (using LOESS

smoothing) were fitted to the recovered versus deceased patient groups separately. Top proteins showing the largest temporal shifts in their differences between

the deceased versus recovered patients in (B) are shown.

(E) Similar to (D) but for antibody measurements against SARS-CoV-2 spike and nucleocapsid proteins in critically ill patients with recovered or deceased

outcomes. LU, light unit.

See also Figure S7 and Tables S4, S6, and S7.
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pneumonitis a few days after symptom onset (Bernheim et al.,

2020), suggesting that the patients we are studying here also

had asymptomatic infections in the upper airway early (first �7–

10 days after infection), followed by infection and inflammation

in the lower airways and lung concomitant with symptom onset.

Thus, at T0 (median = 11 days post symptom onset), most pa-

tients in our study may be in the mid to late phases of epithelial

type I interferon production in response to the lung infection

(Liao et al., 2020; Nienhold et al., 2020; Wauters et al., 2020).

Consistent with recent reports (Arunachalam et al., 2020; Hadjadj

et al., 2020; Schulte-Schrepping et al., 2020), we indeed detected

increased IFN-I signatures in cells compared to matching HCs,

including genes induced early in blood following influenza chal-

lenge or immunization with the yellow fever vaccine (Querec

et al., 2009; Woods et al., 2013).

As observed earlier using bulk whole blood RNA expression

analysis (Hadjadj et al., 2020), we found that IFN-I signatures

were negatively associated with disease severity at T0 with sin-

gle-cell resolution, even after accounting for timing effects.

Timing contributed substantially to the variability of the IFN-I

signature given its steep temporal decline, especially in the

less severe patients. Concomitant with the elevation of the

IFN-I signature were decreases in protein translation genes;

the IFN-I and translation signatures tended to be negatively

correlated within cell types, potentially reflective of the suppres-

sive effect of type I IFNs on protein translation to limit viral

replication (Ivashkiv and Donlin, 2014). However, whether a

more prolonged suppression (e.g., with exogenous type I IFN

use as an intervention) could negatively impact protein

production in cells vital to the immune response (e.g., plasma

cells producing antibodies) warrants further investigation.

In addition to infected epithelial cells, pDCs are another poten-

tial major source of type I IFNs. Consistent with earlier studies

(Arunachalam et al., 2020; Kuri-Cervantes et al., 2020; Laing

et al., 2020), we found that pDC frequencies were lower in

COVID-19 patients than HCs and negatively associated with dis-

ease severity and IFN-I signatures in most immune cell subsets,

suggesting that lower pDC levels might have contributed to the

depressed IFN-I signatures in severe disease. Recent studies

of lung autopsies and BAL fluids from COVID-19 patients did

not indicate an association between pDC frequency and disease

severity (Chua et al., 2020; Liao et al., 2020; Nienhold et al., 2020;

Wauters et al., 2020); although pDCs can also migrate into sec-

ondary lymphoid organs via high endothelial venules (Diacovo

et al., 2005; Randolph et al., 2008), data are lacking in SARS-

CoV-2 infections. Thus, it is less likely that lower blood pDC fre-

quency was solely due to pDC migration out of the periphery.

Instead, we detected an apoptosis signature in COVID-19

pDCs, and the same signature was positively associated with

disease severity and negatively associated with pDC frequency,

thus providing a compelling hypothesis on why pDC frequencies

were reduced in blood. Type I IFNs themselves can trigger

apoptosis in pDCs based on animal studies (Swiecki et al.,

2011), presumably as a negative feedback to modulate pDC

numbers and limit the extent of type I IFN activation. Corticoste-

roids are also known to induce apoptosis and thus reduce the

frequency of circulating pDCs in humans (Boor et al., 2006; Sho-

dell and Siegal, 2001). Endogenous corticosteroids are induced
1850 Cell 184, 1836–1857, April 1, 2021
by the hypothalamic-pituitary-adrenal system following viral in-

fections to mediate negative feedforward regulation to partly

limit the damaging effects of overt inflammation (Jamieson

et al., 2010; Newton et al., 2017; Ruzek et al., 1997). Indeed,

the more depressed IFN-I signatures in critically ill patients

may be driven, at least in part, by the stronger negative regula-

tion induced bymore severe infections and disease. These inter-

actions should be taken into consideration when designing

therapies that target the type I IFN-pDC axis (Acharya et al.,

2020; Hung et al., 2020).

Our disease severity network pointed to attenuated inflamma-

tion and an ‘‘exhaustion’’-like gene expression state in

CD56dimCD16hi NK cells as a primary positive correlate of disease

severity. This FA signature was positively associated with circu-

lating levels of IL-15, but paradoxically, negatively correlated

with IFNG transcripts, NF-kB, mTORC1 signaling, and inflamma-

tory gene expression signatures. Long-term exposures (on the

timescale of days but not hours) to inflammatory activation are

known to induce metabolic changes in NK cells, including the up-

regulation and utilization of both glycolysis and oxidative phos-

phorylation (OXPHOS) programs (O’Brien and Finlay, 2019). The

role of FA metabolism is not well known, but prolonged exposure

to proinflammatory cytokines like IL-15 can induce an

‘‘exhaustion’’-like state linked to altered FAmetabolismand hypo-

responsiveness to future stimulations (Felices et al., 2018).

Consistent with our data on the lowering of themTORC1 signature

and IFNGmRNA levels, decreasedmTORC1 activity in NK cells is

known to be associatedwith lower IFN-g production (Nandagopal

et al., 2014). The potential increase in lipid biosynthesis could also

lead to lipid accumulation, which can downregulate mTORC1

signaling and thus NK cell effector functions (Michelet et al.,

2018). Whereas the elevation in FA oxidation transcripts may

reflect a compensatory mechanism to counteract the decreased

FA oxidation capacity in NK cells persistently exposed to IL-15

(Felices et al., 2018), the concomitant increases in fatty acid

biosynthesis and oxidation/catabolic genes may be a signature

of dysfunction. Although not much is known about NK cells,

CD8+ T cells are known to upregulate FA biosynthetic genes

briefly early after viral infection, whereas FA oxidative genes

appear later during the late effector/early memory phase to sup-

port memory cell functions, but not both simultaneously (Best

et al., 2013; van der Windt et al., 2013). Overall, our findings are

consistent with earlier observations of NK cells from COVID-19

patients, including increases in ‘‘adaptive’’ NK cells known to be

associated with chronic activation as well as signs of exhaustion

suggested by impaired cytolytic functions and inflammatory cyto-

kine production, and elevation of surface markers or correspond-

ing transcripts of NK cell exhaustion (Maucourant et al., 2020;

Osman et al., 2020; Varchetta et al., 2020; Wilk et al., 2020).

The negative feedforward circuits regulating the delicate bal-

ance of type I IFN responses and pDC apoptosis discussed

above might also play a role in and serve as cell ‘‘extrinsic’’ sig-

nals attenuating the inflammatory response in CD56dimCD16hi

NK cells (and other cells such as classical monocytes) in severe

disease. For example, endogenous corticosteroids can induce

anti-inflammatory programs in monocytes (Franco et al., 2019),

and so can IL-10 produced bymonocytes themselves (or macro-

phages in tissues) and other cell types such as regulatory T cells
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following inflammatory activation (Mosser and Edwards, 2008;

Neumann et al., 2020; Wynn et al., 2013; Xue et al., 2014).

Indeed, circulating IL-10 levels are known to be elevated in

COVID-19 patients (Lucas et al., 2020); here, IL-10 persisted at

a high level particularly in non-survivors but dropped rapidly in

survivors (data not shown). IL-10 and glucocorticoids can also

increase CD163 expression on the surface of monocytes

(Sulahian et al., 2000; Vallelian et al., 2010), thus could explain

the rise of CD163hi classical monocytes in our patients over

time. While exogenous corticosteroid, which is known to lower

all-causemortality in COVID-19 (WHORapid Evidence Appraisal

for COVID-19 Therapies (REACT) Working Group et al., 2020),

was used by some patients in our cohort and its use correlated

with DSM, our assessment using glucocorticoid gene expres-

sion signatures suggests that exogenous corticosteroid use

did not play a role in shaping the inflammatory attenuation we

observed. Our findings may also mirror some features of sepsis

(López-Collazo et al., 2020): after the initial phase of

hyperinflammation, a secondary phase of compensatory re-

sponses mediated by negative feedforward circuits can leave

the patient immunosuppressed (Bellinvia et al., 2020; Bone,

1996; Rubio et al., 2019; Venet and Monneret, 2018).

Whether these attenuated inflammatory states were a conse-

quence or cause of severe COVID-19 remains to be determined.

Timing is again an important question. If attenuation happened

early after the infection before or near symptom onset, it could

negatively impact adaptive responses, which actually appeared

largely intact in our patients. Consistent with previous reports

(e.g., Laing et al., 2020; Mathew et al., 2020), we observed

CD8+ T cell activation and proliferation. However, in contrast to

some earlier reports (Laing et al., 2020; Zhang et al., 2020b),

but consistent with a single-cell study of severe patients using

mRNA expression of exhaustion markers (Wilk et al., 2020) and

a recent report that SARS-Cov-2-specific CD8+PD1+ T cells

are not exhausted (Rha et al., 2021), clear signs of CD8+ T cell

exhaustion were not detected. Another report found increased

PD-1- and TIM3-positive cells in COVID-19 patients versus con-

trols but not across severity groups (Laing et al., 2020), thus

suggesting that these might reflect T cell activation rather than

exhaustion (Mathew et al., 2020). Together, our observations

suggest that the attenuated antigen presentation and inflamma-

tory activation in certain innate immune cells likely occurred later

after symptom onset and did not severely impact the initial adap-

tive response to the infection.

Although the most severe patients had attenuated inflamma-

tion in CD56dimCD16hi NK cells and classical monocytes early,

these signatures increased over time and were significantly

more elevated than those in less severe patients by days 17–

23. Circulating protein analysis confirmed that both severe

(DSM-high) patients and non-survivors had elevated inflamma-

tory and immune responses at this juncture compared to those

with less severe disease (DSM-low) or critically ill survivors,

respectively. This late period is distinct from known clinical junc-

tures earlier in the disease course (e.g., the onset of ARDS and

sepsis around days 10–12 post symptom onset) (Zhou et al.,

2020a). However, the underlying driver of those earlier events

might still be responsible for some of the divergences by days

17–23.
Secondary infections are potential triggers for this late wave of

responses (Cox et al., 2020; Kim et al., 2020; Langford et al.,

2020; Lansbury et al., 2020). Day 17 was the reported median

onset of co-infections in a large retrospective cohort study

(Zhou et al., 2020a), and we observed elevation in potential

markers of bacterial infections (e.g., lipocalin-2/NGAL and

lipopolysaccharide [LPS] binding protein [LBP]) around that

time. The secondary infection rates reported thus far have

been highly variable (from a few to tens of percent), and therefore

more data are needed to further assess the prevalence and types

of co-infections associated with severe COVID-19 and whether

they are triggers of the late inflammatory responses we

observed. Given the acute organ injury and tissue damage in se-

vere disease, translocation of commensal bacterial products

and other danger signals of tissue origin could also contribute

to this late response wave (Estes et al., 2010; Marchetti et al.,

2013). Indeed, the level of bacterial products (LPS and bacterial

ribosomal DNA) in plasma has been reported to be associated

with disease severity (Arunachalam et al., 2020).

Intriguingly, blood transcriptomic analyses of hospitalized,

severe influenza patients have also revealed a second wave of re-

sponses (peaking around day 13 post symptom onset) involving a

‘‘bacterial’’ transcriptional signature that is associated significantly

morewithdisease severity thanwith detectable bacterial co-infec-

tions (Dunning et al., 2018). Despite the timingdifferences and lack

of information on the cellular origin of this late signature, these

observations in influenza are qualitatively similar to ours in

COVID-19. Thus, evenwithout secondary infections, contributions

fromother factors including the lingering viral loadandacute tissue

injury in the critical patients may play important roles in driving the

responses at the late juncture (Hirsch et al., 2020; Zheng et al.,

2020; Zhou et al., 2020c). The lack of coordination among and

delays in antigen-specific humoral and cellular immunity could

be partly responsible for lingering viral loads (Rydyznski

Moderbacher et al., 2020), which could also then trigger a second

waveof inflammatory responsesat the late juncture, particularly as

the strength of the negative feedforward regulation from earlier

innate responses waned.

Our observations highlight the importance of timing in

designing therapeutics strategies for COVID-19. For example,

although persistent IL-15 exposure could potentially lead to an

exhaustion like phenotype in NK cells (Felices et al., 2018), an

anti-IL-15 block followed by intermittent application of IL-15

(on-off-on) to revive and boost NK cell functions may help to

ensure a productive but not overtly damaging response around

the late juncture and thereafter. However, such strategies need

to be guided by the immune and physiological profiles of the

patient (e.g., whether there is an ongoing co-infection and the

status of the patient around the critical juncture). Indeed,

personalized intervention and clinical monitoring strategies

hold promise to reduce the burden of COVID-19.

Limitations of study
The relatively small size of our cohort of mostly severe and critical

patients, sparse sampling of very early time points (e.g., first week

of symptom onset), and potential confounding factors such as

therapeutic interventions in a natural history study are key limita-

tions. Thus, further studies using larger patient cohorts with better
Cell 184, 1836–1857, April 1, 2021 1851
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longitudinal sampling will be helpful to further confirm and dissect

our observations. Our longitudinal sampling within individual sub-

jects was sparse; we thus borrowed information across subjects

to infer trajectories and performed comparative analyses between

patient groups. Denser sampling within individual subjects would

be needed to dissect how earlier events may drive, for example,

divergences at the late juncture. Although we have performed

conditional independence analyses to disentangle correlative

relationships, we still lack the ability to dissect causality, which

would require interventional and animal model studies.

Methodologically, our single-cell data do not directly measure

parameters beyond gene and surface protein expression and

variable lymphocyte receptor sequences. Thus, pathway activity

and cellular parameters including metabolism were assessed

using gene expression signatures as noted throughout. Direct

measurements of those parameters would require further studies.

See also STAR methods for limitations of antibody staining and

surface protein quantification in CITE-seq.
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
185
B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

B Patients

B Healthy control (HC) samples

d METHOD DETAILS

B Circulating Protein/Cytokine Detection

B Luciferase immunoprecipitation system (LIPS) assays

for measurement of SARS-CoV-2 antibodies

B Sorting of non-naive B- and T cell populations

B Single cell CITE-seq processing

B Single cell RNA sequencing

B Flow cytometry

B Bulk RNA sequencing and single cell sample

demultiplexing

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Clinical Severity Classification

B Disease severity metric (DSM)

B Single cell data processing

B Denoised and Scaled by Background (DSB) normaliza-

tion of CITE-seq protein data

B Manual gating of CITE-seq protein data

B Automated clustering of CITE-seq protein data

B Cell frequency differential abundance

B Cell frequency differential abundance: COVID-19 pa-
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B Cell frequency differential abundance: DSM

B Pseudobulk differential expression analysis

B Visualizing gene expression in heatmaps

B Gene set enrichment of differentially expressed
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B RNA-based clustering of CD4 and CD8 cells
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changes in the differences between DSM-high versus

DSM-low patients during the days 17-23 period rela-

tive to the period before
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and DSM low

B Assessing differences in circulating protein levels be-

tween DSM-high and -low patients at the late juncture

(days 17-23)

B Analysis of circulating protein profiles of recovered
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B Validation of differentially expressed gene sets in
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et al. (2020)
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

TotalSeq-C Custom Human panel - All Ab’s (pouch) (see Table S2

for full antibody panel used for TotalSeq/CITEseq)

Biolegend Cat# 99814

TotalSeq-C0251 anti-human Hashtag 1, clones LNH-94; 2M2 Biolegend Cat# 394661; RRID:AB_2801031

TotalSeq-C0252 anti-human Hashtag 2, clones LNH-94; 2M2 Biolegend Cat# 394663; RRID:AB_2801032

TotalSeq-C0253 anti-human Hashtag 3, clones LNH-94; 2M2 Biolegend Cat# 394665; RRID:AB_2801033

TotalSeq-C0255 anti-human Hashtag 5, clones LNH-94; 2M2 Biolegend Cat# 394669; RRID:AB_2801035

Anti-human CD45 (APC/Cyanine7), clone 2D1 Biolegend Cat# 368516; RRID:AB_2566376

Anti-human CD3 (AF488), clone SK7 Biolegend Cat# 344810; RRID:AB_10576234

Anti-human CD19 (APC), clone SJ25C1 Biolegend Cat# 363006; RRID:AB_2564128

Anti-human CCR7 (BV786), clone G043H7 Biolegend Cat# 353230; RRID:AB_2563630

Anti-human CD95 (BV650), clone DX2 Biolegend Cat# 305642; RRID:AB_2632622

Anti-human IgD (PerCP-Cy5.5), clone IA6-2 Biolegend Cat# 348208; RRID:AB_10641706

Anti-human CD27 (PE/Cyanine7), clone M-T271 Biolegend Cat# 356412; RRID:AB_2562258

Anti-human CD197 (BUV395), clone 150503 BD Biosciences CUSTOM

Anti-human CD16 (BUV496), clone 3G8 BD Biosciences Cat# 612944; RRID: AB_2870224

Anti-human HLA-DR (BUV661), clone G46-6 BD Biosciences Cat# 612980; RRID:AB_2870252

Anti-human CD196 (BUV737), clone 11A9 BD Biosciences Cat# 564377; RRID:AB_2738778

Anti-human CD183 (BUV805), clone IC6/CXCR3 BD Biosciences Cat# 742048; RRID:AB_2871338

Anti-human IgD (BV421), clone IA6-2 BD Biosciences Cat# 562518; RRID:AB_11153121

Anti-human CD4 (eFluor450), clone SK3 BD Biosciences Cat# 560345; RRID:AB_1645572

Anti-human CD127 (BV480), clone HIL-7R-M21 BD Biosciences Cat# 566101; RRID:AB_2869742

Anti-human CD19 (BV570), clone HIB19 BD Biosciences CUSTOM

Anti-human CD194 (BV605), clone 1G1 Biolegend Cat# 359418; RRID:AB_2562483

Anti-human CD123 (BV650), clone 7G3 BD Biosciences Cat# 563405; RRID:AB_2738185

Anti-human CD25 (BV711), clone 2A3 BD Biosciences Cat# 563159; RRID:AB_2738037

Anti-human CD14 (BV750), clone M5E2 BD Biosciences Cat# 746920; RRID:AB_2871712

Anti-human CD27 (BV786), clone L128 BD Biosciences Cat# 563327; RRID:AB_2744353

Anti-human CD45RA (BB515), clone H100 BD Biosciences Cat# 564552; RRID:AB_2738841

Anti-human CD38 (PerCP-Cy5.5), clone HIT2 BD Biosciences Cat# 551400; RRID:AB_394184

Anti-human CD24 (BB700), clone ML5 BD Biosciences Cat# 566524; RRID:AB_2744333

Anti-human CD45 (BB790), clone HI30 BD Biosciences CUSTOM

Anti-human CD8 (PE), clone RPA-T8 BD Biosciences Cat# 555367; RRID:AB_395770

Anti-human CD45RO (PE-Texas Red), clone UCHL1 Beckman Coulter Cat# IM2712U; RRID:AB_10639537

Anti-human CD11c (PE-Cy5), clone B-Ly6 BD Biosciences Cat# 551077; RRID:AB_394034

Anti-human CD20 (PE-Cy5.5), clone HI47 ThermoFisher Cat# MHCD2018; RRID:AB_10372042

Anti-human CD185 (PE-Cy7), clone RF8B2 Biolegend Cat# 356924; RRID:AB_2562355

Anti-human CCR10 (AlexaFluor 647), clone 314305 R&D Systems Cat# FAB3478A; RRID:AB_573043

Anti-human CD56 (APC-R700), clone NCAM 16.2 BD Biosciences Cat# 565139; RRID:AB_2744429

Anti-human CD3 (APC-H7), clone SK7 BD Biosciences Cat# 560176; RRID:AB_1645475

Human TruStain FcX Biolegend Cat# 422302; RRID:AB_2818986

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Human PBMC and Serum samples (see donor

characteristics Tables S1 and S7B) of COVID-19 individuals

ASST Spedali Civili

Brescia (Italy);

protocol NP 4000 –

Studio CORONAlab

N/A

Healthy Donor Human PBMC samples NIH protocol 99-CC-0168 N/A

Healthy Donor Human PBMC samples NIH protocol 18-I-0101 N/A

Healthy Donor Human PBMC samples NIH protocol 11-I-0187 N/A

Chemicals, peptides, and recombinant proteins

Live/Dead Blue ThermoFisher Cat# L23105

Zombie Red Fixable viability dye Biolegend Cat# 423110

DNase I STEMCELL Technologies Cat#07470

Critical commercial assays

V-PLEX Human Cytokine 30-Plex Kit Meso Scale Discovery Cat# K15054D

S-PLEX Human IFN-a2a Kit Meso Scale Discovery Cat# K151P3S

Custom Multiplex bead assays R&D Systems Cat# LXSAHM

miRNAeasy micro kit QIAGEN Cat# 217084

Truseq RNaseq library preparation kit Illumina Cat# 20020595

Chromium Next GEM Single Cell 5ʹ Library & Gel Bead Kit v1.1 10x Genomics Cat# 1000165

Chromium Single Cell 5ʹ Library Construction Kit 10x Genomics Cat# 1000020

Chromium Single Cell V(D)J Enrichment Kit, Human T Cell 10x Genomics Cat# 1000005

NovaSeq S2 100 cycle sequencing kits Illumina Cat# 20012862

NovaSeq S4 200 cycle sequencing kits Illumina Cat# 20027466

NovaSeq S1 200 cycle sequencing kits Illumina Cat# 20012864

Deposited data

Raw and analyzed data This paper GEO: GSE161918

Schulte-Schrepping PBMC cohort 1 Schulte-Schrepping et al., 2020 https://beta.fastgenomics.org/

datasets/detail-dataset-952687f71

ef34322a850553c4a24e82e

Schulte-Schrepping PBMC cohort 2 Schulte-Schrepping et al., 2020 https://beta.fastgenomics.org/

datasets/detail-dataset-7ae02

f5553074bda92c14a8f0bce2d24

Software and algorithms

Analysis Code (and full list of R packages used) This paper https://github.com/niaid/

covid19-time-resolved

R (versions 3.5.2, 3.6.0, 3.6.1, 3.6.3) The R Foundation https://www.r-project.org

Seurat (versions 3.1.0, 3.1.4, 3.2.2) Stuart et al., 2019 https://cran.r-project.org/

web/packages/Seurat/index.html

dsb (beta) Mulè et al., 2020 https://github.com/niaid/dsb

CytoML (1.12.0) Finak et al., 2018 https://www.bioconductor.org/

packages/release/bioc/

html/CytoML.html

flowWorkspace (3.34.1) Finak and Jiang, 2020 https://www.bioconductor.org/

packages/release/bioc/html/

flowWorkspace.html

Limma (versions 3.40.2, 3.42.2) Ritchie et al., 2015 https://www.bioconductor.org/

packages/release/bioc/

html/limma.html

Tidyverse (1.2.1, 1.3.0) (Wickham, 2019) https://www.tidyverse.org

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

ComplexHeatmap (2.2.0) Gu et al., 2016 https://bioconductor.org/packages/

release/bioc/html/

ComplexHeatmap.html

edgeR (3.26.8, 3.28.1) McCarthy et al., 2012 https://bioconductor.org/packages/

release/bioc/html/edgeR.html

FGSEA (1.10.1) Sergushichev, 2016 https://bioconductor.org/packages/

release/bioc/html/fgsea.html

lme4 (1.1-23) Bates et al., 2015 https://cran.r-project.org/web/

packages/lme4/index.html

lmerTest Kuznetsova et al., 2017 https://cran.r-project.org/web/

packages/lmerTest/index.html

plsRglm (1.2.5) Bertrand and

Maumy-Bertrand, 2019

https://cran.r-project.org/web/

packages/plsRglm/index.html

huge (1.3.4.1) Zhao et al., 2012 https://cran.r-project.org/web/

packages/huge/index.html

Gsva (1.3.0) Hänzelmann et al., 2013 https://bioconductor.org/packages/

release/bioc/html/GSVA.html

Hmisc (4.4-1) Harrell, 2019 https://cran.r-project.org/web/

packages/Hmisc/index.html

demuxlet (v2, from the ‘popscle’ software suite) Kang et al., 2018 https://github.com/statgen/popscle

CellRanger (3.1.0) 10x Genomics https://support.10xgenomics.com/

single-cell-gene-expression/

software/downloads/3.1/

Other

Hg19 human genome reference for CellRanger 10x Genomics https://cf.10xgenomics.com/

supp/cell-exp/refdata-

cellranger-hg19-1.2.0.tar.gz

ll
Article
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, John S.

Tsang (john.tsang@nih.gov).

Materials availability
This study did not generate new reagents.

Data and code availability
Raw and processed data from the single cell mRNA, surface protein, and TCR V(D)J sequencing and bulk RNaseq are available from

the NCBI Gene Expression Omnibus, accession number GEO: GSE161918 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE161918). Analysis code, extended patient and sample metadata, serum protein, and antibody data are available at:

https://github.com/niaid/covid19-time-resolved. The single cell UMAPs in Figure 3B can be visualized interactively at: https://

cellxgene.cziscience.com/collections/ed9185e3-5b82-40c7-9824-b2141590c7f0.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patients
De-identified patient plasma and serum samples were obtained from discarded, clinically indicated collection of blood samples ob-

tained from382 patients admitted at ASSTSpedali Civili Brescia, following positive nasopharyngeal swab and/or positive serology for

SARS-CoV-2 infection. As described in the following sections and the main text, a subset of 60 unique patients, including 33 patients

who had peripheral immune cells collected and 38 critically ill patients with deceased or recovery outcomes (for circulating protein/

cytokine-based validation of the ‘‘critical juncture’’ concept in Figure 6) were analyzed in this study (i.e., 7 recovered and 4 deceased

patients also had PBMCs collected). Ethical approval was obtained from the Comitato Etico Provinciale (NP 4000 – Studio
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CORONAlab), Brescia (Italy). Blood samples were processed to obtain serum and plasma. In addition, EDTA-blood samples were

processed using Ficoll density gradient (GE Healthcare, Marlborough, MA) to obtain PBMCs, then washed twice in RPMI-1640;

5x106 PBMC were then resuspended in 1 mL of freezing medium consisting of RPMI plus 20% fetal calf serum and 10% DMSO,

and then frozen at �80�C. Patient metadata is available in Tables S1 and S6 and deposited along with the sequencing data in

GEO and code in Github listed above.

Healthy control (HC) samples
Blood samples of 14 age and gender matched HCs were collected at the NIH Clinical Center from individuals in Washington, DC

metro area. These samples were obtained under NIH IRB-approved protocol 18-I-0101 and PBMCs were prepared using SepMate

isolation tubes (STEMCELL Technologies, Vancouver, BC, Canada) and Ficoll density-gradient media, or under NIH IRB-approved

protocol 99-CC-0168 and PBMCs were prepared using Ficoll-based density separation (without SepMate) according to manufac-

turer’s protocol. Cells were cryopreserved by standard methods and stored in liquid nitrogen until needed. One anonymized donor

was excluded from further analysis, as we discovered an extremely expanded B cell phenotype consistent with lymphoma in this

sample. Two additional healthy control samples were collected under NIH IRB-approved protocol 11-I-0187 and were used in pre-

liminary testing to compare freezing of buffy coat samples with freezing of Ficoll-isolated PBMC (isolated as described for patients

above); CITE-seq data was collected for both buffy and PBMC samples of each of these controls, but only the PBMC-derived data

was used in our analysis. An additional leukopack-derived PBMC sample (anonymized and without demographic information,

collected under NIH IRB-approved protocol 99-CC-0168 from the NIH Department of TransfusionMedicine) was used in each exper-

imental batch as a technical control, but not used in later comparisons.

METHOD DETAILS

Circulating Protein/Cytokine Detection
Cytokine/biomarker analysis was performed on EDTA plasma or sera obtained from either patients or HCs. The cytokine data used in

this paper was previously reported for the total Brescia cohort (Abers et al., 2021); the detection method is repeated here for

completeness: Because of limited available volume, patient samples were analyzed as single determinations. Duplicate determina-

tions of control samples and samples from HCs yielded coefficients of variation that were normally < 20%. Aliquots were stored in a

�85�C freezer prior to analysis. Cytokines (IL-1b, IL-1a, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12p70, IL-12p40, IL-13, IL-15, IL-16,

IL-17, IFN-g, TNF-a, TNF-b, GM-CSF, VEGF, CCL-11/Eotaxin-1, CCL26/Eotaxin-3, CXCL10/IP-10, MCP-1/CCL2, MCP-4/CCL13,

CCL22/MDC, MIP-1a/CCL3, MIP-1b/CCL4, CCL17/TARC) were measured using the V-PLEX Human Cytokine 30-Plex Kit (Meso

Scale Discovery, Rockville, MD) an analyzed on a MESO QuickPlex SQ 120 reader (Meso Scale Discovery) according to the manu-

facturers specifications. Interferon-a2a was determined on a single analyte, ultra-sensitive S-PLEX IFN-a2a kit (Meso Scale Discov-

ery) according to the manufacturer’s specifications. Additional cytokines (IL-1RA, IL-3, IL-18, IL-23, IL-33, G-CSF, M-CSF, CX3CL1/

Fractalkine, TNFSF5 [sCD40 ligand], TNFSF6 [soluble Fas ligand], TNFSF14 [LIGHT], SCF [c-kit ligand]), and other soluble receptors/

biomarkers (sTNFRSF1A [sTNFRI], sTNFRSF1B [sTNFRII], sST2 [sIL-33R], sCD25 [sIL-2R a], sCD54 [sICAM-1], sCD106 [sVCAM-1],

sCD31 [sPECAM], sCD62L [sL-selectin], sCD62E [sE-selectin], RAGE [receptor for advanced glycation end products], sCD163

[macrophage scavenger receptor], sVEGFR1 [Flt-1], REG3A [regenerating islet-derived protein III-A], ferritin, S100A8, S100A9,

MMP-9 [neutrophil gelatinase], lactoferrin, myeloperoxidase (MPO), lipocalin-2 [neutrophil gelatinase associated lipocalin, NGAL],

LBP [LPS binding protein]) were measured on customized, magnetic bead-based, multiplex assay (R&D Systems, Minneapolis,

MN) according to the manufacturers specifications for standards and dilutions. The magnetic beads were analyzed on Bio-Plex

3D instrumentation (Bio-Rad, Hercules, CA). Standard curves were analyzed using nonlinear curve fitting and unknowns were calcu-

lated based on the derived equation. Samples that exceeded the highest standards were reanalyzed more dilute until the values fell

within the range of the known standards.

Luciferase immunoprecipitation system (LIPS) assays for measurement of SARS-CoV-2 antibodies
LIPS assays were used to detect antibody to the SARS-CoV-2 nucleocapsid and spike proteins as previously described (Burbelo

et al., 2020). Briefly, plasmids expressing luciferase fused to either the SARS-CoV-2 nucleocapsid or spike protein were transfected

into Cos-1 cells, and lysates were obtained. Heat-inactivated serum diluted 1:10 was added to the lysates, and protein A/G beads

were added to capture antibody-antigen complexes. After washing the complexes, coelenterazine substrate was added and lucif-

erase activity was quantified as light units (LUs) in a luminometer.

Sorting of non-naive B- and T cell populations
PooledPBMCsamples fromdifferentdonorswerewashedwithPBSand incubatedwithZombieRedFixable viability dye (1:1000 inPBS,

BioLegend,SanDiego,CA) for 20minutesat4�Cprotected from light. Thencellswerewashedwithflowstainingbuffer (10%FBS inPBS)

and Fc blocked (Human TruStain FcX, BioLegend) for 15 minutes on ice. The fluorescence-labeled antibody cocktail against human

CD45 (APC/Cyanine7), CD3 (AF488), CD19 (APC), CCR7 (BV786), CD95 (BV650), IgD (PerCP-Cy5.5) and CD27(PE/Cyanine7; all anti-

bodies obtained fromBiolegend) were added at the end of blocking and incubated for 20minutes at 4�C in the dark. Cells werewashed
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and sortedonaBDAria sorter (BDBiosciences,San Jose,CA) inBiosafety Level 3 (BSL3) lab.Non-naiveBcell populationweregated by

CD45+CD19+IgD- or CD27+ and non-naive T cell population were gated by CD45+CD3+CCR7low or CD95+.

Single cell CITE-seq processing
Frozen PBMC samples were thawed, recovered and washed using RPMI media with 10% FBS and 10mg/mL DNase I (STEMCELL).

Samples from different donors were pooled evenly before staining; single cells can be demultiplexed in silico using individual specific

single nucleotide polymorphism (SNP) information during data analysis (see below). Multiple cell pools were prepared, such that cells

from the same individual but different time points (Figure 1B) would be in different pools. PBMCpools were Fc blocked (Human TruSt-

ain FcX, BioLegend) and stained with Totalseq-C human ‘hashtag’ antibodies (BioLegend), washed with staining buffer (2% BSA in

PBS). This round of hashtag staining allows the different pools to be identified in the analysis, which when combined with the SNP-

based demultiplexing, allows full identification of each sample. A fraction of the combined cells was used for sorting non-naive T and

B cells (see above). Separately for the unsorted and sorted cell fractions, hashtagged PBMC pools were combined and cells were

stained with a cocktail of TotalSeq-C human lyophilized panel (BioLegend) of 192 surface proteins (Table S2). Then, cells were

washed three times, resuspended in PBS, and counted before proceeding immediately to the single cell partition step. Note that

the antibody concentrations used for CITE-seq were optimized by the manufacturer based on healthy PBMC samples, thus may

not be optimal for COVID-19 samples. We have not independently verified the specificity of each of the antibodies, although most

if not all have been used in flow/mass cytometry in the field and a subset has been titrated for CITE-seq in our previous work that

also shows concordance with data from flow cytometry (Kotliarov et al., 2020). In addition, because we used staining conditions de-

signed to retain optimal mRNAmeasurements, some surfacemarkers that would stain better under different conditions (e.g., CD197/

CCR7), were not detected well in our data; therefore, negative staining for certain markers should be interpreted with caution.

Single cell RNA sequencing
PBMC samples were mixed with the reverse transcription (RT) mix and partitioned into single cell Gel-Bead in Emulsion (GEM) using

10x 50 Chromium Single Cell Immune Profiling Next GEM v1.1 chemistry (10x Genomics, Pleasanton, CA). The RT step was conduct-

ed in the Veriti Thermo Cycler (ThermoFisher Scientific, Waltham, MA). Single cell gene expression, cell surface protein, T cell recep-

tor (TCR) and B cell receptor (BCR) libraries were prepared as instructed by 10x Genomics user guides (https://www.10xgenomics.

com/resources/user-guides/). All libraries were quality controlled using Bioanalyzer (Agilent, Santa Clara, CA) and quantified using

Qubit Fluorometric (ThermoFisher). 10x Genomics 50 Single cell gene expression, cell surface protein tag, TCR and BCR libraries

were pooled and sequenced on Illumina NovaSeq platform (Illumina, San Diego, CA) using the sequencing parameters recommen-

ded by the 10x Genomics 50 v1.1 user guide. Sequencing saturation of the libraries ranged from approximately 60%–80% for the

cDNA and 20%–40% for the surface protein tag libraries.

Flow cytometry
Flow cytometry was performed for a subset of 33 PBMC samples using a Cytek Aurora spectral cytometer (Cytek Biosciences, Fre-

mont, CA) with a 27-color panel comprising viability dye and antibodies to CD3, CD4, CD8, CD11c, CD14, CD16, CD19, CD20, CD24,

CD25, CD27, CD38, CD45, CD45RA, CD45RO, CD56, CD123, CD127, CCR4, CCR6, CCR7, CCR10, CXCR3, CXCR5, HLA-DR, and

IgD (see Key Resources Table). The frequency of major populations was determined using Flowjo Software v10 (BD Biosciences)

based on previously described manual gating strategies (Finak et al., 2016).

Bulk RNA sequencing and single cell sample demultiplexing
For each sample, a sample of 100,000-500,000 cells was processed in Trizol using the miRNAeasy micro kit (QIAGEN, Germantown,

MD) and standard RNA sequencing libraries were generated using Illumina Truseq library preparation kits. These libraries were used

to generate SNP calls for each donor. Sequencing results were demultiplexed and converted to FASTQ format using Illumina

bcl2fastq software. The sequencing reads were adaptor and quality trimmed and then aligned to the human genome using the

splice-aware STAR aligner and SNP calls were generated using the previously published protocol (Blay et al., 2019). We used the

software package demuxlet (Kang et al., 2018) to thenmatch single cells in the 10x RNaseq data to each donor and identify doublets.

Becausemultiple samples from different time points for each donor may be collected and could not be demultiplexed by this method

alone, we also used ‘hashtag’ antibodies (Biolegend) to uniquely label the different time points (Stoeckius et al., 2018).

QUANTIFICATION AND STATISTICAL ANALYSIS

Details on the statistical testing and values reported associated with each figure are reported in the figure legend or results

section text.

Clinical Severity Classification
Clinical severity classification was assigned as follows:

Mild: modest symptoms, no pneumonia.
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Moderate: Fever and respiratory symptoms plus radiological evidence of pneumonia. Use of low-flow oxygen is still part of this

phenotype; O2 saturation is > 93% at rest.

Severe: oxygen saturation at rest 93% or lower, or respiratory rate > 30/min, or PaO2/FiO2 < 300; use of low-flow oxygen is still

part of this phenotype.

Critical: any one of the following: Mechanical ventilation (CPAP, BiPAP, intubation, hi-flow oxygen), septic shock, organ damage

requiring admission in the ICU.

Disease severity metric (DSM)
Quantitative disease severity scores, namely DSM, were derived for the cohort of patients with PBMC samples. The three subjects

with initial PBMC sample collected at or later than 30 days since their symptom onset were excluded from this analysis (see

Figure 1A). A total of 18 clinical/lab data and serum protein measurements were assembled from within 2 days of the earliest

PBMC sample collection date for each of the remaining 30 subjects. These 18 measurements include TNF-a/b, IL-6, IL-18, IP-10,

CXCL9, IFN-Y, IL-4, IL-13, IL-17, C-reactive protein (CRP), fibrinogen, D-dimer, lactate dehydrogenase (LDH), lymphocyte and

platelet counts, neutrophil/lymphocyte ratio (NLR), and pulse oximetry to fraction of inspired oxygen (SpO2/FiO2) ratio.Missing values

were imputed using an additive regression approach implemented in the R Hmisc package (Harrell, 2019). The measurements were

normalized by accounting for difference in days between hospital admission and sample collection (i.e., by regressing out the ‘‘days

since admission’’ variable using the removeBatchEffect function from limma). Since SpO2/FiO2 ratios were used in the initial clinical

disease severity assessment, only the remaining 17 corrected measurements were employed as inputs to building machine learning

models for predicting patient disease severity. We used an ordinal partial least-squares (PLS) regression approach with the response

categories ordered from the least to most severe (i.e., Moderate-Alive, Severe-Alive, Critical-Alive, and Critical-Deceased).

Classification performance was determined based on leave-one-out cross-validation where in each iteration one sample was

reserved for testing and the rest were utilized for training of the model. Standardized model coefficients from the cross-validation

models were evaluated for importance of each parameter. The first principal component of the top 8 most important parameters

along with SpO2/FiO2 ratios were used as a continuous severity score, which we referred to as DSM. To validate our approach,

DSM scores were also independently calculated using the same parameters for an additional 64 patients from the Brescia cohort

with protein and clinical measurements collected < 30 days since symptom onset (Figure 1E). The modeling analyses were carried

out with the R plsRglm package (Bertrand and Maumy-Bertrand, 2019) using proportional-odds logit models.

For several of the later analyses, we divided the 30 patients equally into DSM-high and DSM-low groups by using the median DSM

value as the cutoff. Given the frequent use of this patient grouping, we assessed its robustness against the random number generator

‘‘noise’’ in the imputation step used above. We drew 200 random seeds for the imputation step to generate different DSM-high and

-low groups. We then computed the rand-index (McShane et al., 2002), which measures the similarity between two different

partitions of the subjects, between our observed DSM-high and -low partition and each of the random partitions. The average

rand-index was 0.823, indicating that our disease severity grouping was robust to the random number generator ‘‘noise’’ in the impu-

tation step. We have saved the seed used to generate the DSM-high and -low groups used in the paper (see Code Availability above).

Single cell data processing
CellRanger (10x Genomics) version 3.1.0 was used to map cDNA libraries to the hg19 genome reference and to count antibody tag

features. Data were further processed using Seurat (v.3.1.0, 3.1.4, or 3.2.2) (Stuart et al., 2019) running in R v3.6.1. After filtering to

single cells based on demuxlet output, we further demultiplexed the time points using the hashtag antibody staining using Seurat’s

HTOdemux function. We removed cells with less than 200 or greater than 4,000 detected genes, greater than 30% mitochondrial

reads, cell surface protein tag or mRNA counts greater than 15,000, or hashtag antibody counts greater than 5,000.

Denoised and Scaled by Background (DSB) normalization of CITE-seq protein data
We normalized the CITE-seq protein data using the DSBmethod (Mulè et al., 2020) [available at https://github.com/niaid/dsb], which

removes technical noise associated with unbound antibody by rescaling each protein based on protein levels detected in empty

droplets, then denoises each single cell by defining and regressing out the non-biological, technical component of the cell’s protein

counts. The following parameters were used in the dsb normalization function: define.pseudocount = TRUE, pseudocount.use = 10,

denoise_counts = TRUE. We set the use.isotype.control parameter to TRUE which models and regresses out a covariate

corresponding to the technical component of the cell’s protein library by combining the per cell background and isotype control

counts.

Manual gating of CITE-seq protein data
DSB normalized cell surface protein data were indexed and exported as csv file and gated in Flowjo Software v10 (BD Biosciences).

Gated FCS files and gating files were imported andmapped to CITE-seq single cell data using R packagesCytoML (Finak et al., 2018)

and flowWorkspace R package version 4.2.0 (Finak and Jiang, 2020). Treg cells were gated on CD4+CD25hiCD127lo. Given the poor

CXCR5 staining which could lead to contamination in the downstream differential expression analysis, cTfh cells were gated within

CD4+ T cells following RNA based clustering as follows (He et al., 2013; King et al., 2008): Clustering was first performed on the scaled

RNA data using variable features from Seurat’s FindVariableFeatures, ScaleData, RunPCA, FindNeighbors (first 15 PCs) and
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FindClusters (resolution 0.6) functions; ICOShiPD1hi clusters were further gated by using DSB value cutoffs of 4 and 0 for ICOS and

PD1, respectively. The gated population exhibited higher expression of ICOS,MAF and SH2D1A (encoding SAP protein) mRNA (King

et al., 2008; Xin et al., 2018) and was enriched for some reported human Tfh signatures (Locci et al., 2013; Weinstein et al., 2014) in

comparison with other CD4+ T cell clusters. As a cautious note: given our gating scheme using ICOS and PD1, the cTfh cluster could

overlap with some activated non-cTfh CD4+ T cells. CD71+ B cells were gated with a DSB value cutoff of 3 for CD71 within memory B

cells. Plasmablasts were gated as CD19+CD20-CD38hi.

Automated clustering of CITE-seq protein data
DSB-normalized protein data, excluding the isotype control antibodies, were used to generate a Euclidean distancematrix computed

for all single cells. The matrix was then used to build the shared nearest neighbor (SNN) graph followed by k-nearest neighbors clus-

tering using the FindNeighbors and FindClusters functions, respectively, in Seurat (v3.1.0) using the Louvain algorithm. Two stages of

clustering were performed: each of the three batches of single cells were first clustered separately using a resolution of 0.5. Major cell

type clusters were manually identified within each batch and matched across batches. Cells of each major cell type were then

merged across batches, and a second round of clustering (resolution = 1) was performedwithin each cell type, using DSB-normalized

protein data that were batch-corrected using removeBatchEffect from the limma R package (Ritchie et al., 2015). The resulting clus-

ters were manually annotated, and grouped into fine (e.g., CD4 central memory) and coarse levels (e.g., CD4 memory).

Cell frequency differential abundance
Cell frequencies expressed as percent of parent or percent of total were tested for association with COVID versus healthy and DSM

through linear models using the limma package. All models controlled for age, batch, and days since symptom onset, with the excep-

tion of models comparing to healthy, where days since symptom onset was not controlled for as healthy individuals do not have a

time since onset. Age was modeled as a continuous variable representing the age in years of the subject. The batch variable was

modeled as factor variable representing the experimental batch (3 in total), and days since symptom onset was modeled as a

continuous variable representing the number of days since self-reported symptom onset.

Cell frequency differential abundance: COVID-19 patients versus HC
Using the limma workflow as described in ‘‘Cell frequency differential abundance,’’ cell populations different between patient time

point 0 (T0) samples and HC were identified with a model with the following formula in R: �covid_vs_healthy + age + batch, where

covid_vs_healthy is a factor variable with two levels, COVID-19 and HC. P values were determined using the moderated T statistics

associated with the covid_vs_healthy coefficient.

Cell frequency differential abundance: DSM
Using the limma workflow as described in ‘‘Cell frequency differential abundance,’’ cell populations associated with DSM in patient

T0 samples were identified with a model with the following formula in R:�DSM + age + batch + days_since_onset, where DSM is the

continuous measure of DSM. p values were determined using the moderated T statistics associated with the DSM coefficient.

Pseudobulk differential expression analysis
To create ‘‘pseudobulk’’ RNA libraries for differential expression analysis, all unsorted cells in a given sample were computationally

‘‘pooled’’ according to their automated cluster assignment by summing all counts for a given gene in a given cell-type in a given sam-

ple. In addition, this procedure was applied to specifically gated populations of interest (circulating T follicular helper (cTfh),

Plasmablast, CD71 high B cells) from the sorted cells as these were not present at high enough quantities in the unsorted cells.

Pseudobulk libraries made up by few cells and therefore likely not modeled properly by bulk differential expression methods were

removed from analysis for each cell-type separately to remove samples that contained fewer than 8 cells and less than 40000 unique

molecular identifier counts detected after pooling. Lowly expressed genes were removed for each cell type individually using the

filterByExpr function from edgeR (McCarthy et al., 2012). Differentially expressed genes were identified using the limma voom

(Law et al., 2014) workflow which models the log of the counts per million (cpm) of each gene. Scaling factors for library size normal-

ization were calculated with the calcNormFactors function with method = ‘‘RLE.’’ In models utilizing repeated samples from the same

subject, subject random effects were incorporated using the duplicateCorrelation function in limma. Models controlled for age,

batch, and days since symptom onset, with the exception of models comparing to HC, where days since symptom onset was not

controlled for as HC do not have a time since onset. Age was modeled as a continuous variable representing the age in years of

the subject. The batchwasmodeled as factor variable representing the experimental batch (3 in total), and days since symptomonset

was modeled as a continuous variable representing the number of days since self-reported symptom onset.

Visualizing gene expression in heatmaps
For heatmaps showing pseudo-bulk, sample level data, the log(cpm) for each sample for a given cell-type was calculated by pooling

cells as described in ‘‘Pseudobulk differential expression analysis.’’ Library size normalization was performed without additional

scaling factors. All single cell gene expression heatmaps show scaled log(counts per 10000) values computed using the

logNormalize function in Seurat. Heatmaps were scaled to have mean = 0 and variance = 1 for each gene.
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Gene set enrichment of differentially expressed (DE) genes
Enriched gene sets were identified using the pre-ranked gene-set enrichment analysis (GSEA) algorithm implemented in the FGSEA

R package (Sergushichev, 2016). Genes were ranked using the moderated T statistics for the relevant coefficient from the limma

voommodel. Enrichment was assessed with a gene set list that included GO BP, KEGG, Reactome, MSIGDB’s Hallmark collection,

Blood Transcriptomic Modules (Li et al., 2014), T cell exhaustion signatures (both upregulated and downregulated genes) from

chronic murine LCMV infection (Wherry et al., 2007), the top genes that were consistently upregulated across two cohorts at early

time points in response Yellow Fever vaccination (Querec et al., 2009), and lastly the union of the top 50 genes that allow for discrim-

ination between symptomatic and asymptomatic infected inviduals in H1N1 and H3N2 infection in a human challenge study (Woods

et al., 2013). Selected pathways shown in Figures 3A, 3B, and 5D and listed in Table S4 were manually curated to select gene sets

relevant to immunology and often enriched in several cell-types across the various differential expression comparisons.

Gene set module scores
Specific module scores representing enriched pathway activities were calculated for relevant samples using leading edge genes

identified by GSEA to enhance signal-to-noise ratio. Prior to score calculation, the pseudobulk gene counts were normalized with

the varianceStabilizingTransformation function from DEseq2. The scores were generated using gene set variation analysis (GSVA)

method implemented by the GSVA R package (Hänzelmann et al., 2013). DSM-high and DSM-low group trajectories (module scores

versus TSO) were generated respectively using loess smoothing function with default span parameter (span = 0.75).

Differential expression: COVID-19 patients versus HCs
Using the pseudobulk limma voom workflow as described in ‘‘Pseudobulk differential expression analysis,’’ differentially expressed

genes between patient T0 samples and HC were identified with a model with the following formula in R: �0 + covid_vs_healthy +

age + batch, where covid_vs_healthy is a factor variable with two levels, COVID-19 and HC. The contrasts.fit function was then

used to compare the estimated means between COVID-19 and HCs. Gene set enrichment analysis of the moderated T statistics

was performed as described in ‘‘Gene set enrichment of DE genes’’

Differential expression: DSM
Using the pseudobulk limma voom workflow as described in ‘‘Pseudobulk differential expression analysis,’’ genes associated with

DSM in patient T0 samples were identified with a model with the following formula in R: �DSM + age + batch + days_since_onset,

where DSM is the continuous measure of DSM. Gene set enrichment analysis of the moderated T statistics of the DSM term was

performed as described in ‘‘Gene set enrichment of DE genes’’

Glucocorticoid response gene signature
Genes induced/upregulated by glucocorticoid treatment were derived from Franco et al. (Franco et al., 2019) as part of a previous

single cell RNaseq study of infant cord blood mononuclear cells (manuscript in preparation). Briefly, upregulated genes (between

baseline and post glucocorticoid treatment) across all the tested cell types from Franco et al. were selected, filtered to only genes

that were not also in the reactome ‘immune system’ pathway (to exclude immune genes), then further filtered to the top 50most highly

expressed based on average expression across all cells from our single cell RNA-seq dataset generated from infant cord blood (to

filter out genes with lower average expression across diverse hematopoietic cell lineages).

RNA-based clustering of CD4 and CD8 cells
Single CD4+ and CD8+ T cells were separately clustered usingmRNA expression profiles of genes found to be in the ‘leading edge’ of

key gene sets significantly associated with COVID-19 versus HCs or DSM from the above GSEA analyses (see pathways shown in

Figure S6A). Clustering was performed on the scaled RNA data after regressing out Batch and Donor variation using Seurat’s

ScaleData function. PCA was performed using the leading-edge genes, and the shared nearest neighbors graph was constructed

using the first 15 PCs using the Seurat’s FindNeighbors function. Louvain clustering was performed on the graph using a resolution

of 1 using Seurat’s FindClusters function. Association of these clusters with COVID-19 patients versus HC and DSM was assessed

using linear models as described in ‘‘Cell frequency differential abundance: COVID-19 patients vs. HC’’ and ‘‘Cell frequency differ-

ential abundance: COVID-19 patients vs. HC,’’ using all T0 samples and all HC samples. 18 CD8 clusters were tested.

TCR data processing
CellRanger (10x Genomics) version 3.1.0 was used to assemble V(D)J contigs. Cells were considered part of the same clone if they

shared the same set of productive CDR3 nucleotide sequences (exact matches of alpha and beta chains). This was determined using

the ‘‘raw_clonotype_id’’ of the filtered_contig_annotations.csv output from CellRanger (https://support.10xgenomics.com/

single-cell-vdj/software/pipelines/latest/algorithms/annotation).
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Determination of clonal versus singleton T cells
Cells were removed from analysis as described in ‘‘Single cell data processing.’’ Cells were assigned to clones as described in ‘‘TCR

data processing.’’ A cell was considered to be part of a non-singleton clone (i.e., clonal) if there were at least two cells from that clone

in the same sample (Subject, time point combination). All other cells were deemed singleton clones.

Clonality in CD8 memory cells
Clonality in the CD8+ memory T cells in HC and patient T0 samples was determined as follows. Cells were assigned to clones as

described in ‘‘TCR data processing.’’ Using only the sorted T cells labeled as CD8 Memory according to the automated clustering,

samples with fewer than 100 cells were removed from further analysis. As measurements of clonality are biased by differing number

of total cells in a sample, all samples were down-sampled to 100 cells and Simpson’s index (
PR

i

p2
i , where R = the total number of

unique clones in the subsample and pi = the number of cells from clone i in a given subsample) was computed as a measure of clon-

ality; Simpson’s index can be interpreted as the probability that two randomly selected cells are from the same clone. This process

was repeated 1000 times with random subsamples of 100 cells per sample and the median Simpson’s index over the 1000 subsam-

ples was used as a point estimate for a given sample. Differences in clonality (median Simpson’s index) between HC and COVID-19

patient and the association of clonality with DSM were then assessed with mixed effect models in the lme4 R package (Bates et al.,

2015). Models were adjusted for age and days since symptom onset. In addition, batch was included as a random effect. Thus, the

formulas in R were:

d median_simpson_index �DSM + age + days_since_onset + (1|batch)

d median_simpson_index �covid_vs_healthy + age + (1|batch)

The median_simpson_index is the median of the Simpson index over 1000 subsamples as described above; DSM is a continous

measure of DSM; and covid_vs_healthy is factor variable with levels COVID19 and HC. The terms for age, batch and days_since_

onset were coded as described in ‘‘Pseudobulk differential expression analysis.’’ Coefficients representing the association with

DSM and the difference in means between COVID-19 patient and HC samples were tested for significance using the summary func-

tion from the lmerTest package (Kuznetsova et al., 2017).

Differential expression analysis of surface marker expression on clonal T cells
Cells were filtered to include only the sorted, clonal (singleton clones removed) CD8 memory T cells. Pseudobulk differential expres-

sion of canonical exhaustion surfacemarkers (CD279, TIGIT, CD244, CD152, CD223, CD366) was tested using linearmodels through

the limma package. To find CITE-seq surface protein markers differentially expressed between healthy and COVID, and associated

with DSM, the mean DSB count per sample in the clonal CD8memory cells was modeled using the traditional limmaworkflow. How-

ever, to model the RNA expression of the related genes, limma voom was used as previously described ‘‘Pseudobulk differential

expression analysis.’’ The model comparing COVID to HC was identical to that described in ‘‘Differential expression: COVID vs.

HC’’ and the model for DSM was identical to that described in ‘‘Differential expression: DSM.’’

Enrichment of exhaustion signatures in DE genes
Using the same models of RNA expression in clonal CD8 memory cells as described in ‘‘Clonal T cell exhaustion marker differential

expression’’ (COVID versus HC and DSMmodels), differential expression was assessed for all genes passing read depth filters using

filterByExpr function from edgeR. Enrichment of exhaustion gene sets in differentially expressed genes in clonal (singleton clones

removed) CD8memory cells using the pre-ranked GSEA algorithm implemented in the FGSEA R package. Genes were ranked using

the moderated T statistics for the relevant coefficient from the limma voom model.

Enrichment of other gene sets in Wherry exhaustion signatures
Enrichment of theWherry exhaustion signatures (Wherry et al., 2007) in GO BP, Reactome, KEGG, MSIGDB Hallmark collection, and

Blood Transcriptomic Modules (Li et al., 2014) was assessed using Fisher’s exact tests comparing the overlap of each exhaustion

signature with each gene set. The union of all gene sets including the exhaustion signatures was used as the background. P values

were adjusted with the Benjamini-Hochberg method (Benjamini and Hochberg, 1995).

Determining proportion of exhausted cells through surface marker co-expression
Cells were filtered to include only the sorted, clonal CD8 memory T cells. To evaluate whether exhaustion was associated with DSM

and COVID-19 patients versus HC, we evaluated co-expression of CD39 and PD1 by using cutoffs of 0.5 and 1 DSB counts to deter-

mine positive cells.
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Conditional independence network analysis
A severity network (Figure 4A) was created using a more expansive collection of annotated gene sets (similar to Figures 3A and 3B)

with false discovery rate (FDR) % 0.2 in the DSM gene set enrichment analysis (Table S4B) to infer ‘‘direct’’ correlations (see below)

among biological processes in different cell subsets and their association with disease severity. Sample gene set scores generated

using leading edge genes identified from the DSM differential expression GSEA were used for this analysis. Gene sets whose scores

were not significantly correlated with DSM (Spearman’s correlation; p > 0.05) were removed. To distinguish between direct and in-

direct associations (‘‘direct’’ are those that are correlated conditional on all other variables), an inverse correlation matrix of the re-

maining gene sets and DSM was derived using a regularized regression approach called Lasso (Meinshausen and Bühlmann, 2006)

as implemented in the R Huge package (Zhao et al., 2012). Network nodes that are conditionally independent of each other would

have zero coefficients in the inverse correlation matrix. By scanning the number of non-zeros in the matrix through a range of penalty

values (l) from 0 to 1, a parameter of 0.35 was selected as it represented an inflection point on the curve where the number of direct

connections began to stabilize. Using DSM as the central node, a 2-level network was created with edges between nodes indicating

possible direct and significant correlation (Table S5; Spearman’s correlation p value % 0.05).

Differential abundance of cell populations: time since onset in DSM high and DSM low
Using the same limma workflow as described in ‘‘Cell frequency differential abundance,’’ an interaction model was fit using all

COVID-19 samples with the formula in R: �DSM_group:days_since_onset + DSM_group + days_since_onset + age + batch, where

DSM_group is a factor variable with levels DSM_high and DSM_low. The following contrasts were then used with the contrasts.fit

function to find cell populations associated with days_since_onset in DSM high and DSM low respectively (DSM_low was reference

level of DSM_group factor variable, and thus the days_since_onset term represents the slope for days_since_onset in the DSM_low

group, and DSM_high:days_since_onset represents the difference in slopes between the two groups):

d ‘‘days_onset_in_DSMhigh’’: ‘‘DSM_high:days_since_onset + days_since_onset,’’

d ‘‘days_onset_in_DSMlow’’: ‘‘days_since_onset’’
Differential expression: critical juncture, DSM high versus low at days 17-23 and interaction model (DSM high-low X
Juncture-pre-juncture) to assess temporal changes in the differences between DSM-high versus DSM-low patients
during the days 17-23 period relative to the period before
Using the same pseudobulk limma voom workflow as described in ‘‘Pseudobulk differential expression analysis,’’ the DSM high

group was contrasted with the DSM low group specifically at days 17-23 through the use of a contrast matrix and the contrasts.fit

function in limma. Themodel was fit using all COVID-19 samples to improve variance estimates for individual genes and the following

groups of samples were defined:

d DSM_high_days < 17,

d DSM_low_days < 17,

d DSM_high_17 % days % 23,

d DSM_low_17 % days % 23,

d DSM_high_days > 23,

d DSM_low_days > 23

The formula used in Rwas�0 + group + age + batch + days_since_onset, where group is a factor variable using the groups defined

above. For the comparison of DSM high versus DSM low at the juncture, the contrast matrix specifically compared the

DSM_high_17 % days % 23 group to the DSM_low_17 % days % 23 group. For the interaction model, the contrast matrix

compared the difference in means between DSM high and low at the juncture versus before the juncture, i.e., (DSM_high_17 %

days % 23 - DSM_low_17 % days % 23) - (DSM_high_days < 17-DSM_low_days < 17). Enriched gene sets for the contrast were

identified as described in ‘‘Gene set enrichment of DE genes.’’

Differential expression: time since onset in DSM high and DSM low
Using the same pseudobulk limma voomworkflow as described in Pseudobulk differential expression analysis,’’ an interactionmodel

was fit using the same approach described in ‘‘Differential abundance of cell populations: time since onset in DSM high and DSM

low.’’ Enriched gene sets for the days_onset_in_DSMlow and days_onset_in_DSMhigh contrasts were identified as described in

‘‘Gene Set Enrichment of DE genes’’

Assessing differences in circulating protein levels between DSM-high and -low patients at the late juncture (days
17-23)
For each of the 63 serumproteinmeasurements, we tested for abundance difference between DSM-high and -low patients during the

days 17-23 since symptom onset period. A total of 11 DSM-high and 10 DSM-low patients in our CITE-seq cohort had at least one

measurement during this time interval. Protein levels were estimated by a mixed-effects model as follows:
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Protein expression � DSM_group + sex+ age+days from symptom onset to measurement+ ð1jsubjectÞ
ANOVA unadjusted p value of 0.05 or below for the dsm-group co
efficient term was flagged as significant. Models with singular fits

were not discarded for this purpose.

Analysis of circulating protein profiles of recovered versus deceased critical patients
All deceased patients (critical-deceased category) with longitudinal serum protein measurements (n = 17) in the larger Brescia cohort

(see Patients above) were identified. Each of them was then matched with critical-alive subjects of the same sex and within ± 3 years

in age (n = 21).We built two types ofmixed-effect models to search for proteins exhibiting dynamic divergence around the days 17-23

juncture.

First, serum samples were divided into three time-interval groups based on TSO: days 7-16 (pre-juncture; 35 samples), days 17-23

(juncture; 38 samples), and days 24-30 (post-juncture; 28 samples) from symptom onset.

We then searched for proteins that 1) were differentially abundant between deceased and recovered patients at the juncture or

post-juncture, and 2) the differences between deceased and recovered patients increased significantly at the juncture compared

to the pre-juncture, or at the post-juncture compared to the pre-juncture. Identifying these proteins would help assess the extent

of divergences around the juncture and the corresponding biological processes that shifted temporally at or after the juncture.

We included the post-juncture period in our analysis because significant divergences after the juncture could be a result of what

happened during the juncture.

For each of the 63 proteins, differential abundance at each interval was assessed by the model:

Model 1: Protein expression �patient group + sex + age + days from symptom onset to measurement + (1|subject)

ANOVA unadjusted p value of 0.05 or below for the patient group (deceased versus recovered) coefficient term was used to select

proteins with significant differences for each interval (Table S7).

Next, significant changes between time intervals was assessed by the following model:

Model 2: Protein expression �patient group*interval + sex + age + days from symptom onset to measurement + (1|subject)

where the group*interval term was used to evaluate the temporal changes (between intervals) in the differences between

the deceased and recovered groups. Proteins with an unadjusted p value of % 0.05 from the resulting t statistics were selected

(Table S7).

A subset of the 12 proteins that were 1) significantly different between the two patient groups at the juncture or post-juncture based

on model 1, and 2) significantly shifted temporally based on model 2 are shown in Figure 6B with select protein trajectories shown in

Figure 6D. False discovery rates (FDR) were estimated by running the same search procedures with 1000 permutations of the subject

outcome labels. In total, 0.6% of permuted searches resulted in 12 or more proteins matching the search criteria (hits). All 12 proteins

had an estimated p value of% 0.05 individually based on this permutation test (Table S7). The average of number of protein hits was

1.73, leading to an overall FDR of 1.73/12 or 14.4% (i.e., �2 of the 12 proteins may be false positives).

We also assessed the concordance between the two models. The effect sizes estimated by these models were highly correlated

for shared terms (Pearson’s correlation r =�0.9 among all proteins tested). However, two identified proteins in this group, Reg3a and

CD25/IL-2Ra, had differences of more than 0.5 in the pre-juncture effects (i.e., differences between deceased and recovered

patients) estimated by the post-juncture v. pre-juncture interval model versus the pre-juncture DE model. We thus did not focus

on these two proteins in our data interpretation. Additionally, we also compared model 1 results at the juncture to results from the

dsm-high and -low comparison (see previous section). Concordance of their effects had a p value of 0.0896 as assessed by Fisher’s

exact test (Figure S7C). This mild concordance is not surprising given that the former is contrasting only very critical patients but with

different outcomes, while the latter involves largely survivors with different disease severity.

To assess whether the above procedure can select proteins predictive of outcome using independent training and testing sets,

using a leave-one-out cross-validation scheme we applied the above procedure to select proteins in training sets only and then

the selected proteins were used as inputs to fit a logistic PLS model, which was then employed to compute a prediction score for

each sample in the unseen patient. The prediction was carried out independently for the juncture (d17-23 TSO) and post-juncture

(d24-30 TSO) periods. Based on these sample scores, classification performance was measured by the area under the receiver

operating characteristic (ROC) curve (Figure 6C). Statistical significance of the prediction performance was evaluated by 1000

permutations of all subject labels to assess the ability of this procedure to generate predictive models. In each iteration of the per-

mutation cross-validation, if no proteinswere selected by the procedure, the unseen patient was assigned a score of 0.5 (middle point

akin to best random guess) by default as no model could be constructed.

Time trajectories for the same cohort of recovered and deceased patients were created using all the measurements of the 12

temporally divergent proteins (Figure 6D). The same was done also for antibody measurements against SARS-CoV-2 spike and

nucleocapsid proteins (Figure 6E) (Burbelo et al., 2020). Group trajectories were generated using the loess smoothing function in

R (v3.6.2) with default span parameter (span = 0.75). For each subject, Individual measurements collected on the same day were

averaged in the plots.
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Assessing differences in circulating protein profiles between deceased and recovered patients at the juncture in an
independent US cohort
Published serum protein measurement data from a US cohort of 113 COVID-19 patients (Lucas et al., 2020) were obtained to assess

the differential abundance results observed in the Brescia cohort at the juncture. A sub-cohort of eight deceased/hospice (coded as 2

or 3 in the ‘‘Latest Outcome’’ column of the dataset) and four age- and sex-matched critical (4 or 5 in ‘‘Clinical Score’’ at any time

point) patients with samples collected between days 17 and 23 since symptom onset was identified. Differential abundance analysis

was carried out using the same procedures for the 38 overlapping proteins measured in our and the Lucas et al. (2020) studies.

Concordance of statistically significant results found in the Brescia cohort (only 12 of 20 DE proteins at the juncture identified in

our Brescia cohort can be examined) was assessed by Spearman’s correlation of effect sizes.

Validation of differentially expressed gene sets in external scRNA-seq data from Schulte-Schrepping et al. (2020)
Data from cohorts 1 and 2 of Schulte-Schrepping et al. (2020) were downloaded from fastgenomics at the following url: https://beta.

fastgenomics.org/datasets/detail-dataset-952687f71ef34322a850553c4a24e82e, https://beta.fastgenomics.org/datasets/detail-

dataset-7ae02f5553074bda92c14a8f0bce2d24. Using the pre-annotated clusters from the original publication, single cell gene

expression data were pooled into pseudobulk libraries and differential expression models were run as described in ‘‘Pseudobulk

differential expression analysis.’’ Associations with disease severity were determined using severity classifications present in the

downloaded Seurat object metadata. Models controlled for TSO and age. Gene set enrichment was performed as described in

‘‘Gene set enrichment of differentially expressed genes’’ for select gene sets we wanted to validate. To assess exhaustion signatures

in CD8+ Tmemory cells as close to ours as possible (Figures S6I and S6J), we utilized Seurat’s ‘‘TransferData’’ function to transfer cell

cluster annotations from the single data of the Brescia cohort reported here to the data of Schulte-Schrepping et al. (2020). Note that

since clonality/TCR sequencing data are not available in the Schulte-Schrepping et al. (2020) dataset, we could not assess clonally

expanded cells only.

DATA VISUALIZATION AND DATA TABLE HANDLING

The tidyverse suite of R packages was utilized for data table handling and data plotting (Wickham, 2019) [https://cran.r-project.org/

web/packages/tidyverse/index.html]. ComplexHeatmap was used for heatmap visualizations (Gu et al., 2016).
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Figure S1. Timeline of treatments relative to hospital admission date andDSMvalidation in an independent set of patients, related to Figure 1

(A) Timeline of treatments relative to hospital admission date. Dashed lines represent treatments with unknown start and/or end dates. Age and gender are listed

next to each patient label. (B) Distribution of patient disease severity metric (DSM) grouped based on the WHO ordinal disease severity score of the CITE-seq

cohort at the earliest time of PBMC sampling. The p value was computed using the Jonckheere trend test to assess the positive correlation between the WHO

score and DSM. (C) Distribution of validation cohort disease severity metric (DSM) grouped by whether they were ever admitted to the ICU during the course of

hospitalization for all patients (left) and only patients classified as Critical-Alive (right). Significance of difference between groups is determined by two-tailed

Wilcoxon test.
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Figure S2. Single immune cell atlas of COVID-19 reveals cell populations associated with COVID-19 disease status and severity, related to

Figure 2

(A) Correlations of cell frequencies gated from CITE-seq and independently obtained 27-color flow cytometry data of the same samples. Shown are Pearson

correlations and p values. Note that the cTfhs shown here were gated using the same strategy as flow data, i.e., based on CXCR5hiCD45RA-CD4+ T cells. Given

the less-than-ideal staining of CXCR5 in both CITE-seq and flow cytometry, the cTfh being analyzed elsewhere in the paper were gated based on ICOS andPD1 in

ICOShiPD1hi CD4+ T cell RNA-based cluster (see STARmethods). (B) Frequencies of immune cell clusters/subsets in HC, DSM-low (less severe disease; DSM at

or belowmedian of DSM) and DSM-high (more severe disease; DSM above median) groups at T0 (near hospitalization). Shown are the populations with the most

significant changes in either COVID-19 versus HCs or correlation with DSM. P values shown are unadjusted p values based on linear models controlling for age,

experimental batch and TSO (TSO only controlled for in DSM model, see STAR methods). P values are reported for assessing differences between COVID-19

versus HCs (green) and for correlation with DSM (red). Additional cell clusters meeting the p value cutoff are shown in (B). (CD4_Mem_CM: central memory CD4+

T cell cluster as a fraction of total CD4+ T cells; CD8_Mem_CM.TM: central/transitional memory CD8+ T cell cluster as a fraction of total CD8+ T cells; the fre-

quency of gdT, mucosal associated invariant T cells (MAIT), cDC, pDC, Non-Classical Monocytes and Platelets are expressed as fractions of total PBMCs.) 104

populations were tested in total. (C) Heatmap showing cell frequencies of major cell clusters/subsets in individual subjects (columns), grouped by HC and DSM.

Plasmablast and B cell subsets are expressed as fractions of CD19+ B cells; CD4+ T cell subsets are expressed as fractions of CD4+ T cells; CD8+ T cell subsets

are expressed as fractions of CD8+ T cells; the CD163hi classical monocyte cluster is expressed as a fraction of total classical monocytes; others are shown as

fractions of total PBMCs. Rows in the heatmap were scaled to have mean = 0 and variance = 1.
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Figure S3. Cell-type-specific gene expression signatures association with time since symptom onset and disease severity, related to

Figure 3

(A and B) Similar to Figure 3B, but here showing GSEA results (of select gene sets) based on association with time since symptom onset (TSO) in DSM-low (A) and

DSM-high (B) groups using all time points. See Tables S4C and S4D for detailed results of these selected gene sets and all sets that passed the adjusted P value

cutoff of 0.2. Dot color denotes NES and size denotes -log10(adjusted P value). The sign of NES corresponds to the sign of correlation with TSO. Cell clusters/

populations are grouped by lineage/type. (C) Similar to Figure 3C. Heatmap of translation/ribosomal gene signature in classical monocytes at T0. (D) Similar to

Figure 3D. Time course of gene set signature scores of REACTOME_Translation and KEGG_Ribosome gene sets in DSM-low and DSM-high groups, respec-

tively. Classical monocyte is shown as an example. (E and F) Similar to Figure 3F. Heatmap of apoptosis/cell death gene signature in pDCs of validation cohorts

(Schulte-Schrepping et al., 2020) cohort 1 (E) and cohort 2 (F). The LE genes from the GSEA analysis of COVID-19 versus HCs and association with DSM in our

Brescia CITE-seq cohort are shown (i.e., same genes as Figure 3F). Only the first time point (T0 sample) of each subject is shown. (G) GSEA results of Schulte-

Schrepping et al. (2020) cohorts for pDC apoptosis/cell death signature identified in Brescia cohort. Given the limited pDC cell numbers in most samples,

particularly in cohort 1, the enrichment was calculated without filtering based on cell number or library size cutoffs.
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Figure S4. Supporting data for dissecting primary gene expression signature correlates inferred by conditional independence network

analysis, related to Figure 4

(A) Scatterplot of REACTOME_Oxidative stress-induced senescence signature score and GO_Apoptotic signaling signature score in pDCs (Pearson correlation

and p value were computed using pairwise complete observations [samples filtered to those with at least 8 cells and 40,000 UMI detected in the pseudobulk

library]). Each dot denotes a subject and is colored by the severity-outcome category. (B) Similar to (A), but between circulating IL-15 level and fatty acid

metabolism signature score in CD56dimCD16hi NK cells after regressing out their associations with DSM. (C and D) Similar to Figure 4D. Heatmaps of

REACTOME_Fatty acid metabolism in NK cells of two validation cohorts (Schulte-Schrepping et al., 2020) cohort 1 (C) and cohort 2 (D). The LE genes from

the GSEA analysis of association with DSM in each cohort are shown. Only the first time point (T0 sample) of each subject is shown. (E) GSEA results of

Schulte-Schrepping et al. (2020) cohorts for NK cell REACTOME_Fatty acid metabolism. (F) Similar to Figure 4G. Scatterplot of REACTOME_Fatty acid

metabolism score and HALLMARK_TNFa signaling via NF-kB score in the validation cohorts (Schulte-Schrepping et al., 2020). (G and H) Similar to Figure 4E.

Heatmaps of inflammation related gene sets in classical monocytes: HALLMARK_TNFa signaling via NF-kB (G) and HALLMARK_Inflammatory response (H).
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Figure S5. Exogeneous corticosteroid treatment is not a major driver of cell-type-specific gene expression signatures associated with

disease severity, related to Figure 4

(A) GSEA results for glucocorticoid response signature (see STAR methods on how the signature was derived) in DSM association model. Positive enrichment

corresponds to higher level in the DSM-high samples. (B and C) Scatterplot showing the correlations between the indicated signature scores (computed using

GSVA) and the glucocorticoid response signature score (B) or the TSC22D3 mRNA expression level (C) in CD56dimCD16hi NK cells. Pearson correlations and p

values are reported for patients with corticosteroid use (orange; steroid use TRUE) and those without (cyan; steroid use FALSE) as well as for all samples (black).

Each dot indicates a subject, shaped by steroid use status and colored by the severity-outcome category. (D) TSC22D3 mRNA expression levels of

CD56dimCD16hi NK cells and classical monocytes in HC, no steroid-use and steroid-use COVID-19 patient groups. P values from testing for differences between

the no steroid-use and steroid-use groups are shown. P values were obtained from an ANOVA test accounting for DSM, TSO, age and experimental batch.
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Figure S6. Single-cell and clonal expansion analysis in CD8+ T cells and exhaustion assessment in clonal CD8+ T cells, related to Results

section ‘‘Extensive single-cell and clonal expansion heterogeneity without signs of exhaustion in CD8+ T cells

(A) Heatmap showing the gene expression profile of CD8+ T cell clusters identified based on single-cell mRNA expression of the leading-edge genes of selected

pathways presented in Figure 3 (see text and STAR methods); only COVID-19 T0 samples are shown. Average scaled mRNA expression per cluster of genes

(columns) in each of the CD8+ T cell clusters (rows) is shown. Gene memberships in selected gene sets are indicated by the color bars at the bottom of the

heatmap. Total number of cells in each cluster is indicated on the right side of the heatmap. Bar plot shows the fraction of cells within each cluster that are defined

as expanded (> 1 cell detected per CDR3 a-b pair). Two small clusters (< 32 cells each) are not shown. (B) Average expression of selected surface proteins in the

clusters from (A). (C) Results of linear model accounting for age, and experimental batch, comparing the frequency of CD8+ T cell clusters from (A) between

COVID-19 and HC samples. Shown is the difference in mean frequency between COVID-19 and HC (x axis) versus the -log10 (p value); horizontal line denotes an

unadjusted p value of 0.05. 18 CD8 clusters were tested in linear model. (D) Fraction of overlap between RNA based clustering (from A) and surface protein based

CD8+ naive and memory T cell cluster annotations (based on high resolution clustering). (E) CD8+ T cell clonality (median rarefied Simpson index, see STAR

methods) in HC, DSM-low and -high groups. p values shown are from linear model adjusted for experimental batch, age, and TSO (green for assessing dif-

ferences between COVID-19 versus HCs and red for correlation with DSM; TSO only adjusted for in the model assessing DSM association). (F) Coefficients from

linear models of mean surface protein expression of canonical exhaustion markers fitted to COVID-19 patients and HCs. Positive coefficients (red bars)

correspond to higher expression in COVID-19 versus HCs (above) or higher expression in DSM-high versus -low (below) and vice versa for negative coefficients

(green bars). p values are indicated with red indicating significance at the 0.05 level (unadjusted). Among them, only CTLA4 was mildly significant but the as-

sociation was in the opposite direction expected for exhaustion: its expression was lower in patients, particularly in the more severe. Similarly, insignificant

changes or inconsistent directions of change were detected for themRNA of these protein markers (data not shown). (G) Association of proportion of CD39+PD1+

cells with COVID-19 versus HCs and DSM in clonal CD8+memory T cells using different cutoffs for CD39 and PD1 surface protein expression DSB counts (0.5, 1).

p values are from Wilcoxon tests. Similarly, we also tested whether the frequency of cells co-expressing multiple exhaustion markers in (F) was different. In-

dependent of the surface marker combination or protein expression cutoff used, we saw no signs of exhaustion or association with DSM (data not shown). (H)

GSEA results for assessing enrichment for known exhaustion signatures in DE genes for expanded CD8+ T cells in COVID-19 versus HCs and DSM-high versus

DSM-low comparisons. Positive enrichment corresponds to higher level in the first group. Both exhaustion gene sets were not enriched in the DSM-high versus

DSM-low comparison, indicating that exhaustion was not associated with disease severity. The enrichment in the COVID versus HC comparisons could reflect

cellular activation (‘‘up’’ signature – see (I) below) and depression of translation genes in COVID-19 patients negatively associated with IFN-I signatures (‘‘down’’

signature) – see also Figure 3A. (I) Gene set enrichment of Wherry et al. (2007) up and down genes in KEGG, GO BP, REACTOME, and Li BTM’s. Only top hits

(ranked by adjusted p values from Fisher’s exact test) are shown. The ‘‘exhaustion up’’ genes appeared to reflect CD8+ T cell activation as they are enriched for

NF-kB, JAK-STAT signaling, and IL-2 signaling genes. (J) GSEA result of Schulte-Schrepping et al. (2020) cohorts for exhaustion signatures of COVID-19 versus

HCs and severe versus mild comparisons at T0. Differential expression moderated t statistics were computed from a linear model accounting for age, experi-

mental batch and TSO (TSO only accounted for in the severe versus mild comparison). Dot color denotes normalized gene set enrichment score (NES) and size

denotes -log10(adjusted P value). Dot shape indicates the significance of adjusted P values (adjusted P value < 0.05). Both cohorts 1 and 2 and both CD8+ T cell

clusters in the original data and memory CD8+ T cell populations using transferred cell type labels from our CITE-seq data are shown. (K) Similar to (H). GSEA

results of Schulte-Schrepping et al. (2020) cohorts for Wherry et al. (2007) exhaustion signatures of COVID-19 versus HCs and severe versus mild comparisons at

T0. Positive enrichment corresponds to higher level in the first group. Only memory CD8 population based on transferred labels from our CITE-seq data is shown

as an example.
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Figure S7. Supporting data for critical juncture analysis, related to Figures 5 and 6

(A) Similar to Figure 3A, but here showing GSEA results for assessing the differences of delta between disease severity groups (DSM-high versus DSM-low)

between the days 17-23 time window and the period before (TSO < day 17). See Table S4F for detailed results of these selected gene sets and the entire set that

passed the adjusted p value cutoff of 0.2. (B) Time course of blood neutrophil and monocyte counts in recovered and deceased groups. Corresponding range of

HCs are shown with green dotted lines. Longitudinal samples from the same individual are connected by gray lines. Trajectories were fitted to recovered and

deceased groups separately with the shaded areas representing standard error. (C) Effect size comparison of DSM-high versus DSM-low (CITE-seq cohort) and

deceased versus recovered (critical patients with distinct outcome subcohorts – see Figure 6A) at the days 17-23 period. Effect sizes were derived from the

coefficients of the group comparison term in mixed-effect models. Proteins are colored by whether they were significantly different (with an unadjusted p value of

less than or equal to 0.05) in the deceased versus recovered (‘‘outcome’’) and the DSM-high versus -low comparisons (‘‘DSM’’). See also Table S7 for the full list of

DE proteins. (D) Similar to (C). Effect size comparison of Brescia deceased versus recovered and an independent US cohort (Yale cohort) (Lucas et al., 2020)

deceased versus recovered patients (See STAR methods) for 38 overlapping circulating proteins/cytokines at the juncture period (TSO days 17-23). Proteins in

red are those significantly different between the deceased and recovered patient groups in the Brescia cohort (unadjusted ANOVA p value < 0.05).
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