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Purpose: Benzo[a]pyrene 7,8-diol 9,10-epoxide (BPDE), an ultimate metabolite of benzo[a]pyrene, attacks
deoxyguanosine to form a BPDE-N2-dG adduct resulting in p53 mutations. Both cytochrome P4501A1 (CYP1A1) and
glutathione S-transferase M1 (GSTM1) have been demonstrated to be involved in the metabolism of polycyclic aromatic
hydrocarbons. The relationship between BPDE-like DNA adduct levels and CYP1A1 and GSTM1 gene polymorphisms
in pterygium is not clear. Therefore, BPDE-like DNA adducts and CYP1A1 and GSTM1 polymorphisms were detected
in this study to provide more molecular evidence to understand the cause of BPDE-like DNA adduct formation in
pterygium.
Methods: In this study, immunohistochemical staining using a polyclonal antibody on BPDE-like DNA adducts was
performed on 103 pterygial specimens. For the analysis of CYP1A1 and GSTM1 polymorphisms, DNA samples were
extracted from epithelial cells and then subjected to restriction fragment length polymorphism (RFLP) and polymerase
chain reaction (PCR) for the determination of mutation and genotype of CYP1A1 and GSTM1.
Results: BPDE-like DNA adducts were detected in 33.0% (34/103) of the pterygium samples. The differences in DNA
adduct levels were associated with the genetic polymorphisms of CYP1A1 but not GSTM1. Additionally, the risk of BPDE-
like DNA adduct formation for patients with CYP1A1 m1/m2 (C/T) and m2/m2 (T/T) was 9.675 fold higher than that of
patients with CYP1A1 m1/m1 (C/C) types (p=0.001, 95% Confidence Interval 2.451–38.185).
Conclusions: Our data provide evidence that the BPDE-like DNA adduct formation in pterygium samples was associated
with CYP1A1 polymorphisms.

Pterygium is a chronic condition characterized by the
encroachment of a fleshy triangle of conjunctival tissue into
the cornea. It has long been considered a chronic degenerative
condition; however, after finding abnormal expression of the
p53 protein in epithelium, pterygium is now considered to be
an ultraviolet-related uncontrolled cell proliferation, like a
tumor [1-7]. The p53 tumor suppressor gene is one of the most
commonly mutated genes observed in human tumors.
Mutations within the p53 gene were detected in 15.7% of the
pterygial samples of our previous study, and deletion
mutations were found in the same samples with p53-negative
staining, while substitution mutations were found in samples
with p53-positive staining [8]. However, the cause of p53
mutation in pterygium is still unclear. Polycyclic aromatic
hydrocarbons (PAHs) might be responsible for the
mutagenicity of airborne particulates in Taiwan [9,10]. The
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environmental pollutant, benzo[a]pyrene (BaP), which is one
of the PAHs, has been found to cause p53 mutations and then
lung tumorigenesis. The levels of PAHs in airborne
particulates in Taiwan are higher than levels found in other
countries, especially levels of BaP, benzo[b]fluoranthrene,
and benzo[g,h,i]perylene [9,10]. BaP 7,8-diol 9,10-epoxide
(BPDE), an ultimate metabolite of BaP, attacks
deoxyguanosine to form a BPDE-N2-dG adduct that results in
p53 mutations. The mutation hotspots of p53 in human lung
tumors (codons 154, 157, 158, 245, 248, and 273) are caused
by the BPDE-N2-dG adduct [11]. Thus, an evaluation of DNA
adducts induced by BaP and other PAHs is suitable as a risk
marker for p53 mutation.

Bap is oxidized by a series of well-characterized
enzymes, such as cytochrome p450 1A1, 2C9, and 3A4 [12,
13]. A thymine/cytosine point mutation in the MspI restriction
site of cytochrome P4501A1 (CYP1A1) has been reported to
result in increased enzyme activity [14]. The CYP1A1 MspI
polymorphism has been linked to the susceptibility for
smoking-related cancers, such as lung [15,16], colon, breast,
and oral cancers [17]. Not only cytochrome P450 but also
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other enzymes, such as glutathion s-transferase M1 (GSTM1),
was shown to be involved in BaP metabolism [18-20]. GSTM1
has also been shown to be polymorphic. A deletion is
responsible for the existence of a null allele associated with
the lack of expression of a functional protein [21,22]. The
polymorphic GSTM1 null genotype has been found in 20–
50% of populations of various ethnic origins, and this
genotype has been correlated with the risk for various tobacco-
related cancers [23-26]. Therefore, genetic polymorphisms of
CYP1A1 and GSTM1 may contribute to BPDE-like DNA
adduct formation and pterygium progression.

In this study, we try to detect the BPDE-like DNA
adducts, using immunohistochemistry in 103 pterygium
specimens, and we compare them with CYP1A1 and GSTM1
polymorphisms to understand the relationship between
environmental exposure and genetic polymorphism in
pterygium.

METHODS
Patients and methods: Pterygial samples were harvested from
103 patients (68 males and 35 females) with primary
pterygium undergoing pterygium surgery at China Medical
University Hospital, Taichung, Taiwan. The age range was 52
to 85, and the average age was 70.2-years old. All specimens
were formalin fixed and paraffin embedded. Then, 3-µm-thick
sections were cut, mounted on glass, and dried overnight at
37 °C for immunohistochemical analysis. All participants
were asked to submit a written informed consent approved by
the Institutional Review Board of the Chung-Shan Medical
University Hospital.
Immunohistochemical analysis of BaP 7,8-diol 9,10-epoxide
(BPDE)-like DNA adduct detection: All sections were
deparaffinized in xylene, rehydrated with alcohol, and washed
in PBS (3.2 mM Na2HPO4, 0.5 mM KH2PO4, 1.3 mM KCl,
135 mM NaCl, pH 7.4). This buffer was used for all
subsequent washes. Sections for BPDE-like DNA adduct
detection were heated in a microwave oven (TMO-2050;
TATUNG, Taiwan) with 700 W power, twice, each time for
5 min in citrate buffer (pH 6.0). Anti-BPDE-like DNA adduct
polyclonal antibody (which was kindly provided by Dr. Huei
Lee, Institute of Medical & Molecular Toxicology, Chung
Shan Medical University, Taichung, Taiwan; at a dilution of
1:1,000 [27]) was used as the primary antibody, and the
incubation time was 60 min at room temperature (25 °C)
followed by a conventional streptavidin peroxidase method
for antibody detection (LSAB Kit K675; DAKO,Glostrup,
Denmark). The sections were incubated with biotinylated
secondary antibody 10 min at room temperature (25 °C). After
washed with PBS, the section were incubated with HRP
conjugates Streptavidin 10 min at room temperature (25 °C).
Signals were developed with 3, 3′-diaminobenzidine (LSAB
Kit K675; DAKO) for 5 min and counter-stained with
hematoxylin (DAKO). The positive and negative controls
used for the BPDE immunohistochemical stain were lung

tissue, [28] which had high and nondetectable BPDE DNA
adduct levels, respectively, as analyzed by 32P-post labeling
and enzyme-linked immunosorbent assay (ELISA) [28]. The
results were evaluated independently by three observers and
scored for the percentage of positive nuclei: score 0, no
positive staining; score +, from 1% to 10%; score ++, from
11% to 50%; and score +++, more than 50% positive cells. In
this study, scores of +, ++, and +++ were considered to be
positive immunostaining, and a score of 0 was considered to
be negative immunostaining.

Polymorphisms of CYP1A1 and GSTM1: DNA was extracted
from the paraffin-embedded pterygium tissues for genetic
polymorphism analysis [29]. DNA lysis buffer (10 mM Tris-
HCl, pH 8.0, 0.1 M NaCl, 25 mM EDTA, and 0.5% SDS) was
applied to lyse the epithelial cells on the slide, and then the
DNA solution was transferred into an Eppendorf tube for
traditional proteinase K digestion and phenol-chloroform
extraction. The suspension was incubated at 56 °C for 2 h in
the presence of proteinase K. The suspension was sequentially
extracted with phenol-chloroform (25: 24).. Finally, the DNA
was precipitated with 500 μl of 100% ethanol with an addition
of linear polyacrylamide to increase DNA amounts [30].
Genotyping of the MspI polymorphism of CYP1A1 was
performed by PCR amplification using the primer set of 5′-
TAG GAG TCT TGT CTC AGC CT-3′ and 5′-CAG TGA
AGA GGT GTA GCC GCT-3′ [31]. The amplified products
were digested with MspI and analyzed by electrophoresis on
a 1.5% agarose gel. The MspI restriction site polymorphism
resulted in three genotypes: a predominant homozygous m1
allele without the MspI site (genotype m1/m1; C/C), the
heterozygote (genotype m1/m2; C/T) and a rare homozygous
m2 allele with the MspI site (genotype m2/m2; T/T). Detailed
information of the PCR assays can be found elsewhere [32].
Briefly, the PCR reaction containined: DNA 1 μl, 0.5 mM
dNTP, 5 μl 10× reaction buffer, 2.5 U Taq polymorase and
0.5 mM primer. An initial denaturing step of 5 min at 94 °C
followed by 35 cycles of 94 °C for 30 s, 60 °C for 45 s, and
72 °C for 1 min and then a final extension at 72 °C for six min.
Genotypes of GSTM1 were determined by the presence or
absence of the PCR product, according to the method of
Groppi et al. [32]. The genotypes of GSTM1 are defined as
present and null types. Two primers, 5′-GAA GGT GGC CTC
CT-CC TTG G-3′ and 5′-AAT TCT GGA TTG TAG CAG
AT-3′, were used for PCR. If samples had no PCR product,
the PCR experiment was repeated with the addition of a set of
β-actin (ACTB) primers together with GSTM1 primers to
confirm that the absence of the GSTM1 PCR product
represented the null genotype.

Statistical analysis: Statistical analysis was performed using
the SPSS 13.0 statistical software program (SPSS Inc.,
Chicago, IL). The χ2, logistic regression test, and Fisher’s
exact test were applied for statistical analysis. A p<0.05 was
considered to be statistically significant.
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RESULTS
BaP 7,8-diol 9,10-epoxide (BPDE)-like DNA adduct detected
in pterygium: In the pterygium group, 69 (67.0%) pterygial
specimens scored 0, eight (7.8%) were +, 12 (11.6%) were +
+, and 14 (13.6%) were +++. The detection rate of the BPDE-
like DNA adduct was 25.2% if a score of 0 and + were
considered to be negative for BPDE-like DNA adduct staining
and ++ and +++ were considered positive (setting the cutoff
level at 10%). If a score of 0 was considered to be negative
and +, ++, and +++ to be positive (setting the cutoff level at
1%), the positive rate of detection was 33.0%. The BPDE-like
DNA adduct staining was limited to the nuclei of the epithelial
layer and subepithelial fibrovascular layers (Table 1; Figure
1). This result was similar to our previous report [33].

CYP1A1 and GSTM1 polymorphisms in pterygium: To verify
the distribution of CYP1A1 and GSTM1 polymorphisms in
pterygium, the polymorphisms of CYP1A1 and GSTM1 in

pterygium and control groups were analyzed by PCR-RFLP
(restriction fragment length polymorphism) and PCR. The
results for the genotypes of CYP1A1 and GSTM1 in pterygium
are shown in Table 2. The analysis of the CYP1A1 MSPI
polymorphisms in pterygium showed that 34 (33.0%) were
homozygous for the m1/m1 genotype, 15 (14.6%) were
homozygous for the m2/m2 genotype, and 54 (52.4%) were
heterozygous for the m1/m2 genotype. The analysis of the
presence of GSTM1 polymorphisms or the null type in
pterygium showed that 60 (58.3%) were the present type and
43 (41.7%) were the null type.

Correlation of BaP 7,8-diol 9,10-epoxide (BPDE)-like DNA
adduct levels and CYP1A1 and GSTM1 polymorphisms in
pterygium: Previous reports have indicated that CYP1A1 and
GSTM1 polymorphisms correlated with BPDE-like DNA
adduct formation [34,35]. To verify this point, the
relationships between BPDE-like DNA adduct levels and

TABLE 1. THE BPDE-LIKE DNA ADDUCT LEVELS IN PTERYGIUM ANALYZED BY IMMUNOHISTOCHEMISTRY.

Parameter BPDE-like DNA adducts %
- 69 67.0
+ 8 7.8

++ 12 11.6
+++ 14 13.6

The results were evaluated independently by three observers and scored for the percentage of positive nuclei: score -, no positive
staining; score +, from 1% to 10%; score ++, from 11% - 50%; score +++, more than 50% positive cells. BPDE DNA adducts
analyzed in this study are based on prior pterygium samples [25].

Figure 1. Representative positive and
negative immunostaining for BaP 7,8-
diol 9,10-epoxide (BPDE)like DNA
adducts in paraffin sections of
pterygium epithelial cells.
Representative positive
immunostaining (brown signal) in the
epithelial layer is shown in A (200×),
negative immunostaining is shown in B
(200×), a lung cancer section with high
BPDE-like DNA adduct levels used as
the positive control is shown in C
(brown; 200×), and a lung cancer
section with no detectable BPDE-like
DNA adduct levels, which was used as
the negative control, is shown in D
(200×).
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CYP1A1 and GSTM1 polymorphisms in pterygium were
analyzed. As shown in Table 3, only the CYP1A1
polymorphisms correlated with BPDE-like DNA adduct
levels. The BPDE-like DNA adduct in patients with the m2/
m2 polymorphism was higher than in the m1/m1 and m1/m2
groups (p=0.006). Additionally, there was no correlation
between the GSTM1 polymorphism and the BPDE-like DNA
adduct in this study group.

CYP1A1 polymorphism is a risk factor of BaP 7,8-diol 9,10-
epoxide (BPDE)-like DNA adduct formation: The influences
of CYP1A1 and GSTM1 polymorphisms and gender in BPDE-
like DNA adduct formation were calculated by logistic
regression analysis. Among the characteristics, only the
CYP1A1 polymorphisms were significant risk factors (Table
4; p=0.001, 95% Confidence Interval 2.451–38.185). The risk
of BPDE-like DNA adduct formation for patients with
CYP1A1 m2/m2 and m1/m2 was 9.675 fold more than that of
patients with m1/m1 types. This suggests that CYP1A1

polymorphisms are significant as risk factors in BPDE-like
DNA adduct formation in pterygium patients.

DISCUSSION
To our knowledge, this is the first study to analyze the
correlation of genetic polymorphism and BPDE-like DNA
adduct formation in pterygium. Previous studies have shown
that DNA adduct levels are associated with CYP1A1 and
GSTM1 polymorphisms [34-39]. However, in our study we
found that only the CYP1A1 polymorphisms were associated
with BPDE-DNA adduct formation in pterygium. If genetic
polymorphisms are not associated with individual
susceptibility to carcinogenic PAHs, DNA repair capacity
may play an important role in the susceptibility to DNA
damage. Previous reports support the idea that the capacity of
BPDE-DNA adducts to be removed from peripheral
lymphocytes after exposure to BPDE in vitro, measured by
32P-postlabeling and host-cell reactive assay, is significantly
lower in cancer patients compared to healthy persons

TABLE 2. CYP1A1 AND GSTM1 POLYMORPHISMS IN PTERYGIUM ANALYZED BY PCR-RFLP AND PCR.

Gene Number %
CYP1A1

A (m1/m1) 34 33.0
B (m1/m2) 54 52.4
C (m2/m2) 15 14.6

GSTM1
Null 43 41.7

Present 60 58.3

TABLE 3. RELATIONSHIP OF BPDE-LIKE DNA ADDUCT LEVELS AND CYPA1 AND GSTM1 POLYMORPHISMS IN PTERYGIUM PATIENTS.

 BPDE-like DNA adduct levels  
Gene Negative Positive p value

CYP1A1
A 29 5  
B 29 25  
C 11 4 0.006

GSTM1
Null 17 17  

Present 25 44 0.205

The results were evaluated independently by three observers and scored for the percentage of positive nuclei: negative, 0%;
positive, more than 11% positive cells. BPDE DNA adducts analyzed in this study are based on prior pterygium samples [25].

TABLE 4. THE EFFECTS OF GENDER, CYP1A1, AND GSTM1 POLYMORPHISMS ON DNA ADDUCT LEVELS IN PTERYGIUM
PATIENTS.

Parameters OR Unfavorable/favorable 95%CI p
Gender 0.343 Female/Male 0.082–1.432 0.142

CYP1A1 9.675 A/B+C 2.451–38.185 0.001
GSTM1 0.453 Null/Present 0.159–1.292 0.139
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[40-42]. Common polymorphisms in DNA repair enzymes
have been hypothesized to result in reduced capability to
repair DNA damage [43,44]. Several reports have indicated
that polymorphisms of DNA repair genes are associated with
pterygium formation [45,46]. Thus, reduced DNA repair
capacity appears to contribute to DNA adduct formation in
pterygium.

GST is one of the antioxidant defense enzymes that
contributes to the protection against reactive oxygen species
[47,48]. The GSTM1-null type was reported to be associated
with cutaneous photosensitivity [49,50], so GSTM1 null may
be associated with the photosensitivity of corneal limbal cells.
Our previous report indicated that lack of GSTM1 (GSTM1-
null type) contributes to susceptibility of pterygium formation
in early onset pterygium but is not associated with late onset
pterygium [46]. In the present study we did not find an
association between the GSTM1 polymorphism and BPDE
DNA adduct levels. Therefore, we suggest that the role of
GSTM1 in pterygium formation is more important in
antioxidant defense than in PAH metabolism.

PAH compounds are the products of incomplete
combustion of organic material and are thus ubiquitous in the
environment (IARC, 1983). Occupational exposure to PAH
compounds increases the risk of lung and, putatively, other
cancers and is highest in coke oven workers, other workers in
the steel industry, asphalt and bitumen workers, and those
exposed to gasoline exhaust and working with gasoline. The
best known carcinogen in cigarette smoke, BaP, has been
experimentally shown to induce G:C–T:A transversions [51],
which are the main mutation types in smoking-related lung
cancer [52]. Our present study shows that BPDE-like DNA
adduct levels correlated with a CYP1A1 polymorphism. The
mutation hotspots of p53 in human lung tumors (codons 154,
157, 158, 245, 248, and 273) are caused by the BPDE-N2-dG
adduct [11]. Thus, an evaluation of DNA adducts induced by
BaP and other PAHs is suitable as a risk marker of p53
mutation. The p53 tumor suppressor gene is one of the most
commonly mutated genes observed in human tumors. The
mutation of p53 has been noted in more than 50% of all human
cancers [53-55].

Additionally, our previous study showed that BPDE-like
DNA adducts are indeed detected in pterygium samples and
are minor contributors to the abnormal p53 gene [33].
Therefore, we hypothesize that after exposure to
environmental PAHs, the CYP1A1 polymorphism may result
in high levels of BPDE-like DNA adduct formation
contributing to p53 or other tumor suppressor gene mutations
to induce pterygium formation.

Our previous study detected BPDE-like DNA adducts in
pterygium paraffin sections [33]. In the present study, we also
found that the CYP1A1 polymorphism correlated with BPDE-
like DNA adduct formation in pterygium. These findings
seem to provide molecular evidence to support the idea that

not only ultraviolet radiation but also environmental exposure
is involved in pterygium pathogenesis.
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