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Simple Summary: Neoadjuvant chemoradiotherapy (NCRT) before surgery is the mainstay of
treatment for patients with locally advanced rectal cancer. Based on baseline 18F-fluorodeoxyglucose
([18F]-FDG)-positron emission tomography (PET)/computed tomography (CT), a new artificial
intelligence model was introduced to predict responses to NCRT. The model employed metric
learning combined with the Uniform Manifold Approximation and Projection for dimensionality
reduction. The treatment response was scored by Dworak tumor regression grade (TRG); TRG3
and TRG4 indicated favorable responses. Using this model, the area under the receiver operating
characteristic curve was 0.96 for predicting a favorable response. The sensitivity, specificity, and
accuracy were 98.3%, 96.5%, and 97.5%, respectively. After further external validation, oncologists
may use the proposed model to advise patients on the relative suitability of treatment options,
including the therapeutic decision between NCRT and neoadjuvant chemotherapy. Integrating
this approach would have a notable effect on counseling patients about treatment alternatives
or prognoses.

Abstract: Objectives: Neoadjuvant chemoradiotherapy (NCRT) followed by surgery is the mainstay
of treatment for patients with locally advanced rectal cancer. Based on baseline 18F-fluorodeoxy-
glucose ([18F]-FDG)-positron emission tomography (PET)/computed tomography (CT), a new
artificial intelligence model using metric learning (ML) was introduced to predict responses to
NCRT. Patients and Methods: This study used the data of 236 patients with newly diagnosed
rectal cancer; the data of 202 and 34 patients were for training and validation, respectively. All
patients received pretreatment [18F]FDG-PET/CT, NCRT, and surgery. The treatment response was
scored by Dworak tumor regression grade (TRG); TRG3 and TRG4 indicated favorable responses.
The model employed ML combined with the Uniform Manifold Approximation and Projection for
dimensionality reduction. A receiver operating characteristic (ROC) curve analysis was performed
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to assess the model’s predictive performance. Results: In the training cohort, 115 patients (57%)
achieved TRG3 or TRG4 responses. The area under the ROC curve was 0.96 for the prediction
of a favorable response. The sensitivity, specificity, and accuracy were 98.3%, 96.5%, and 97.5%,
respectively. The sensitivity, specificity, and accuracy for the validation cohort were 95.0%, 100%,
and 98.8%, respectively. Conclusions: The new ML model presented herein was used to determined
that baseline 18F[FDG]-PET/CT images could predict a favorable response to NCRT in patients with
rectal cancer. External validation is required to verify the model’s predictive value.

Keywords: 18F-fluorodeoxyglucose positron emission tomography/computed tomography; rectal
cancer; neoadjuvant chemoradiotherapy; metric learning

1. Introduction

Neoadjuvant chemoradiotherapy (NCRT) before total mesorectal excision (TME) has
become a mainstay of treatment for patients with locally advanced rectal carcinoma [1,2].
Responses to NCRT vary, with 15–27% of patients exhibiting a pathological complete
response, 54–75% of patients exhibiting a partial response, and others exhibiting no re-
sponse [3]. A phase three trial demonstrated that neoadjuvant chemotherapy with intra-
venous fluorouracil, leucovorin, and oxaliplatin without radiation achieved noninferiority
in three-year disease-free survival relative to fluorouracil with radiation [4]. Determining
whether a patient can achieve a favorable therapeutic response is crucial for counseling
them on their treatment options and their decision on whether to undergo NCRT or neoad-
juvant chemotherapy. The prediction of tumor responses before selecting NCRT maximizes
the therapeutic benefits of the approach.

Among the imaging modalities used for clinical staging in patients with rectal can-
cer, 18F-fluorodeoxyglucose ([18F]FDG)-positron emission tomography (PET)/computed
tomography (CT) imaging has been widely employed to assess patients’ pathological
responses to NCRT [5–9]. The use of FDG-PET-derived radiomics for predicting favorable
responses has also been investigated [10,11]. Artificial intelligence (AI) allows for novel
image analysis techniques and may be key to the advancement of precision medicine. The
authors of this study previously investigated the performance of a combination of baseline
[18F]FDG-PET/CT radiomics and random forests in predicting pathological complete
response in the same patient setting [12]. Compared with human-engineered radiomic
methods, which strongly depend on segmentation methods and quantification of extracted
features, a deep learning (DL) algorithm works by learning relevant features directly
from image databases. Little is known regarding predictive performance when baseline
[18F]FDG-PET/CT images are used in the absence of handcrafted features. Imaging fea-
tures in [18F]FDG-PET/CT was hypothesized to be capable of directly predicting responses
to NCRT using potential imaging biomarkers. In this study, a novel metric learning (ML)
model with a data processing strategy was employed to circumvent the limitations of
training on a cohort with a low data volume [13,14].

2. Methods
2.1. Study Design and Patient Population

Between January 2009 and July 2018, 361 patients were screened for this retrospective
study. They were newly diagnosed with rectal cancer and were scheduled to undergo
curative NCRT followed by TME at our institute. All patients had biopsy-confirmed ade-
nocarcinoma and received pretreatment [18F]FDG-PET/CT. No patients with mucinous
or signet ring carcinomas were included. To minimize bias, patients who received TME
more than 12 weeks after receiving NCRT were excluded. The structure of the proposed
model for the classification of responses to NCRT is illustrated in Figure 1. The model was
categorized as a supervised ML. The PET and CT images were processed and convoluted
with ML separately. After two sets of the features were concatenated, dimensionality re-
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duction was performed using a Uniform Manifold Approximation and Projection (UMAP).
The treatment responses were classified using a support vector machine (SVM) according
to the distribution of the visualized features. A receiver operating characteristic (ROC)
curve analysis was performed to calculate the classification performance. This study was
approved by China Medical University and Hospital Research Ethics Committee [certificate
numbers: DMR99-IRB-010(CR-11) and CMUH106-REC3-119(CR-3)].
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2.2. NCRT

The drugs used in the NCRT regimens comprised capecitabine, uracil-tegafur, and
intravenous 5-fluorouracil. All patients were irradiated with intensity-modulated radio-
therapy to reduce treatment-related toxicity without compromising the response rates [15].
After a prescribed dose of 45 Gy to the pelvis in 25 fractions over five weeks, a dose of
5.4 Gy in three fractions was administered as a boost to the gross tumor and metastatic
pelvic lymph nodes.

2.3. Pathological Assessment

After the patients underwent TME, their pathological responses were scored according
to the Dworak tumor regression grade (TRG) [16]. TRG3 or TRG4 responses were regarded
as favorable, whereas TRG0, TRG1, and TRG2 responses were regarded as nonfavorable.

2.4. PET/CT Image Acquisition

The patients underwent [18F]FDG-PET/CT for baseline staging before NCRT. Before
imaging, the patients fasted for at least 4 h to reduce the effect of serum glucose [12].
Approximately 60 min after 370 MBq of [18F]FDG was administered to the patients, im-
ages were taken using a PET/CT scanner (Discovery STE 16-Slice PET/CT Scanner, GE
Healthcare, Milwaukee, WI, USA). The patients were required to rest during the uptake
period. A CT topogram was used to label the axial scan range. After the CT was performed,
PET images were obtained in the three-dimensional acquisition mode at 2 min per field of
view (FOV) with an 11-slice overlap at the borders of the FOV. The CT performed was a
low-dose non-contrast CT.
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The [18F]FDG-PET data were saved in Advantage Workstation (Ver. 4.4, GE Health-
care). Two nuclear medicine physicians reviewed the images and located the target lesions.
The PET/CT workstation quantified [18F]FDG uptake automatically.

2.5. Data Pre-Processing

The initial CT and PET images were reconstructed on a 512 × 512 and 128 × 128 matrix.
To fit the size of the corresponding PET images, the matrix of CT images was converted to
128 voxels × 128 voxels × length of the region of interest (ROI). The geographical center of
the tumors and the ROI of the lesions were defined based on the CT images. Through this
approach, the training model converged more efficiently in the classification of responses
to NCRT.

2.6. Metric Learning

ML is an AI method based on a distance metric that determines similarity or dissim-
ilarity between objects [13,14,17]. This approach can decrease and increase the distance
between similar and dissimilar objects, respectively. In this study, two deep residual
learning frameworks were used to analyze PET and CT images, respectively. The batch
normalization and activation of the rectified linear unit were performed before each block
to minimize the possibility of overfitting (Figure 1). Furthermore, triplet loss was utilized as
a loss function for the ML algorithms. The distances from the baseline input to the positive
and negative inputs were therefore minimized and maximized, respectively. Consequently,
the data were transformed into a new representation to facilitate classification training.

2.7. Uniform Manifold Approximation and Projection for Dimensionality Reduction

Dimensionality reduction plays a key role in data science. UMAP is a nonlinear
dimensionality reduction technique that can be used for various data distributions through
a combination of Riemannian geometry and algebraic topology [18,19]. UMAP has already
been widely implemented in bioinformatics, materials science, and machine learning [18].
To improve visualization in the training model, a UMAP was used to reduce the dimen-
sionality of the data by mapping it from high-dimensional to two-dimensional space.
Through the use of this approach, the possibility of data overfitting or oversensitivity was
minimized [20].

2.8. Support Vector Machine

An SVM is a machine learning algorithm that can efficiently engage in linear or
nonlinear classification. In addition, SVMs are capable of categorizing low-volume data
sets. This study utilized an SVM to classify preprocessed two-dimensional visualized
features into two groups, namely, responses of below TRG3 and those of TRG3 or above.

2.9. Statistical Analysis

An ROC curve analysis was performed to calculate the classification performance.
The area under the ROC curve (AUC) was used to evaluate the predictive performance
of the model. The predictive indices included sensitivity (SE), specificity (SP), positive
predictive value (PPV), negative predictive value (NPV), and accuracy. The analysis was
performed using a commercial software (SPSS Statistics 26.00).

3. Results
3.1. Patient Characteristics

According to the patients’ treatment periods, their images, and available clinical
data, the 236 patients were included in this study and they were divided into two cohorts
(202 and 34 patients in the training and validation cohorts, respectively), as indicated
in Appendix A. The patients in the training cohort were treated at any period between
January 2009 and June 2017, whereas the patients in the validation cohort were treated
on July 2017 or later. The same PET/CT scanner and treatment scheme were used during
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the patient inclusion. In the training cohort, the patients’ tumors were mainly located
in the upper or rectosigmoid junction (16 patients), the middle third (103 patients), or
the lower third (83 patients), as summarized in Table 1. The median age was 58 years
(31–86 years); 140 patients were men, and 63 were women. The median interval from the
end of NCRT to the TME was 56 days. In four patients with metastatic liver tumors before
NCRT, wedge resection of liver tumors were carried out simultaneously during the TME.
In total, 117 patients (58%) achieved TRG3 or TRG4 responses.

Table 1. Patient characteristics of training cohort (n = 202).

Characteristic Value

Age (years) 31–86 (median, 58)

Gender Male:139, Female:63

Primary lesion location
low rectum 83

middle rectum 103
upper rectum or rectosigmoid junction 16

CEA (ng/dL) 17.08 ± 37.92(0.48–241.88)

Pretreatment clinical staging (AJCC 7th ed.)
T stage T2:26, T3:148, T4:28
N stage N0:60, N1:80; N2:62
M stage M0:198, M1:4

Differentiation
W-D 5
M-D 39
P-D 4

unknown 154

Concurrent chemotherapy regimen (%)
Capecitabine 174

Uracil-Tegafur 21
Intravenous 5-Fluorouracil based regimen 7

Interval from the end of radiation to surgery
>4 and <8 week 102
≥8 and <12 week 100

Tumor regression grade (%)
Grade 0 0
Grade 1 31
Grade 2 54
Grade 3 93
Grade 4 24

Abbreviations: JCC = American Joint Committee on Cancer; CEA = carcinoembryonic antigen; W-D = well
differentiated; M-D = moderately differentiated; P-D = poorly differentiated.

3.2. Partitioning of Patients in the Training Cohort

To ensure that training was not conducted on a fixed data set alone, this study applied
K-fold cross-validation to validate the strength of the model. The patients were randomly
divided into five groups, each containing a comparable proportion of TRG3 and TRG4
responders. Each set was labeled as a test set only once, and the remaining sets were
combined to construct the training set for the modeling. During the training process, all
sets included in the training cohort were split into training and test sets at a ratio of 4:1.

3.3. Image-Based Prediction

The classification indices for the prediction of TRG3 or TRG4 responses for all tumors
in the five sets of the training cohort are summarized in Table 2. The AUC was 0.96 [95%
confidence interval (CI) 0.951–0.993] (Figure 2A), and the predictive SE, SP, PPV, NPV,
and accuracy were 98.3% (95% CI 0.962–1.000), 96.5% (95% CI 0.936–0.993), 97.5% (95%CI
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0.958–0.993), 97.6% (95% CI 0.953–1.000), and 97.5% (95% CI 0.960–0.991), respectively.
Figure 3 illustrates the distribution of the visualized features for the training model before
and after the implementation of ML and UMAP, respectively. Figure 4 displays the overall
classification performance of SVM for TRG3 and TRG4 responses, following the dimension-
ality reduction of the features. The proposed model could provide enhanced discrimination
of the visualized two-dimensional features associated with a patient’s response to NCRT.

Table 2. Classification indices for tumor regression grade 3 or 4 responses in all five sets of the
training cohort, comparing patients with and without favorable responses.

Prediction
RG Grade 3 or 4 Response

Indices
Positive Negative

Positive 115 2 98.3%
Negative 3 82 96.5%
Indices 97.5% 97.6% 97.5%
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3.4. Validation and Comparison

The proposed model had the following predictive performance when applied to the
PET/CT images of the 34 patients in the validation cohort. The AUC was 0.962 (95% CI
0.935–0.999) (Figure 2B), and the SE, SP, and accuracy were 95.0% (95% CI 0.910–0.990),
100% (95%CI 1.000–1.000), and 98.2% (95%CI 0.969–0.997), respectively. The classification
performance of the proposed model and that of the traditional DL approach are compared
in Appendix B. The AUC value of the DL without the integration of ML or UMAP was
0.618, which was significantly inferior to that of the proposed model (p = 0.002).

3.5. Heat Map

A heat map was utilized to visually identify the discriminative regions targeted by the
proposed model and to detect events in the imaging set. The rectum is adjacent to many
organs, including the uterus, bladder, and prostate. These anatomical structures, which
also may exhibit an increased uptake of FDG, might disrupt the visualization and cause
inaccuracies. Therefore, the heat map indicated the activated area in the imaging sets in
the last layer of the ML model (Figure 5). The heat map demonstrated that the proposed
model was capable of distinguishing the rectum from the adjacent organs. In addition, the
characteristics of the target events were based on critical areas in the rectal tumors.
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map of CT. Note: 1. Heat maps were generated using a commercial software (Grad-CAM). 2. The
geographical center of the PET and CT images is the same.

4. Discussion

Precision medicine for cancer treatment involves the identification of biological or
imaging markers to predict therapeutic outcomes early. A patient’s response to NCRT
is crucial because it directly affects their prognosis [3]. In addition, patients with rectal
cancer—especially those with low-lying tumors—who exhibit a favorable response to
NCRT could benefit from sphincter-saving procedures [1]. Furthermore, a response pre-
diction is valuable in determining a patient’s therapeutic decision between NCRT and
neoadjuvant chemotherapy. By employing a novel combination of ML and UMAP, this
study demonstrated that baseline [18F]FDG-PET imaging could be used to classify a pa-
tient’s NCRT response with high accuracy. Although the gold standard for measurement
of a tumoral response to NCRT is postoperative histopathological analysis, this proposed
model can provide an innovative platform for future studies related to individualized
treatments.

Despite the lack of a universal algorithm for extracting radiomic features from
[18F]FDG-PET imaging of rectal cancer, Bang et al. [11]. investigated a set of radiomic
features in 74 patients with rectal cancer. The authors reported that the kurtosis of the
absolute gradient was related to tumor recurrence. However, no significant associations
existed between radiomics and TRG. Lovinfosse et al. [10]. conducted a study involving
66 patients and discovered that total lesion glycolysis of a tumor is a significant predictor
of a TRG3 or TRG4 response to NCRT. The aforementioned predictive value of FDG-PET-
based radiomics for NCRT might imply that the imaging features of rectal tumors in
FDG-PET are associated with a particular phenotypic response to NCRT. Although the
biological mechanism underlying the imaging of tumor heterogeneity remains unclear,
implementation of AI-based models may enable oncologists to identify a particular tumor
phenotype common to patients predicted to respond favorably to NCRT.
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Two studies have demonstrated that DL combined with features derived from mag-
netic resonance imaging (MRI) before NCRT exhibits superior performance in the predic-
tion of patients’ treatment responses [21,22]. In a prospective study by Zhang et al., [21]
383 participants (290 in the training cohort, 93 in the test cohort) were evaluated using a
DL model based on diffusion kurtosis MRI. The AUC was 0.99 for the prediction of TRG4
responses among participants in the test cohort but 0.79 for the prediction of downstaging
of the primary tumors. Fu et al. conducted a study involving a cohort of 43 patients
receiving NCRT and TME [22]. All of the patients underwent pretreatment diffusion-
weighted imaging (DWI). The researchers found that DL of the features extracted from the
DWI achieved significantly better classification of NCRT responses than that derived from
handcrafted features. Therefore, to maximize predictive accuracy, future studies should
integrate multiple sources of imaging information into the proposed model.

To achieve an accurate assessment of the proposed model’s clinical utility, this study
employed an innovative AI method combining ML and UMAP to facilitate the measure-
ment of training performance. DL does not always work well when training is conducted
on a low-volume data set. In addition, the use of the algorithms to process the data might
be time-consuming. DL and ML have been combined in deep metric learning [14]. This
model is mainly based on the principle of similarity or connection between samples. Using
this approach, the data can be transformed into a new feature space with a highly discrimi-
native power. As indicated in Figure 3, UMAP can be implemented to reorganize the layout
of the data distribution in a low-dimensional space to reduce the cross-entropy between
the original and the low-dimensional topological representations [18]. Consequently, the
features of treatment responses were effectively discriminated by the SVM according to the
two-dimensional distribution. In the future, the performance of this proposed AI approach
should be examined using other cancers or image settings to verify its reproducibility.

This study had several limitations. First, although the performance of the proposed
model was validated using a validation cohort, validation with independent external
data sets is still necessary to establish the model’s clinical utility because this study was
conducted at a single institute. To optimize the role of the imaging phenotype, a model
able to accurately predict the TRG4 response would be more beneficial. However, because
a positive correlation was observed between predictive value and predicted events and
because patients exhibiting TRG responses were a minority, the use of the proposed model
to assess TRG4 responses might be challenging. Therefore, the authors of this study intend
to increase the sample size to extend the predictive range of the proposed model.

Moreover, the overall predictive performance of the model can be strengthened by
integrating information from other predictive models [21–24]. For example, the integration
of MRI-derived features extracted before or after NCRT would be valuable because MRI-
derived features are potentially associated with specific phenotypic categories observed
in DWI and dynamic contrast-enhanced imaging [25]. Finally, future research should
investigate disease-free or overall survival of patients to maximize the prognostic benefits
of the imaging phenotypes. Nonetheless, this study’s findings represent a crucial step
toward enabling customization of neoadjuvant therapy for patients with rectal cancer using
AI. After further validation, oncologists may use the proposed model to advise patients on
the relative suitability of treatment options, including the therapeutic decision between
NCRT and neoadjuvant chemotherapy. Integrating this approach would have a notable
effect on counseling patients about treatment alternatives or prognoses.

5. Conclusions

Using a novel ML model, this study demonstrated that baseline [18F]FDG-PET/CT
images could be used to directly predict favorable responses in patients with rectal can-
cer who had received NCRT. Prior to its clinical application in personalizing patients’
treatment options, the proposed model requires further validation with more extensive
clinical studies.
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Appendix B

Comparison of classification performance between proposed model and traditional
deep learning approach.

Table A1. Classification indices with metric learning and Uniform Manifold Approximation and Projection (UMAP).

AUC
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

Accuracy
(95% CI)

Training cohort
(n = 202) 0.960 (0.951–0.993) 0.983 (0.962–1.000) 0.965 (0.936–0.993) 0.975 (0.960–0.991)

Validation cohort
(n = 34) 0.962 (0.935–0.999) 0.950 (0.910–0.990) 1.000 (1.000–1.000) 0.982 (0.969–0.997)

Fold_1 Fold_2 Fold_3 Fold_4 Fold_5 Summation

Training AUC 0.993 0.944 1.000 0.964 0.959 0.972

Validation AUC 1.000 0.92 0.939 0.977 1.000 0.967

Training accuracy 0.976 0.976 1.000 0.950 0.975 0.975

Validation accuracy 1.000 0.971 0.971 0.971 1.000 0.982

Training sensitivity 1.000 1.000 1.000 0.957 0.957 0.983

Validation sensitivity 1.000 0.917 0.917 0.917 1.000 0.950

Training specificity 0.941 0.941 1.000 0.941 1.000 0.965

Validation specificity 1.000 1.000 1.000 1.000 1.000 1.000

Abbreviation: 95% CI = 95% confidence interval.

Table A2. Classification indices with traditional deep learning (ResNet) without UMAP or metric leaning.

AUC
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

Accuracy
(95% CI)

Training cohort
(n = 202) 0.618 (0.576–0.704) 0.630 (0.449–0.810) 0.588 (0.349–0.827) 0.614 (0.591–0.636)

Validation cohort
(n = 34) 0.606 (0.511–0.704) 0.467 (0.238–0.695) 0.745 (0.645–0.846) 0.647 (0.611–0.683)

Fold_1 Fold_2 Fold_3 Fold_4 Fold_5 Summation
SUM

Training AUC 0.645 0.588 0.573 0.760 0.634 0.640

Validation AUC 0.542 0.614 0.716 0.458 0.708 0.608

Training accuracy 0.634 0.634 0.575 0.625 0.600 0.614

Validation accuracy 0.618 0.618 0.706 0.618 0.676 0.647

Training sensitivity 0.625 0.958 0.565 0.391 0.609 0.630

Validation sensitivity 0.333 0.583 0.583 0.083 0.750 0.467

Training specificity 0.647 0.176 0.588 0.941 0.588 0.588

Validation specificity 0.773 0.636 0.773 0.909 0.636 0.745

Table A3. Comparison of classification performance using statistical analysis. AUC value of tradi-
tional deep learning (ResNet) was 0.618, which was significantly inferior to that of the proposed
model (p = 0.002).

Number Correlation p-Value

Training cohort 202 0.215 0.002

Test cohort 34 0.308 0.076
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