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Ser/Arg-rich (SR) proteins are RNA-binding proteins known as constitutive and alternative

splicing (AS) regulators that regulate multiple aspects of the gene expression program.

Ser/Arg-rich splicing factor 3 (SRSF3) is the smallest member of the SR protein family,

and its level is controlled by multiple factors and involves complex mechanisms in

eukaryote cells, whereas the aberrant expression of SRSF3 is associated with many

human diseases, including cancer. Here, we review state-of-the-art research on SRSF3

in terms of its function, expression, and misregulation in human cancers. We emphasize

the negative consequences of the overexpression of the SRSF3 oncogene in cancers,

the pathways underlying SRSF3-mediated transformation, and implications of potential

anticancer drugs by downregulation of SRSF3 expression for cancer therapy. Cumulative

research on SRSF3 provides critical insight into its essential part in maintaining cellular

processes, offering potential new targets for anti-cancer therapy.
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BACKGROUND

Ribonucleic acid (RNA) splicing is a fundamental process of gene expression, during which
non-coding sequences (introns) are removed and coding sequences (exons) are ligated together
from a precursor messenger RNA (pre-mRNA) to form a mature messenger RNA (mRNA)
(1). In higher eukaryotes, most genes undergo alternative splicing from a single pre-mRNA
transcript via splice site selection, generating multiple mature mRNAs that have different functions
and contribute to biologic complexity (Figure 1). Both constitutive and alternative splicing
processes are catalyzed by dynamic and complex macromolecular major (U2-dependent) or minor
(U12-dependent) spliceosomes (2). Each spliceosome contains five small nuclear ribonucleoprotein
(snRNPs) particles: U1, U2, U4, U5, and U6 snRNAs for former and U11, U12, U4atac, U5,
and U6atac snRNAs for the latter (3). Spliceosome recognizes the consensus sequence elements
at the 5’ss, 3’ss, and branch point (BP) sites, which is a crucial step in the splicing pathway
(3). The selection of splice sites for recognition is modulated by an array of RNA regulatory
sequence elements, including exonic and intronic splicing enhancers and silencers. These splicing
regulatory elements (SREs) are recognized by numerous accessory splicing factors, including
the heterogeneous nuclear ribonucleoproteins (hnRNPs) and Ser/Arg-rich (SR) proteins (3). SR
proteins and hnRNPs promote and suppress splicing, respectively, in a sequence-depending
manner and in diverse ways, including facilitating the recruitment of U1 or U2 snRNP, occluding
a splice site, and “looping out” an exon (4). In addition to their role as splicing regulators, these
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FIGURE 1 | Schematic diagram of gene expression in prokaryote cells.

proteins also participate in other diverse RNA metabolic
processes and cellular processes, such as Pol II transcription,
mRNA export and translation, genomic stability maintenance,
cell viability, and cell-cycle progression (5).

Abbreviations: ABC, ATP-binding cassette; BP, Branch point; AS, Alternative

splicing; CLK, CDC2-like kinase; CRC, Colorectal cancer; CTD, C-terminal

domain; DARPP-32, Dopamine and cyclic adenosine monophosphate-regulated

phosphoprotein, Mr 32000; DNA, Deoxyribonucleic acid; ESE, Exonic splicing

enhancer; FL, Follicular lymphoma; FoxM1, Forkhead box transcription

factor M1; GBM, Glioblastoma; GSC, Glioma stem-like cells; GV, Germinal

vesicle; GVBD, Germinal vesicle breakdown; HBx, Hepatitis B virus-encoded

X protein; HCC, Hepatocellular carcinoma; HIPK2 FL, Full-length HIPK2;

HIPK2, Homeodomain-interacting protein kinase2; hnRNPs, Heterogeneous

nuclear ribonucleoproteins; HPV, Human papillomavirus; HRR, Homologous

recombination repair; IGC, Interchromatin granule cluster; IR, Intron retention;

IRES, Internal ribosome entry site; JNK, c-Jun N-terminal protein kinase;

MAP4K4, Mitogen-activated protein 4 kinase 4; MCC, Mutated in colorectal

cancer; miRNA,MicroRNA;mRNA,Messenger RNA;MRP1,Multidrug resistance

protein 1; NAFLD, Nonalcoholic fatty liver disease; NASH, Non-alcoholic

steatohepatitis; NRS, Negative regulator of splicing; NXF1, Nuclear export factor

1; NXF1-NXT1, NXF1-nuclear transport factor 2-related export protein 1; PBs,

P-bodys; PDCD4, Programmed cell death; PKM, Pyruvate kinase M; PKM2,

Pyruvate kinasemuscle 2; PLC, Phospholipase C; pre-mRNA, Precursormessenger

RNA; pri-miRNAs, Primary microRNA transcripts; PTB, Polypyrimidine tract-

binding protein; PTC, Premature termination codon; RBM4, RNA-binding motif

protein 4; RBPs, RNA-binding proteins; RNA, Ribonucleic acid; ROS, Reactive

oxygen species; RI, Retained intron; RRM, RNA-recognition motif; RS, Arginine

(R) and Serine (S); RSV, Rous sarcoma virus; SCC, Sister chromatid cohesion;

SELEX, Systematic evolution of ligands by exponential enrichment; snRNPs, Small

nuclear ribonucleoproteins; SR, Ser/Arg-rich; SRE, Splicing regulatory element;

SRPK, SR protein kinase; SRSF, Ser/Arg-rich Splicing Factor; TL, Terminal

loop; TNBC, Triple-negative breast cancer; TNM, Tumor node metastasis; UTR,

Untranslated region; YTHDC1, YTH domain containing 1.

An increasing body of evidence supports that the aberrant
splicing of pre-mRNA results in the production of aberrant
proteins that contribute to the misregulation of cellular growth,
differentiation, and tissue development, eventually leading to the
susceptibility to diseases, including cancer (6). Recent studies
have found that alterations and mutations in the genes encoding
core spliceosomal proteins and related RNA-splicing factors
provide major mechanisms for cancer-associated splicing and
transformation, implicating tumor establishment, progression,
and resistance to therapy (4, 6). Many splicing factors, including
SR and hnRNP families, have been certified to act as both
oncoproteins (or proto-oncoproteins) and tumor suppressors.
Therefore, we focus on Ser/Arg-rich splicing factor 3 (SRSF3),
also called SRp20, which is a member of the highly conserved
SR protein family. SRSF3 plays a critical role in the regulation
of RNA splicing and many other cellular functions. Aberrant
SRSF3 function can be identified in several human diseases,
including Alzheimer’s disease (7), systolic heart failure (8), ocular
hypertension (9), virus infection (10–12), and tumor (13). In
this review, we summarize current research on the function
and expression regulation of SRSF3 and the misregulation
and biological implications of SRSF3 in cancer, as well as its
therapeutic potential.

SRSF3 FUNCTIONS

SR protein family are identified by possessing one or two N-
terminal RNA-recognition motif (RRM) domains and a C-
terminal domain enriched with the Arginine (R) and Serine
(S) amino acid sequences (RS domain). In general terms, RRM
domains recognize RNA, whereas RS domains take part in
diverse protein-protein and protein-RNA interactions (14, 15).
Thus, far, 12 members of the SR protein family have been
identified in humans, encoded by 12 genes and designated
SRSF1-12. All members of the SR protein family are mainly
nuclear and localize to interchromatin granule clusters (IGCs) or
nuclear speckles, but some members including SRSF3 can shuttle
between the nucleus and the cytoplasm (15–17). SR proteins
have been shown to regulate constitutive and alternative splicing
as well as multiple other steps of RNA biological metabolism,
suggesting that they are multifunctional proteins taking part
in transcriptional, co-transcriptional, and post-transcriptional
regulation pathways (18, 19). Given the important roles that
SR proteins act on these processes, aberrant expression and/or
activation and somatic mutation in SR proteins would lead to
developmental impairments and disease pathophysiology (4, 20).

SRSF3 composes 164 amino acids with 19 kDa molecular
weight makes it to be the smallest member of the SR protein
family (13). Although initially identified as a splicing regulator,
SRSF3 has been identified as a polyfunctional protein involved
in multiple physiological and pathological processes, as shown in
Figure 2.

Regulation of Splicing
SRSF3 regulates the global change in gene expression program to
maintain cell homeostasis by constitutive splicing and alternative
splicing (21). Alternative splicing is an essential process for
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FIGURE 2 | SRSF3 regulates several cellular functions in eukaryote cells.

regulating most protein-coding genes by producing multiform
messenger RNA transcripts to yield proteomic diversity in
eukaryotic cells. Several distinct patterns of SRSF3-induced
alternative splicing exist, including mutually exclusive exons
(22), alternative terminal exons (23), alternative cassette exons
(where one or more exons is either skipped or included) (24–
26), alternative unique exon (27), skipping of 5’-nucleotides from
exon (28), intron retention (IR) (29, 30), and early termination
codon (30). In addition, SRSF3 can act as activators or repressors
in the alternative splicing of other RNA-binding proteins (RBPs),
such as SRSF1 (31), SRSF5 (32), C-terminal domain (CTD) of
RNA polymerase II (pol II) (25), polypyrimidine tract-binding
protein (PTBP) 1 and heterogeneous nuclear ribonucleoprotein
(hnRNPs) A1 (33). Similar to other SR members, SRSF3-related
aberrant splicing is often associated with the non-sense-mediated
mRNA decay pathway, resulting in inducing aberrant protein
isoforms that are often linked to numerous human diseases,
including cancers.

Regulation of RNA Export
The ability of SRSF3 to shuttle between the nucleus and the
cytoplasm allows it to be a major contributor to the regulation of
mRNA export. Similar to other SRSFs, the nuclear to cytoplasmic
translocation of SRSF3 relates to the export receptor, nuclear
export factor 1 (NXF1) via Arginine-rich peptide adjacent to
RRM (34). Among those SRSFs, SRSF3 presents the most
effective adaptor for the NXF1 adaptor (35), suggesting that
SRSF3 can act as a sturdy ship in the TAP-dependent mRNA
export from nucleus to cytoplasm. SRSF3 represses nuclear
export of programmed cell death (PDCD4), isoform 2 mRNA.
Consequently, at SRSF3 knockdown, PDCD4 AS-2 mRNA level,
but not AS-1, was found to increase in the cytoplasm (36). In
addition, SRSF3 can interact with NXF1-nuclear transport factor

2-related export protein 1 (NXF1-NXT1), resulting in the export
of “intronless” mRNAs (37).

Regulation of RNA Translation
SRSF3 can mediate post-transcriptional regulation of mRNA. It
presents an internal ribosome entry site (IRES) and mediates
the translation initiation of viral RNA in company with PCBP2,
an IRES-binding protein (38). Moreover, it was reported that
SRSF3 is not only participating in pre-mRNA alternative splicing
but also in the regulation of the translation of PDCD4 mRNA.
Of the two alternatively spliced transcripts of PDCD4, only
isoform 1 (the major isoform) was found to be affected at
the translational level by SRSF3. Further study found that
SRSF3 exerted its effect on PDCD4 mRNA translation through
a strong interaction with the 5’-untranslated region (5’-UTR)
and recruitment to P-bodys (PBs). When SRSF3 was silencing,
PBs disappeared and the translation inhibition of PDCD4
mRNA was relieved. These data investigate that SRSF3 recruits
PDCD4 mRNA to PBs for the expression of PDCD4 (36,
39). In addition, a reproducible hypoxia-induced increase in
SRSF3 protein was associated with the hypoxic stress-induced
retained intron (RI) in translation initiation of EIF2B5 (29).
RI in EIF2B5 creates a premature termination codon (PTC),
leading to a 65kDa truncated protein isoform that opposes
full-length eIF2Bε to inhibit global translation. Upon SRSF3
knockdown, the expression of the 65 kDa isoform of eIF2Bε

disappearances in normoxia or hypoxia conditions. Then the
biding between SRSF3 protein and EIF2B5 mRNA was proved
to increased (29). These results indicate SRSF3 as a regulator
mediating RI in EIF2B5, consequently taking part in translational
control under hypoxia. Moreover, SRSF3 was identified as a
translation regulator of innate immune genes, which may be
because there are several putative binding sites for SRSF3 in 3′

UTRs of some innate immune gene (40). As expected, SRSF3
silencing led to the increase in the protein synthesis of immune
mediators, containing SAA3, CCL5, and CCL3, suggesting that
SRSF3-mediated translational regulation is involved in innate
immunity (40).

Regulation of RNA Polyadenylation
Polyadenylation is a processing step for generating mature
mRNA in eukaryotes (41). In the model for the negative
regulator of splicing (NRS)-stimulated Rous sarcoma virus
(RSV) polyadenylation, it was shown that SR proteins, including
ASF/SF2, 9G8, and SRSF3, binding to NRS- or systematic
evolution of ligands by exponential enrichment (SELEX)-
binding sites was sufficient to stimulate polyadenylation
in vitro. However, just SR protein-binding sites promoted
polyadenylation independent of the NRS complex in vivo when
moved nearer to the viral poly(A) site. Data manifest that SR
proteins play a promoting role in RSV polyadenylation, but only
when they are close to the RNA 3′ end by binding to the NRS
(42). In addition, SRSF3 was reported to affect the recognition
of an alternative 3′-terminal exon by effecting the efficiency
with which a polyadenylation factor is bound to an alternative
polyadenylation site (43). These results suggest that SR proteins
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not only regulators the polyadenylation of cellular mRNAs but
also controls alternative polyadenylation.

Regulation of Transcriptome Integrity
SRSF3 is also reported to contribute to the establishment and
modulation of the maternal transcriptome (19). SRSF3 was
proved to highly express in germinal vesicle (GV) and MII
oocytes (at metaphase of meiosis II), indicating SRSF3 acting
as a critical maternally inherited factor. SRSF3 knockdown in
grown germinal vesicle oocytes compromises the capacity of
germinal vesicle breakdown (GVBD). Further, the GVBD defect
in mutant oocytes was proved to be due to both aberrant
alternative splicing (including Brd8 and Pdlim7) and depression
of B2 SINE transposable elements. These observations suggest
that the control of the transcriptional identity of the maternal
transcriptome by SRSF3 is essential to the development of
fertilized competent oocytes (19).

Regulation of Genome Integrity
DNA lesions are usually caused by chemical compounds with
(pro-)genotoxic activity and dysregulations of basic processes,
including transcription, DNA replication, and mitosis (44).
Mitotic distortions and transcription-associated RNA-DNA
hybrids (R-loops) formations induced by impaired expression of
RNA-binding proteins are strongly associated with DNA injury
(45). SLU7 as a key mediator of genome stability was reported
to be required for the mitotic progression of transformed cells,
suitable spindle assembly, sister chromatid cohesion (SCC), and
sororin splicing regulation, as well as for the protecting cells from
R-loop formation and DNA damage (45). SLU7 knockdown leads
to the formation of R-loops, DNA damage, cell-cycle arrest, and
SCC loss. Further study found that SLU7 regulates the splicing
of SRSF1 and SRSF3 and inhibites the protein expression of
truncated SRSF3 (SRSF3-TR) (45). These results demonstrate
that SRSF3-TR proteins, as a target of SLU7,may play a important
role in DNA damage and genome instability.

Regulation of Transcription Termination
Termination of RNA polymerase II (Pol II)-mediated
transcription acts a significant role in the regulation of
gene expression (46). The transcription termination of RNA
polymerase II (Pol II) contains two linked steps: mRNA 3′-end
formation and Pol II release from DNA. The intact 3′-processing
signal and some 3′-end processing factors are also required
for Pol II transcription termination (47, 48). In the model of a
C. elegans operon intended to select factors taking part in the
transcription termination, the lin-15 operon involves two genes:
lin-15B and lin-l5A (49). Two deletion alleles of rsp-6, which
encodes SRSF3, were found to strongly suppress the synthetic
Multivulva phenotype of lin-15AB (n765) at levels similar to
RNAi. In lin-15AB, RNA levels decrease markely at the site of
the insertion, whereas they restore at the site of the insertion in
the rsp-6 mutant strain. Further, SRSF3 was found to increase
the RNA downstream of the cleavage site without influencing
cleavage (49). These data indicate that SRSF3 acts a role in
termination of transcription and not in cleavage, maybe by
interacting with the RNA downstream of the cleavage site.

Regulation of miRNA Process
SRSF3 was also demonstrated to facilitate primary microRNA
transcripts (pri-miRNAs) recognition and processing. Pri-
miRNAs own at least one RNA motif in the major and
conserved motif family: UG, UGU, and CNNC (50). The
UG and UGU motifs of pri-miRNAs cooperate with the
microprocessor complex (including RNase III DROSHA and
DGCR8 dimer) to cleave pri-miRNAs to initiate microRNA
(miRNA) maturation, whereas CNNC connects with SRSF3
to induce the microprocessor to process pri-miRNAs. That is,
SRSF3 supplies DROSHA to the foundational junction in a
CNNC-dependent manner, then improving microprocessor
activity (50). For example, a genetic variant (G27-to-A
variant) in the terminal loop (TL) of pri-mir-30c-1 leads to
the reorganization of the RNA secondary structure, thereby
promotes the interaction of pri-mir-30c-1 with SRSF3. And the
interaction between them occurs at the CNNC motif located
17 nucleotides away from the Drosha cleavage site at the basal
region of the G/A variant. This interaction, also increases the
microprocessor-mediated processing of primir-30c-1, causing
the upregulation of miR-30c level (51). In addition, expressions
of mature miR-1908-5p (52) and miR-3131 (53) were also
mediated by SRSF3. NF-κB was also shown to be involved in
SRSF3-regulated miR-1908 expression (51).

Regulation of DNA Repair
Recently, SRSF3 was identified as a regulator of the homologous
recombination-mediated DNA repair (HRR) process, which
may regulate the HRR-related gene expression indirectly by
an epigenetic pathway (54). SRSF3 knockdown impaired
HRR activity and improved the level of γ-H2AX which
ating as a biomarker for double-strand DNA breaks. It also
downregulated the genes involved in HRR, including BRCA1,
BRIP1, and RAD51, changed the KMT2C (a H3K4-specific
histone methyltransferase) splicing pattern, and decreased the
mono- and trimethylated H3K4 level (54).

SRSF3 EXPRESSION REGULATION

Given the above, SRSF3 is an essential gene for embryogenesis.
SRSF3 exists in oocytes and the early phase of embryonic
development (19, 55), and SRSF3 missing leads to the arrest
at one/two-cell developmental stage (19). In addition, it was
found that the SRSF3-zygotic knockout embryos, using Cre-
loxP-mediated recombination inmice to stimulate the expression
of SRSF3 gene, died at the morula stage, failing to form
blastocysts (55). Contrarily, the overexpression of SRSF3 in
rodent fibroblasts leads to tumorigenesis with immortal cell
growth and transformation (11). Thus, the SRSF3 level in cells is
controlled bymultiple factors and involves complexmechanisms,
as shown in Figure 3.

Autoregulation
Autoregulation is a common mechanism for maintaining
relatively stable expression of splicing factors (56). SRSF3 is
the first SR protein identified as a auto-regulator for itself
alternative splicing and be regulated by other members of the
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FIGURE 3 | SRSF3 expression is regulated by several factors and signaling

pathways.

SR protein family (57). Genomic SRSF3 constructs are able to
express two different forms of SRSF3 because of the alternative
splicing of exon 4 (also referred to as intron 3 owning an in-
frame stop codon), generating a full-length isoform that lacks
exon 4 (Iso1) and an alternative isoform that includes exon 4
(Iso2) (57, 58). The overexpression of SRSF3 reduces the level
of exon 4-skipped SRSF3 transcripts and activates the outcome
of transcripts containing exon 4 (SRSF3-ISO2), resulting in a
truncated protein lacking the C-terminal RS domain SRSF3-TR
later, which has been identified as an autoregulatory mechanism
for avoiding SRSF3 accumulation (44, 57).

Regulation by Other Splicing Factors
Besides autoregulation, SRSF3 interacts with other RNA binding
proteins, including other SR splicing factors. SRSF1 (also called
ASF/SF2), another member of the SR family, can lead to the
disappearance of the exon 4-included isoform without affecting
the amount of the skipped isoform. The outcome of the included
isoform is restrained by SRSF1 even in the presence of the
transfection of wild-type genomic SRSF3, suggesting that SRSF1
is dominant over SRSF3 in this system. These results indicate that
SRSF1 and SRSF3 have adverse effects on SRSF3 exon 4 splicing
with SRSF3 playing as an activator and SRSF1 as a suppresser
(57). In addition to SRSF1, other splicing factors including
PTBP1 and PTBP2, can also antagonize the autoregulation
of SRSF3 splicing. PTBP1 overexpression and the presence of
neuron-enriched homolog of PTBP1 and PTBP2 can shift the
transcript expressions from coding SRSF3 to SRSF3+ exon 4′

(59). Further study found that PTBP1 and PTBP2 can inhibit
the inclusion of an exonic splicing suppressor (an ESS motif
with pyrimidine-rich) by binding to it, which leads to the
overexpression of full-length SRSF3 (56). In addition, RNA-
binding motif protein 4 (RBM4) (an antagonizer of PTBPs), was

studied to determine whether it has a antagonistic effect on SRSF3
splicing regulation (59). Results show that RBM4 overexpression
robustly shifts the transcript expressions from coding SRSF3

to SRSF3+exon4′ , whereas RBM4 excision inversely resulted in
the increasing of the coding SRSF3 transcript. The mutations
of RNA recognition motif or substitution of the serine-to-
aspartate (S309D) impedes the impact of RBM4 on productions
of SRSF3+exon4′ transcripts, which suggests that RBM4 interferes
with SRSF3 splicing at the post-transcriptional level (59). These
data indicate that there is an antagonistic effect between RBM4
and PTBPs on the utilizing of SRSF3 exon 4.

Moreover, SLU7, a another critical splicing factor for the 3′

splice site selection (60), is also reported to modulate SRSF3
splicing; that is, the knockdown of SLU7 induces an increase in
the ratio of SRSF3 Iso2/Iso1, while SLU7 overexpression has the
opposite effect (44). Further study found that SLU7 can inhibit
the increasing of SRSF3-TR proteins at two levels: during the
regulation of SRSF3 splicing and during the expression of miR-17
that can target SRSF3-Iso2 and promote its degradation (44).

hnRNP L is a multi-functional splicing factor that is active
in a series of RNA processes, including chromatin modification,
mRNA export, mRNA stability, alternative splicing, poly(A)
site selection, and translational regulation (61). It was found
that hnRNP L knockdown reduced the expression of SRSF3 in
many cancer cell lines (62). The overexpression of hnRNP L
has been found to promote SRSF3 expression in caner cells.
In addition, the expression levels of hnRNP L were found to
positively correlate, moderately, with the expression levels of
SRSF3 in OSCC tissues. hnRNP L expression correlates with
SRSF3 expression in OSCC tissues (62).

Regulation by Wnt/β-Catenin Signaling
Wnt/β-catenin signaling is a highly conserved pathway in
eukaryotic cells, its activation depends on the involvement of β-
catenin in signal transduction (63). Generally, free cytoplasmic
β-catenin is translocated to the nucleus to bind to the T-cell
factor/lymphocyte enhancer factor (TCF/LEF), resulting in the
displacement of co-repressors and recruitment of additional co-
activators for Wnt target genes (64). SRSF3 is determined as
a target of β-catenin/TCF4 signaling, and both the transcript
and protein levels of SRSF3 are regulated by the activity of
β-catenin (65–68). The isolated SRSF3 gene promoter makes
responds to influence of β-catenin/TCF4 signaling. Further
study demonstrates that an increasing of SRSF3 protein levels
mediated by the β-catenin/TCF4 pathway is sufficient to regulate
alternative splicing decisions (67, 68).

Regulation by DARPP-32
DARPP-32 (dopamine and cyclic adenosine monophosphate-
regulated phosphoprotein, Mr 32000) is a master molecular
regulator in neurons that receive the neurotransmitter
dopamine (69). It was found that stable overexpression of
DARPP-32 enhanced SRSF3 protein level, while endogenous
DARPP-32 knockdown significantly decreased SRSF3 protein
expression. Interestingly, overexpression or knockdown of
endogenous DARPP-32 had no significant effects on SRSF3
mRNA levels. Further experiments in immunoprecipitation
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and immunoblotting showed the co-existence of DARPP-
32 and SRSF3, and DARPP-32 could prolong the SRSF3
protein half-life (20.5 h) compared with that of the control
(14.9 h). Finally, DARPP-32 was proved to stabilize the SRSF3
protein by regulating its ubiquitination, which subsequently
triggered the degradation of SRSF3 protein. This indicates that
DARPP-32 positively regulates SRSF3 protein levels through a
post-translational mechanism (70).

Regulation by PLCβ1
PLCβ1 (phospholipase C beta 1) acts an significant role in the
intracellular transduction of multiple extracellular cell signals
with the assistant of calcium. An increasing evidences show that
PLCβ1 is the main isoform of PLC locates in the nucleus in a
phosphoinositide-specific manner (71). The overexpression of
PLCβ1 causes the decrease of SRSF3 protein level. Further study
found that SRSF3 could interacted with nuclear PLCβ1 at the
nuclear level. These results suggest that SRSF3 is a novel target
gene of the nuclear phosphoinositide-specific PLCβ1 signaling
and creates new stages for the metabolism of nuclear inositol
lipid (72).

Regulation by CircSMARCA5
circSMARCA5, an exonic circRNA, was found to be in
high numbers in the human brain, and was proved to act
as a regulator of SRSF3 splicing. In glioblastoma biopsies,
circSMARCA5 was markedly downregulated comparing with
the normal brain tissues (73, 74). circSMARCA5 overexpressing
was able to increase the expression levels of SRSF3 isoform
including exon 4 (SRSF3 Ex4) in cells. Consistently, a significant
increasing of SRSF3 isoform without exon 4 (SRSF3 No Ex4) in
biopsies exhibits a observably downregulation of circSMARCA5.
Precipitously, SRSF3 Ex4 levels was also upregulated in biopsies,
consistent with the data obtained from the circSMARCA5
overexpression cells. This indicates that there is a positively
correlation between the SRSF3 Ex4/SRSF3 No Ex4 ratio and the
expression levels of circSMARCA5 in glioblastoma biopsies (74).

SRSF3 IN CANCER

Despite the above-mentioned regulatory mechanisms for
maintaining constant SRSF3 levels, many environmental
factors can still influence the expression of SRSF3, such as
human papillomavirus (HPV) (75), hepatitis B virus-encoded X
protein (HBx) (76), hypoxia (29, 77), low pH (78), carcinogen
DMBA (79), caffeine (80), amiodarone (81), small molecule
amiloride (82), digoxin (83), and theophylline (84). Thus, the
aberrant expression of SRSF3 closely relates to the occurrence,
development, prognosis, and treatment response of diseases,
including cancer.

Aberrant Expression of SRSF3 in Cancer
SRSF3, as a potential diagnostic and prognostic biomarker, is
upregulated in multiple types of human cancer, including breast
cancer (85–88), ovarian cancer (26, 89), retinoblastoma (90,
91), head and neck cell squamous (62, 79, 92), glioblastoma
(GBM) (23), gastric cancer (36), colorectal cancer (CRC) (33,

36, 93), cervical cancer (94), and hepatocellular carcinoma
(HCC) (30, 95). Moreover, studies show SRSF3 upregulation
not only in epithelial cancers, but also in mesenchymal tumors,
as Table 1 shows (11). In addition, the single nucleotide
polymorphisms (SNPs) of SFRS3 were also associated with
tumor progression and prognosis. Studies report that three SNPs
in SRSF3 (rs2145048, rs1406945, and rs9394364) were found
in breast cancer, which may be associated with susceptibility
to cancer. Among these SNPs, the C allele of rs1406945
was found to be related with increased breast cancer risk,
the A allele of rs9394364 was associated with a marginally
lower breast cancer risk, and the A allele of rs2145048 was
associated with a lower breast cancer risk (104). Interestingly,
there are contradictory reports on the expression and function
of SRSF3 in colorectal cancer. It was reported that SRSF3
and hnRNPA1 indicated the two highest increasing incidences
(88 and 74%, respectively), for colorectal cancer (97). There
is no statistically significant correlation between the mRNA
levels of SRSF3 and the histological features, lymph node
metastasis, or tumor nodemetastasis (TNM) stage (97). However,
it was found that SRSF3 was significantly upregulated in a
normal colon, but it had different expression levels (negative
to strong) in colorectal cancer tissues (33, 93). SRSF3 presents
a gradual expression loss during cancer progression. SRSF3
is negative or weakly positive expressed in 80% patients with
metastatic stage IV, which was markedly related to poor
survival in colorectal cancer (93). Similar to colorectal cancer,
the expression and function of SRSF3 are also contradictory
in liver diseases. In mice, SRSF3 overexpression was proved
to be crucial for maintaining hepatocyte metabolic function
and differentiation (20, 105). The deletion of SRSF3 damages
the maturation and metabolism of hepatocyte during early
adulthood in mice developed spontaneous HCC as they aged.
In addition, SRSF3 may play a role in the prevention of hepatic
carcinogenesis by regulating splicing to inhibit fibrosis, mitogenic
splicing, and epithelial-mesenchymal transition (EMT) (105).
In line with these results, hepatic SRSF3 expression was
decreased in mouse models of non-alcoholic fatty liver disease
(NAFLD) and non-alcoholic steatohepatitis (NASH). Thus,
the avoidance of SRSF3 degradation in mice can protect
them from hepatic steatosis, fibrosis, and inflammation, to
some extent (98). However, SRSF3 expression presented no
changes in mouse models of PTEN-deficient HCC and DEN-
induced HCC (95). In human HCC, it was reported that
SRSF3 expression was either downregulated or the protein
was mislocalized (105), whereas Wang found a significant
increasing expression of SRSF3 in human HCC tumors (30,
95), which emerged progressive upregulation from a normal
liver to a cirrhosis/fibrosis liver, and ultimately HCC (30). In
addition, upregulation of isoforms SRSF3 was also found in
these tissues (30, 95), which might enhance the development of
HCC by regulating splicing of SRSF3 targets (30). Consequently,
it is likely that SRSF3 presents low expression and tumor-
suppressor activity in mouse liver disease, while it shows
high expression and acts as an oncogene in human HCC,
suggesting its role as an unfavorable prognostic predictor in
HCC. Unexpectedly, there is a positive links between SRSF3
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TABLE 1 | Clinical features, cell functions and related genes associated with upregulation of SRSF3 in human cancer.

Tumor type Expression Role Clinic relevance Cell line Function Related gene References

Glioblastoma Upregulated Oncogene High tumor grades U87, GSC83,

GSC528, GSC23

Tumorigenicity,

proliferation,

cell growth,

self-renewal

ETV1, NDE1 (23)

Ovarian cancer Upregulated Oncogene Poor clinical

parameters, poor

survival

A2780, IGROV1,

SKOV3

Drug resistance,

apoptosis,

metastasis

Bcl-2, MRP1, CD44 (26, 89, 96)

Colorectal cancer Upregulated or

gradual loss

Oncogene No significance (based

on protein level);

advanced

cancer progression,

poor survival (based

on protein level)

HCT-116, HT-29,

KM12C, CaCo-2,

HCT-8, Colo205,

HCT-116, DLD-1,

WiDr, KM12SM,

SW480

Tumorigenicity,

proliferation,

metastasis,

adhesion,

invasion,

apoptosis

RBM4, MAP4K4,

JNK1, E-cadherin,

N-cadherin, β-catenin,

MCC, PKM, E2F1/7,

vimentin,

cyclins (D1/D3/E1),

HIPK2, Bcl-2

(11, 28, 33, 36,

39, 59, 65, 93,

97)

Hepatocellular

carcinoma

Upregulated Oncogene Positive associated

with HBV-associated

HCC in patients with

higher AFP levels;

poor overall survival;

longer overall survival

in patients with HCC

resection

Bel-7404, HepG2,

Bel-7402,

MHCC97H,

MHCC97L,

HepG2.2.15

Colony formation;

proliferation,

migration;

invasion

NEDD8, ARHGEF2,

14-3-3β, Ras, Foxo4,

CCDC50S, HBX

(11, 30, 76, 95,

98)

Osteosarcoma Upregulated Oncogene Unknown U2OS, Rh30 Colony formation,

transformation,

proliferation,

migration,

invasion cell cycle,

apoptosis

CCND1,

miR-1908-5p, REST,

miR-132-3p,

miR-212-3p, YAP1,

NF-κB, NKIRAS2,

IL-3; PDCD4

(11, 36, 39, 52,

99, 100)

Breast cancer Upregulated Oncogene High tumor grade,

poor tumor

progression and

prognosis

MDA-MB231,

SKBR3

Transformation,

proliferation,

apoptosis,

metastasis,

cell cycle

p53; TDP4; PAR3;

NUMB; HER2

(11, 84–88, 101)

Gastric cancer Upregulated Oncogene No significance (11, 97)

Cervical cancer Upregulation Oncogene Increased diagnostic

accuracies

comparable to CEA

Hela, C33A, CaSki Colony formation,

proliferation,

apoptosis,

migration,

invasion,

cell cycle

p53, REST,

miR-132-3p, PLK1,

CCND1, FoxM1,

miR-212-3p, YAP1,

Cdc25B, IL-3

(11, 84, 94, 99,

100)

Head and neck

squamous cell

carcinoma

Upregulated Oncogene high tumor grade,

worse lymphatic

metastasis,

poor survival

CAL27, FaDu,

SCC-9

Autophagy, cell

growth

BECN1, FoxO1, Snail,

p65, N-cadheri,

hnRNP L

(62, 79, 92, 102)

Retinoblastoma Upregulated Oncogene Unknown Unknown Unknown Unknown (90, 91)

Others cancers

(lung, bladder,

kidney, skin,

thyroid)

Upregulated Oncogene Unknown JSC-1, BCBL1,

SUDHL-6, T24,

253J-BV, PC3,

KATOIII, A375,

NUGC3, MKN7

proliferation,

apoptosis

MDM2/4, p21, BBC3 (11, 24, 33)

Acute myeloid

leukemia

Downregulated Oncogene Unknown Unknown Unknown Caspase-8 (98)

Renal cancer Downregulated Oncogene Unknown 786-O Proliferation Unknown (11, 103)

upregulation and longer overall survival in patients with HCC
resection (95).

In contrast to the upregulation of SRSF3 in the above tumors,
the expression of SRSF3 mRNAs was significantly decreased in
acute myeloid leukemia (103) and renal cancer (106), as shown in

Table 1. However, it was also identified as an oncogene in these
two types of cancers. Nonetheless, the correlation between SRSF3
expression and carcinogenesis and the progression of these
cancers, such as histological features, lymph node metastasis,
TNM stage, or overall survival, remains to be studied.
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FIGURE 4 | The comprehensive mechanism of SRSF3 functions as an oncogene by regulating multiple splicing targets in cancer cells. On the one hand, SRSF3 can

enhance cell proliferation, migration, invasion, metastasis, transformation, drug resistance, tumorigenesis, and energy metabolism. On the other hand, SRSF3 can

inhibit cell cycle arrest, apoptosis, cellular senescence, and autophagy. SRSF3 is also involved in immunotherapy resistance, tumor microenvironment, cell

homeostasis, and maintenance of HPV-related cancer.

Pro-oncogenic Activity of SRSF3 by Regulating

Cellular Biological Processes
SRSF3 functions as an oncogene manipulating cell proliferation,
cell cycle, apoptosis, migration, invasion, transformation,
tumorigenesis, metastasis, drug resistance, autophagy, and
cellular senescence by regulating many pathways, including
p53, JNK, Ras, Wnt, HER2 signaling pathways, and miRNAs
(Figure 4).

Enhancement of Cell Proliferation, Migration,

Invasion, and Metastasis
SRSF3-silencing inhibits the proliferation, migration, invasion,
and metastasis of tumor cells (33, 39, 52, 99). It was reported
that SRSF3 affected the expression levels of miR-132-3p and
miR-212-3p, including both their primary form and their
mature form, by controlling RE1-silencing transcription factor
(REST) in cancer cells (99). miR-132-3p and miR-212-3p
were found to inhibit the malignant phenotypes of cancer
cells by repressing Yes-associated protein 1 (YAP1) and its
downstream gene CCND1 (Cyclin D1), which demonstrates
that SRSF3 gives malignant characteristics to cancer cells
by SRSF3/REST/miR-132-3p (miR-212-3p)/YAP1/CCND1 axis
(99). Beside miR-132-3p and miR-212-3p, SRSF3 may also
upregulate the expression of miR-1908-5p by enhancing NF-κB
transactivation (52). Interestingly, miR-1908-5p in turn could
downregulate NF-κB activation by binding to an inhibition
factor of NF-κB pathway, NF-κB inhibitor interacting Ras-like

2 (NKIRAS2), resulting in elevating cancer cell proliferation
and metastatic potential (52). These data suggest that SRSF3
enhances the malignant characterization of cancer cells via the
SRSF3/miRNA axis.

CCDC50, as a tyrosine-phosphorylated protein, is required
for cell survival as it inhibits the NF-κB or p53 mediated
apoptotic pathway (107, 108). CCDC50S, as a truncated
oncogenic splice variant, was highly expressed in HCC and
significantly correlated with progression and predicts poor
survival of patients (76). SRSF3 was reported to directly bind
to CCDC50S mRNA for its maintenance in the cytoplasm,
resulting in the promotion of HCC progression by increased
activation of Ras/forkhead box protein O4 (Foxo4) signaling
(76). Contrarily, SRSF3 was mediated by the interaction of HBx
and 14-3-3β, which demonstrated the existence of the HBx/14-
3-3β/SRSF3/CCDC50S/Foxo4 axis in oncogenic progression of
HCC (76).

Mitogen-activated protein 4 kinase 4 (MAP4K4) belongs
to the STE20/MAP4K family that content a serine/threonine
kinase domain, and is involved in cytoskeletal rearrangement and
migration by regulating the MAPK/ERK kinase cascade (109). It
was reported that alternatively splicedMAP4K4 variants showed
differential influences on the EMT process, which is a critical
process for the migration and invasion of cancer cells (59). SRSF3
could modulate the usage of MAP4K4 exon 16′ in a sequence
specific manner, while the inclusion of SRSF3 exon 4′could be
enhanced by RBM4 in colorectal cancer cells (59). These date
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suggest that the RBM4-SRSF3-MAP4K4 axis manipulate the
metastasis of cancer cells through the EMT process.

TDP43 (TAR DNA-binding protein), is a highly conserved
and an important splicing regulator that controls gene
expression. TDP43, as a major splicing regulator in triple-
negative breast cancer (TNBC), is associated with poor prognosis
in TNBC progression (86). And TDP43 overexpression
could significantly enhance the proliferation and malignancy
of mammary epithelial cell (86). In coordination with
SRSF3, TDP43 can alter most splicing events, including
PAR3 and NUMB which play essential roles in cell
proliferation and metastasis (86). Further study found that
the TDP43/SRSF3/PAR3 axis regulated the metastasis of cancer
cells, while the TDP43/SRSF3/NUMB axis controlled the
proliferation of cancer cells (86).

Enhancement of Cell Transformation
HER2 (ErbB2) is a member of the erythroblastic oncogene B
(ErbB) family of receptor tyrosine kinases. The overexpression
of HER2 is associated with many aggressive tumors and a poor
prognosis (110). HER2 possesses several splice variants that
produce diverse proteins with various biological activities and
functions in tumor development (111). SRSF3 was identified as
an important splicing regulator of HER2. Loss of SRSF3 results
in alterations in all splice variants of HER2. Especially, SRSF3
knockdown leads to a switch inHER2mRNA splice variants from
116HER2 to p100 (101). Interestingly, the function of these two
splice variants is contradictory.116HER2 is a highly tumorigenic
factor that is likely to increase malignant transformation of breast
cancer cells (112, 113), whereas p100 is involved in the inhibition
of tumor cell proliferation and oncogenic signals (114). That is,
the overexpression of SRSF3 in tumors switches splicing variants
of HER2 mRNA from p100 to 116HER2, leading to tumor
progression (101).

Moreover, SRSF3 also controls the production of various
splicing variants of interleukin enhancer binding factor 3 (ILF3)
by the exclusion, inclusion, or 3’ splice site selection of ILF3
exon 18 (100). SRSF3 knockdown expression produced aberrant
isoform-5 and−7 of ILF3 in osteosarcoma cancer cells. Both
isoform-5 and−7 can inhibit tumor cell proliferation, and
isoform-7 can also induce cell apoptosis. SRSF3 overexpression
in cancer cells has a positive association with the steady status
maintenance of ILF3 isoform-1 and−2, which can promote cell
proliferation and transformation (100).

Enhancement of Drug Resistance
The main obstacle to the improvement of prognosis is cancer
chemotherapy resistance. The multidrug resistance protein
1 (MRP1) belongs to the ATP-binding cassette transporter
subfamily linked to multidrug resistance (115, 116). MRP1
upregulation may trigger resistance to various chemotherapeutic
drugs in ovarian cancer cell lines. MRP1 has also been reported
to be involved in clinical drug resistance and to be of prognostic
significance for predicting patients’ response to chemotherapy
(117–119). Interestingly, moreMRP1mRNA splice variants were
found in ovarian tumors compared to thematched normal tissues
(26). These variants can confer drug resistance even if they are

not as effective as the full-length MRP1. Further study found
that SRSF3 overexpressed in ovarian tumors could result in more
splicing variants ofMRP1mRNA by increasing the identification
of weak exons (26), which indicates that SRSF3 may be involved
in the cancer chemotherapy resistance.

Enhancement of Cell Tumorigenicity
In patient-derived glioma stem-like cells (GSC), the increasing
expression of SRSF3 causes the significantly improvement of cell
proliferation, self-renewal, and tumorigenesis (23). More than
1,000 SRSF3-related AS events are identified by transcriptomic
profiling, and they have a preference for exon skipping in cell
mitosis genes. SRSF3 knockout results in the exon skipping at
exon 7 of transcription factor ETS variant 1 (ETV1) to product
ETV1-E7, leading to the enhancement of the proliferation
and sphere formation ability of tumor cells. Further, the
phosphorylation of ETV1-E7-encoded peptide could enhance
the oncogenic activity of ETV1, promoting an ETV1-mediated
oncogenic transcriptional program in GSCs. Moreover, SRSF3
knockout also induced the nudE neurodevelopment protein
1 (NDE1) gene to a mutually exclusive exon 9’ taking the
place of the terminal exon 9, resulting in the production of
isoform-specific function of NDE1 (NDE1-E9) in mitotic spindle
formation that is important for tumor cell growth (23).

Similarly, in CD133+ colon cancer stem like cells (CSLCs),
SRSF3 was overexpressed and acted a part in the oncogenicity
of colon CSLCs by regulation of the Wnt/b-catenin pathway
(65). SRSF3, as a novel target of the Wnt/b-catenin pathway,
was upregulated by Wnt pathway activation in CD133+ colon
cancer cells (68). SRSF3 exerts a powerful negative effect on the
expression of the mutated in colorectal cancer (MCC) protein
expression, which is significantly upregulated in various CRC
cell lines. Interestingly, the MCC protein could interact with β-
catenin, resulting in the inhibition of Wnt signaling (65, 120),
suggesting that SRSF3 may be involved in the Wnt pathway
modulation, resulting in forming positive feedback relationships
among the Wnt/b-catenin pathway, SRSF3, and MCC.

Enhancement of Energy Metabolism
Alternative splicing of the pyruvate kinaseM (PKM) can produce
the pyruvate kinase muscle 2 (PKM2) isoform and promote
aerobic glycolysis and tumor growth (121). PKM is controlled by
mutually beneficial effects on the two mutually exclusive exons
9 and 10 in cancer cells, resulting in the repression of exon 9
and the activation of exon 10. SRSF3 was found to activate exon
10, mediating changes in glucose metabolism (22). Loss of SRSF3
in human colon cancer cells induces an increasing in the ratio
of PKM1/PKM2, leading to a metabolic shift from glycolysis
toward oxidative phosphorylation. Moreover, the SRSF3 silenced
cells causes markedly inhibition of cell growth and autophagy
(33). These findings indicate that SRSF3 acts as a critically
positive regulator for PKM mRNA splicing and cancer-specific
energy metabolism.

Inhibition of Cell Cycle Arrest and Apoptosis
A decreased level of SRSF3 could induce cell apoptosis
and reduce cell proliferation in SW480 (human colon
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adenocarcinoma) and U2OS (human osteosarcoma) cells
(39). Microarray analyses shows that SRSF3 silencing causes
the upregulation of 381 genes and the downregulation of
274 genes in U2OS cells. Among them, A number of genes
are related to the apoptotic and anti-apoptotic processes,
including PDCD4, who was the most affected (39). PDCD4
was reported to be a tumor suppressor that was involved in
cellular processes, such as antiproliferation, apoptosis, and
antimetastasis in various cancer cells (122, 123). As mentioned
above (functions of SRSF3), SRSF3 was further proved to
participate in alternative splicing and the export and translation
of PDCD4 mRNA, leading to the downregulation of the PDCD4
protein (36, 39). SRSF3 and PDCD4 knockdown could prevent
tumor cell apoptosis with decreased Caspase-3 activation and
decreased amount of fragmented chromosomal DNA. These
results indicate that the effects of PDCD4 on cell proliferation
and apoptosis might be dependent on the expression levels of
PDCD4 (39).

The p53 tumor suppressor gene is a nuclear transcription
factor that transmits signals arising frommany types of genotoxic
or cellular stress, such as DNA damage, hypoxia, and nucleotide
deprivation, to the target genes and related factors that induce cell
cycle arrest, cell death, or cellular senescence (124). The tumor-
suppressor function of p53 can be induced or inhibited by many
other genes, including SRSF3. Reportedly, the inactivation of
SRSF3 with the inclusion of MDM4 exon 6, can stimulate p53
activation (24). SRSF3 was found to be necessary for MDM4
exon 6 inclusion and the growth of melanoma. In embryonic
tissues and cancers, the enhancement of exon 6 inclusion can
significantly upregulate the levels of MDM4 protein to inhibit
the tumor-suppressor function of p53 (125, 126). In human
cancers, an increasing expression of MDM4 is promoted by a
non-sense-mediated, decay-targeted isoform ofMDM4 (MDM4-
S) by enhancing exon 6 inclusion (127, 128). The knockdown
of SRSF3 leads to MDM4 downregulation, resulting in the
activation of p53 pathway as well as its target genes, such
as p21, MDM2, and BBC3 (24). Consequently, cell growth is
markedly decreased, while cell death is increased in SRSF3
silencing cells.

The increased expression of SRSF3 overexpression in cancer
cells causes the improvement of cell cycle performance by
influencing the expression levels of G2/M transition regulators,
including Forkhead box transcription factor M1 (FoxM1),
PLK1, and Cdc25B. Conversely, SRSF3 silencing causes G2/M
arrest, growth retardation, and apoptosis (11). Further study
documented that SRSF3 silencing also caused G1 arrest in
combination with the downregulation of several G1/S checkpoint
regulators, including cyclins (D1, D3, and E1), E2F1, and
E2F7, which likely impaired G1-to-S-phase progression (28).
In addition, SRSF3 silencing could induce cell apoptosis by
reduction of Bcl-2 (28, 96). Moreover, SRSF3 silencing changed
the alternative splicing of homeodomain-interacting protein
kinase2 (HIPK2), resulting in the production of HIPK2 De8
isoform which facilitated the cell apoptosis by phosphorylating
p53 at Ser46 (28). These results expose the critical role of SRSF3
in the regulation of G1-S and G2-M cycle performance, Bcl-2
expression, and HIPK2-mediated cell apoptosis (28).

Cellular Senescence Inhibition
Cellular senescence, an irreversible proliferation arrest, is
identified as another endogenous mechanism that represses
tumorigenesis in company with cell death programs (129–131).
Endogenous SRSF3 knockdown could induce cellular senescence,
and upregulate the expression of p53β (an alternatively
spliced isoform of p53) to trigger p53-mediated senescence
(27). p53 silencing restores SRSF3-knockdown-induced cellular
senescence in part, suggesting that SRSF3 plays a role in the
initiation of p53-mediated cellular senescence. Further, SRSF3
was found to bind to an alternatively-spliced exon of p53β mRNA
in sequence-dependent manner. (27), suggesting that SRSF3 is an
inhibitor in p53-mediated cellular senescence.

Inhibition of Autophagy
Autophagy is an evolutionarily conserved cellular catabolic
process. SRSF3 can act as an autophagy suppressor (33, 102).
SRSF3 knockdown significantly induces autophagy with an
increased LC3B-II/LC3B-I ratio, whereas the overexpression
of SRSF3 inhibits autophagy induction with an decreased
ratio of LC3B-II/LC3B-I. Moreover, SRSF3 knockdown plus
autophagic degradation inhibitor chloroquine could enhance the
accumulation of LC3B-II, suggesting that SRSF3 knockdown
truly increases autophagic flux. The molecular mechanism is due
to the suppression of the FoxO1 and p65 expressions as well as
the transcriptional and protein levels of BECN1 (102).

Others
SRSF3-mediated alternative splicing was also reported to be
associated with many other key genes, such as CD19 (132),
CD44 (68, 133), and VEGF (78), and to be involved in other
tumor related biology process, including the resistance to CART-
19 immunotherapy (132), tumor cell homeostasis (21), tumor
microenvironment (low pH) (78), and the maintenance of HPV-
related cancer (134). With the growing knowledge on SRSF3
overexpression or knockout in human tissues and cells by high-
throughput RNA-sequencing, more possible target genes and
underlying mechanisms will be elucidated. It is even possible that
the new data on cancer cells might differ from that on non-cancer
cells, reflecting the oncogenic effects vs. tumor suppressor effects
when expressed at high vs. low levels of SRSF3. Nevertheless,
considerable efforts and in-depth studies are expected to provide
more information on SRSF3 and their targets.

Implications for Therapy
The multifunctional characteristics of SRSF3 highlight it as a
novel splicing regulator for gene expression and cell homeostasis.
Given the crucial roles of alternative splicing in cancer biology,
pharmacological modulation of SRSF3-mediated splicing may
represent an important therapeutic strategy. Indeed, thus far,
SRSF3 has been evidenced to associate with the antitumor
function of some drugs in the development of targeted
therapeutics for the treatment of cancer, as shown in Figure 5.

Caffeine, a 1,3,7-trimethylxanthine derivative, is a potential
anticancer drug that inhibits cell proliferation and induces
apoptosis on various cancer cells in vitro and in vivo (135–
137). The alternative splicing of cancer-related genes is involved
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in caffeine-induced antitumor function, including p53, PKM2,
and hypoxia-inducible factor-1α/2α (HIF-1α/2α) (80, 138–140).
In cervical cancer cells, caffeine regulates cell-cycle arrest and
cell apoptosis by decreasing SRSF3 expression that modifies
the expression of various splice variants of p53, including
reducing p53α expression and inducing p53β expression. In
addition to p53-dependent functions, multiple genes involved
in the EMT and hypoxic conditions are all found to be
regulated by SRSF3 (80). Theobromine (1,3-dimethylxanthine), a
metabolite of caffeine, may also downregulate SRSF3 expression
by switching p53 from p53α into p53β , which is similar to
caffeine. Consequently, theophylline demonstrates antitumor
roles via inducing cellular apoptosis, senescence, and decreasing
colony formation. Moreover, theophylline could synergistically
enhance caffeine-induced cell death (84). A similar switch of
p53 splicing from p53α to p53β is induced by digoxin, a
popular cardiac glycoside identified as a potential anticancer drug
(83, 141). Similar to caffeine, digoxin regulates G2/M arrest,
DNA damage, and cell apoptosis via p53-dependent pathway
in cervical cancer cells by reducing both SRSF3 expression and
increasing expression of p53β isoform (83).

Amiodarone is an anti-arrhythmic drug commonly used
to block several types of myocardial potassium channels in
arrhythmia and atrial fibrillation (142, 143). Amiodarone also
sensitizes tumor cells in response to chemotherapy (144, 145).
It has been proved that the mechanism of action of amiodarone
may be similar to that of caffeine or digoxin, it also regulates
senescence through the SRSF3-p53 pathway (20, 27, 146, 147).
Amiodarone could induce cellular reactive oxygen species (ROS)
and suppressed cell survival in cervical cancer cells. Moreover,
amiodarone is found to strengthen the effectiveness of caffeine
and digoxin on cell toxicity (81). Amiodarone also reduces the

FIGURE 5 | The antitumor function of some drugs via decreasing the

expression of SRSF3. Caffeine, digoxin, amiodarone, amiloride, and

theobromine induce the apoptosis of cancer cells by decreasing the

expression of SRSF3 and its downstream signaling cascade, including

inducing the switch of p53 splicing from p53α to the p53β isoform. Moreover,

theophylline and amiodarone could enhance caffeine-induced cell death, and

amiodarone could also enhance the efficacy of digoxin.

SRSF3 gene and protein expression. However, it accumulates
the population of SRSF3-PTC without the switch of p53
splicing from p53α to p53β via the SRSF3 downregulation,
suggesting that amiodarone causes cancer cell death in a p53-
independent manner. Interestingly, amiodarone can work in
coordination with caffeine and digoxin on the expression of
p53 alternative splicing isoforms from p53α into p53β via
decreasing SRSF3 (81). Amiloride, 3,5-diamino-6-chloro-N-
(diaminomethylene) pyrazinecarboxamide monohydrochloride,
is a prototype intracellular pH (pHi) modulator medicine widely
used for clinically treating in edema and hypertension depending
on its sodium transport and humoral steady-state effects (148).
In many solid tumor and leukemic cells in humans, amiloride
was discovered to present an antitumor ability that decreased cell
migration and invasion, arrested cell cycle, enhanced apoptosis,
and caused severe DNA damage, and, ultimately, cell death (82).
Mechanically, amiloride was proved to “normalize” the mRNA
splicing of BCL-X, HIPK3, and RON/MISTR1 by the decreased
expression of SRSF3 and some other SR proteins in human
HCC cells. Further, it was found that amiloride regulated SRs by
downregulating kinases and upregulating phosphatases involved
in phosphorylation pathways of SRs (82). However, further study
is required to investigate whether the various antitumor drugs
mentioned above regulate SRSF3 in a direct or indirect fashion.

DISCUSSION

The rising role of alternative splicing and splicing-related factors
in cancer has opened doors not only for the understanding of
tumor occurrence and progression but also for the development
of new targeted therapy. In reality, splicing-related factors

FIGURE 6 | The crosstalk between SRSF3 and other splicing regulators in the

regulation of gene expression. There are antagonistic effects among SRSF3,

SRSF1, and HnRNP L on alternative splicing or 5’ss selection, involving the

key genes or signaling pathways, such as the Wnt/β-catenin pathway, MCC

protein, and Rac1b.
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can act either as survival-promoting factor that reduce drug-
induced apoptosis or, contrarily, as potentiating the pro-
apoptotic effects of chemotherapeutics (149). SRSF3 can be
considered as a potential molecular switch that regulates many
biological processes in cancer cells, enabling sensitization of
cancer cells to therapeutic treatments. Notably, the contribution
of SRSF3 to the regulation of key genes goes far beyond the
splicing reaction and involves all aspects of gene expression, while
also cooperating with other splicing regulators. For instance
(Figure 6), in addition to the induction of the MCC protein,
β-catenin/TCF4-induced SRSF3 expression decreased Rac1b
expression in colorectal tumor cells by increasing skipping of
alternative exon 3b (67). Interestingly, Rac1b, an alternative
splicing variant of Rac1, is an oncoprotein increased in the
subgroup of colorectal tumors and is necessary to maintain the
viability of tumor cells (150, 151). These results may support the
view that SRSF3 causes the overall change of gene expression to
maintain cell homeostasis (21). This may also explain the fact
that SRSF3 presents a high expression in normal colons, and
the loss of SRSF3 expression is significantly correlated with low
survival rate and short disease-free survival time, especially in
the early step of colorectal cancer (93). Moreover, in contrast
to SRSF3 acting as a silencer of endogenous Rac1b splicing,
SRSF1 was found to increase the inclusion of alternative exon
3b, acting as an enhancer of Rac1b splicing (67). Meaning,
SRSF1 and SRSF3 exhibits antagonistic effects on alternative
splicing of Rac1b, which is in accordance with that of SRSF1
and SRSF3 having antagonistic effects on mutual splicing events
(57). In addition to SRSF1, hnRNP L is the other splicing factor
whose alternative splicing is regulated by SRSF3, while hnRNP
L also regulates the expression of oncogene SRSF3 (62, 92).
Contrarily, hnRNP L and SRSF1 also have an antagonistic effect
on 5′SS selection (152). This indicates that multiple SR members
share target genes and the redundancy of functions of multiple
SR proteins. This also indicates that there is compensatory
regulation of expression in multiple SR protein members, which
is very relevant to the effectiveness of multiple drugs on SRSF3
action as there might be compensatory upregulation of other
SR protein members after SRSF3 inhibition. Moreover, some
RNA modification regulators are also involved in the regulation
network of splicing factors, including the N6-methyladenosine
(m6A)-binding protein YTHDC1 (YTH domain containing 1).
YTHDC1 can promote exon inclusion of targeted mRNA by
recruiting SRSF3 while blocking SRSF10, which expands the
potential utility of m6A modification mRNA (153, 154). In a
word, the mutual regulation of splicing factors is a complex and

important process for expression in target genes. Thus, future
study is needed for the exploration of the relationship between
SRSF3 and other mRNA related factors, including that of other
spliceosome-associated proteins, splicing regulatory factors, and
transcriptional factors.

In terms of the importance of splicing factors in cancer
pathology, emerging studies focus on the discovery of new
small compounds in tumor suppression, targeting spliceosome
elements (149). SRSF3 downregulation is associated with cell
death by the treatment of caffeine, digoxin, theophylline,
amiodarone, and amiloride in cancer cells (80–83). In addition,
small inhibitors of kinases have been identified as potential
chemotherapeutics to angiogenesis, including BE-13793C (155),
TG003 (156), and SRPIN340 (157); it will be interesting to
evaluate their impact on SRSF3. Similar to other SR proteins,
SRSF3 is phosphorylated by kinases including topoisomerase
I, the SR protein kinase (SRPK) family, and the CDC2-
like kinase (CLK) family (24, 158–160), with affecting SR
protein subcellular localization, binding to substrate mRNA
and interacting with other proteins (161). Additionally, indole
derivatives, such as benzopyridoindoles and pyridocarbazoles, is
a recently discovered class of compounds that regulate splicing
by altering the splicing activity of SR protein in company with
the exonic splicing enhancer (ESE) (162). Indole derivatives
have been proved to regulate splicing events that reversing
the pro-metastatic splicing of Ron proto-oncogene mRNA
(4, 163). Of course, the effects of SRSF3 in the functions
of indole derivatives in tumor cells need extensive analysis.
Nevertheless, investigating the molecular mechanisms governing
SRSF3-dependent signaling will promisingly reveal new drug
candidates and therapeutic targets for cancer treatment.
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