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Simultaneous infection by multiple parasite species is ubiquitous in nature.

Interactions among co-infecting parasites may have important consequences

for disease severity, transmission and community-level responses to pertur-

bations. However, our current view of parasite interactions in nature comes

primarily from observational studies, which may be unreliable at detecting

interactions. We performed a perturbation experiment in wild mice, by

using an anthelminthic to suppress nematodes, and monitored the con-

sequences for other parasite species. Overall, these parasite communities

were remarkably stable to perturbation. Only one non-target parasite species

responded to deworming, and this response was temporary: we found

strong, but short-lived, increases in the abundance of Eimeria protozoa,

which share an infection site with the dominant nematode species, suggesting

local, dynamic competition. These results, providing a rare and clear exper-

imental demonstration of interactions between helminths and co-infecting

parasites in wild vertebrates, constitute an important step towards under-

standing the wider consequences of similar drug treatments in humans

and animals.
1. Introduction
Co-infection, where an individual host harbours multiple parasite species, is the

rule rather than the exception in nature, and has been documented across

diverse systems [1,2]. The parasites infecting an individual host can be

viewed as an ecological community, within which species may interact directly

through chemical or physical interference, indirectly via ‘bottom-up’ proces-

ses (e.g. competition for shared host resources) or indirectly via ‘top-down’

processes (e.g. immune-mediated competition or facilitation) [3].

Such interspecific interactions are an important determinant of how com-

munities respond to external events. Specifically, the number, strength and

arrangement of interactions among species will affect community stability in

the face of perturbations (i.e. the removal or addition of organisms of a particular

species) [4–6]. Many interactions, strong interactions and feedback loops all result

in relatively unstable communities with both low resistance (perturbations have a

large effect) and low resilience (long recovery times after perturbation) [4].

Furthermore, if the perturbed species is involved in many strong interactions

with other species (i.e. it is a keystone species), then larger and more prolonged

effects are expected than if the perturbed species has few or weak links to other

species [7]. These and other determinants of stability are well researched in several
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types of ecological network, such as free-living food webs [8],

but the stability of within-host–parasite communities to

perturbation has yet to be assessed.

Understanding parasite interactions and the effects of per-

turbations is particularly important in disease ecology. A

change in the abundance of a target parasite species, for

example as a result of drug administration, could affect

other (non-target) parasites in the same host, negatively or

positively affecting host health depending on the type of

parasite interaction. Thus, knowledge about the stability of

within-host–parasite communities, and how interactions

within them determine this, is highly valuable in both

pure and applied disease research, and may be especially

important for designing optimal treatment or vaccination

strategies in co-infected populations.

Although within-host interactions between parasite

species have frequently been demonstrated in laboratory

experiments [9,10], these studies often use artificial infection

regimes (e.g. single doses, often leading to infections of un-

naturally high intensity), usually consider just two parasite

species, and hosts are typically homogeneous (e.g. same sex

and strain) and fed ad libitum, all of which will affect the

relevance of these studies for natural host–parasite commu-

nities. Studies of wild hosts are therefore highly desirable.

Conclusions from observational studies in wild populations

have been mixed, with some suggesting within-host–parasite

communities contain many strong interactions among species

[11,12], whereas others conclude they are near-random assem-

blages with little structure and few interactions [13,14].

However, a well-known issue with observational approaches

is that statistical associations between species may arise

through a range of processes other than interspecific inter-

action [15]. For instance, for parasite species, this could

involve covariance in exposure owing to host age or a shared

transmission route. While one can attempt to control for con-

founding factors, the extent to which observed associations

reflect true within-host–parasite interactions remains uncer-

tain [16]. In free-living community ecology, manipulative

(perturbation) field experiments are widely recognized as the

most reliable way of measuring interspecific interactions and

evaluating community stability [17]. For parasite communities,

randomized, controlled treatment experiments constitute a

powerful tool for measuring the strength of within-host–para-

site interactions, assessing the timescale over which they

operate, and directly measuring the stability of natural parasite

communities to perturbations. However, they have rarely been

adopted for examining within-host–parasite interactions (but

see references [18,19]).

Here, we adopt a perturbation experimental approach to

study natural within-host–parasite communities of wild

wood mice (Apodemus sylvaticus). Our aims are twofold: (i) to

determine the strength and nature of interactions among para-

site species within these communities, and (ii) to assess the

stability of these within-host communities to perturbation.

We used the anthelminthic drug Ivermectin to reduce levels

of nematode infection (the target parasite), and a longitudinal

design to track the effects of this perturbation on both target

and non-target parasites over the following weeks. Nematodes

are an ideal target for such a perturbation experiment, as they

are an abundant member of natural wood mouse parasite com-

munities, and are well known for their immunomodulatory

effects, in particular, their suppression of adaptive immune

responses [20]. Consequently, nematodes may constitute
keystone members of parasite communities, able to interact

with many co-infecting parasites via the host’s immune

system [9,10,21] or by competition for resources in the gastro-

intestinal (GI) tract [22]. Thus, nematodes are expected to

have many strong interactions with other parasites and, if para-

site communities are relatively unstable, perturbing this group

should have dramatic consequences for co-infecting parasite

community members. Our experiment presents a first explicit

test of these hypotheses.
2. Material and methods
(a) Field experiment
Between May and December 2010, wood mice were trapped on

five 0.5 ha grids in two woodlands in Cheshire (two grids in

Manor Wood, 538190 N, 3830 W; three grids in Haddon Wood,

538160 N, 3810 W). An overview of the experimental design is

given in the electronic supplementary material, figure S1. On

each grid, two live traps (H. B. Sherman 2 � 2.5 � 6.5 inch fold-

ing trap, Tallahassee, FL, USA) baited with grain and bedding

material were placed every 10 m in a 70 � 70 m square (total

128 traps per grid). Primary trapping was monthly: during the

first three weeks of every month, two grids were trapped each

week for three consecutive nights. At first capture, all mice

were tagged using a subcutaneous microchip transponder for

identification. On each grid, mice were rotationally assigned to

one of three treatments at first capture: either repeated or

single treatment with the anthelminthic Ivermectin, or a control

treatment. Mice in the repeated Ivermectin treatment group

received 10 mg kg21 Ivermectin orally every primary trapping

session (i.e. monthly, if captured every month). Those in the

single-treatment group received this dose at first capture but

water at subsequent captures. Control mice received water at

every monthly capture. The two different treatment regimes

were designed to test the impact of both a ‘press’ and a ‘pulse’

perturbation on parasite communities [17]. Ivermectin is a

potent anti-nematode drug and is also known to affect some

arthropods; however, we found no evidence that Ivermectin

affected common ectoparasites on wood mice in this study (see

electronic supplementary material, section S1). Ivermectin is

not known to have direct effects on any other types of parasite.

During the monthly primary trapping sessions, morphometric

data were taken from all mice (age, sex, body mass, body

length and reproductive condition), and a faecal and blood

sample (from the tail tip) collected. Fur was also brushed to

record tick and flea presence. Faecal samples were weighed

and stored in 10 per cent formalin solution until parasite identi-

fication. During the last week of June, August and October, all

experimental grids were trapped for an additional two consecu-

tive nights each (secondary trapping, at which no treatments were

given), permitting the collection of faeces from mice treated one

to three weeks previously in a primary trapping session, and

thus assessment of GI parasite responses to treatment over time-

scales shorter than a month (blood parasite data were available

only for primary trapping sessions). GI parasites were detected

using the salt flotation technique [22], and two blood parasite

genera were screened for and identified using PCR-based diagno-

stics: bacteria of the genus Bartonella [23,24] and trypanosomes [25]

(see the electronic supplementary material, section S2).

(b) Statistical analysis of treatment effects
For parasites where infection was quantified by faecal egg counts

(GI parasites such as nematodes and Eimeria spp.), two lines of

reasoning motivated us to perform separate analyses of infection

probability (parasite presence–absence) and infection intensity



Table 1. The prevalence and infection site of gastrointestinal (GI) and blood parasites found in wood mouse samples taken during the parasite community
perturbation experiment. Taxonomic groups of parasites whose prevalence exceeded 10% (shown in italics) were used as response variables in statistical
analyses.

site of infection prevalence (%) mean eggs/oocysts per gram faeces

macroparasites

nematodes GI tract 46.78 40 (range 0 – 673)

Heligmosomoides polygyrus (upper ileum) 42.03 33 (range 0 – 563)

Syphacia stroma (throughout tract) 5.42

Aonchotheca murissylvatici 1.70

Nematode sp. 1a 2.27

Aspiculuris sp. 0.87

Cestodes GI tract 6.78

Hymenolepsis sp. 3.05

Cestode sp. 1a 1.02

Cestode sp. 2a 3.05

microparasites

Eimeria spp. GI tract 46.10 5448 (range 0 – 182 400)

E. hungaryensis (Upper ileum) 30.17 2876 (range 0 – 181 000)

E. apionodes (Lower ileum) 14.92 1625 (range 0 – 177 100)

Eimeria sp. 1a 9.83

E. uptoni 2.03

Bartonella spp. vascular endothelium, followed by

invasion of red blood cells

58.07

B. doshiae-like 9.72

B. grahamii 18.98

B. taylorii 31.94

B. birtlesii 7.87

BGA 0.93

Trypanosoma grosi bloodstream (extracellular) 12.09
aParasites marked could not be identified to a lower taxinomic level based on egg/oocyst morphology alone.
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(log-transformed number of eggs/oocysts per gram faeces among

infected individuals). First, the effects of treatment, and any

revealed interspecific parasite interactions, could, in principle,

arise from several biological processes affecting either (i) the prob-

ability of infection (e.g. through parasite establishment or clearance

via drugs) and/or (ii) the success of parasites once inside the host,

reflected either through parasite fecundity (for helminths), or repli-

cation ability (for microparasites such as Eimeria protozoa).

Separate statistical analyses of infection probability and intensity

allow us to tease apart these potential processes. Second, this

analysis strategy was supported by results from zero-inflated

negative binomial (ZINB) models [26] on egg/oocyst counts

measured shortly after treatment (one to three weeks later; see

§3). ZINB models allowed us to test whether treatment affected

one or both of two statistical processes: a negative binomial

count process, which accounts for the typically observed aggre-

gated distribution in parasite egg/oocyst counts, and a zero-

inflation process by which additional zero counts (i.e. individuals

who are uninfected or who have been cleared of infection) are gen-

erated. By comparing the fit of a ZINB model with a standard

negative binomial generalized linear model (GLM) for both

nematodes and Eimeria spp., we tested whether the data suggested

a need to consider effects on infection probability and parasite

count separately, or whether a single negative binomial count
process better represented the data. For both parasite groups,

which had highly aggregated distributions with many zero counts

(see the electronic supplementary material, figure S2), zero-inflated

models provided a significantly better fit than the equivalent nega-

tive binomial models and suggested that, in the short-term,

treatment had differential effects on a count and a zero-inflation pro-

cess (see §3 and electronic supplementary material, section S3a). For

blood microparasites (Bartonella bacteria and trypanosomes), where

infection load could not be quantified, we tested treatment effects on

infection probability using binomial GLMs, to assess whether treat-

ment altered susceptibility to infection.

We analysed the effect of Ivermectin on target (nematodes) and

non-target parasites in mice from the experimental grids over

several timescales (one to three, four and eight weeks after first

treatment), using GLMs in R v. 2.13 [27]. All models were performed

with the glm function, with infection probability models using a

binomial error distribution, whereas intensity models used a Gaus-

sian error distribution. Parasite species from the same genera were

pooled in the main analyses, but species with prevalence more

than 10 per cent were also analysed individually where data

permitted (table 1).

In all models, treatment was represented either as a two-level

factor (‘drug’: yes (including repeated and single treatments) or

no) over timescales before treatments diverged (up to one
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month after first capture), or as a three-level factor (‘treatment’:

single, repeated or control) for timescales where treatment

groups differed (more than a month after first capture). For GI

parasites, data from secondary trapping sessions were used to

test for short-term effects of Ivermectin treatment (within three

weeks of treatment), whereas longer-term treatment effects

were tested at one and two months after first capture. For

blood parasites, treatment effects were examined one and two

months after first capture. Interaction terms between treatment

and initial nematode status were examined, where initial nema-

tode status was taken as infection status at first capture (for

primary trapping data collected four and eight weeks after first

capture), or infection status one to three weeks previously (for sec-

ondary trapping data). Relevant covariates were fitted in all

models where appropriate: trapping grid (five-level factor),

month of capture (factor), host age (three-level factor: juveniles,

subadults and adults), host sex and faecal sample mass (continu-

ous) or DNA concentration (continuous). Reproductive status

was coded as a binary variable with animals deemed reproduc-

tively active if they had descended or protruding testes (males),

were pregnant or had a perforate vagina (females).

We also tested whether treatment affected total within-host–

parasite species richness (GI and blood parasites combined at

monthly trapping sessions), or GI richness (at all trapping sessions),

over the same timescales outlined earlier. In models of parasite rich-

ness, overdispersion was accounted for (if required) by using a

quasi-Poisson model. All starting models were simplified by back-

ward stepwise elimination of non-significant terms ( p . 0.05)

beginning with interactions, to obtain the minimum adequate

model. We compared these results with those from an Akaike infor-

mation criteria-based model selection approach [28] to

confirm findings were robust to model selection method (electronic

supplementary material, section S3b). Full details of covariates

included in each starting model, and terms remaining in the

minimal model after simplification, are given in electronic

supplementary material, table S4.

(c) Calculation of treatment effect sizes
An effect size (Hedge’s g, the standardized mean difference) was

calculated to measure the magnitude and direction of nematode

treatment effect for each parasite species-specific response variable.

This was performed on two timescales: (i) to measure immediate

effects of treatment, one to three weeks after the last treatment

was given (secondary trapping data), and (ii) four weeks after

first capture. For Eimeria oocyst intensity (log-transformed),

means and standard deviations in the control and treated groups

were used to directly calculate g [29]. For infection probability,

the odds ratio (OR) was first calculated, then standard conversion

calculations [29] were used to derive Hedge’s g from the OR, so

effect sizes for parasite intensity and infection probability responses

were on a common scale.
3. Results
The wood mice in these populations harboured a diverse

community of parasites (table 1), with individuals being sim-

ultaneously infected with up to six parasite species at any one

time (mean within-host–species richness ¼ 2.09), and 66 per

cent of individuals co-infected. Overall, 146 mice in the exper-

iment were captured a total of 312 times, with a mean

number of captures per mouse of 2.14 (range 1–8). Few initial

differences between treatment groups in parasite response

variables were present, though these were found for Eimeria
hungaryensis and pooled Bartonella spp. infection probability,

as well as Eimeria apionodes intensity (see the electronic

supplementary material, table S1).
(a) Effect of anti-nematode treatment on target
parasites

Anthelminthic treatment had a clear negative effect on

nematodes (the target parasites; figure 1a). A ZINB model

of nematode egg counts one to three weeks after treatment

provided a better fit to the data than a standard negative

binomial model (Vuong test, p ¼ 0.008). This result suggests

that shortly after treatment, egg counts were better rep-

resented by the combination of a count process and an

additional zero-generating process (i.e. individuals clearing

their nematode infection), rather than a count process alone.

This ZINB model revealed a strong effect of Ivermectin

on the probability of being uninfected post-treatment

(OR ¼ 10.03 of a zero count for treated compared with

untreated mice; normal 95% CI: 2.30, 43.77), but weaker

evidence that treatment reduced egg count (incidence rate

ratio, IRR ¼ 0.379 for treated compared with untreated mice,

normal 95% CI: 0.121, 1.183; electronic supplementary material,

section S3a). In line with the ZINB model results, a binomial

model of infection probability (which controlled for more cov-

ariates as shown in electronic supplementary material, table

S2) showed that treated mice had a 71 per cent lower probability

of infection three weeks after treatment compared with control

mice (figure 1a; electronic supplementary material, table S2;

drug: x2
1 ¼ 15.52, p , 0.001, n ¼ 42). Post hoc tests revealed

no evidence that the treatment effect of reduced infection

probability varied between months, across host age groups

(adult versus subadult), with body mass or with reproduc-

tive status (drug�month x2
1¼ 0.50, p ¼ 0.479; drug � age

x2
1 ¼ 1.53, p ¼ 0.216; drug � body mass x2

1 ¼ 0.027, p ¼ 0.870,

drug � reproductive status x2
1 ¼ 2.52, p ¼ 0.112). No differ-

ences in infection probability were detectable one or two

months after first treatment (one month: drug x2
1 ¼ 2.33,

p ¼ 0.127, n ¼ 56; two months: treatment x2
1 ¼ 0.75, p ¼ 0.688,

n ¼ 31), indicating that the effect of Ivermectin on nematodes

was short-lived. Finally, as the results above indicate, not all

treated mice were completely cleared of nematodes (five of

24 treated mice had nematode eggs in faeces one to three

weeks after Ivermectin administration). The following analyses

include these individuals, however, their exclusion made very

little quantitative difference to analyses, and no difference to

our conclusions.

The temporal dynamics of nematode infection probability

also clearly reflected the pattern of Ivermectin treatment

(figure 1b). Notably, mice in the repeated treatment group

showed a reduction in nematode infection probability after

each treatment, whereas those in the single-treatment group

exhibited a treatment effect only immediately after their treat-

ment (figure 1b; single versus repeated nematode infection

probability five to seven weeks after first capture, x2
1 ¼ 9.87,

p ¼ 0.0017). The most common nematode (Heligmosomoides
polygyrus, accounting for 90% of nematode-infected mice,

42% prevalence overall; table 1) exhibited qualitatively simi-

lar treatment effects (electronic supplementary material,

figure S3), suggesting this species drives the effects on overall

nematode infection probability. Ivermectin had no detectable

effect on nematode infection intensity (egg counts) among

infected individuals over any timescale considered (one to

three weeks post-treatment: F1,13 ¼ 1.17, p ¼ 0.299; one

month after first capture: drug F1,12 ¼ 0.00, p ¼ 0.978; two

months after first capture: treatment F2,19 ¼ 1.81, p ¼ 0.190;

electronic supplementary material, figure S4).
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(b) Effects of anti-nematode treatment on non-target
parasites

As with nematodes, a ZINB model on Eimeria oocyst counts

one to three weeks after treatment provided a better fit than

a standard negative binomial model (Vuong test, p ¼ 0.003).

This model indicated that treatment increased Eimeria
oocyst counts (IRR ¼ 16.45 for treated compared with

untreated mice, normal 95% CI: 5.02, 53.84), but did not sig-

nificantly influence the probability of Eimeria infection (OR ¼

2.12, normal 95% CI: 0.61, 7.43; electronic supplementary

material, section S3a). Eimeria oocyst counts were therefore

over 15 times higher in Ivermectin-treated mice compared

with untreated mice one to three weeks after treatment

(GLM on logged oocyst counts, F1,15 ¼ 8.93, p ¼ 0.009;

figure 1c and electronic supplementary material, table S2).

Post hoc tests showed this effect did not vary significantly

between months, or with host age (adult versus subadult)

or reproductive status (drug �month F1,14 ¼ 0.00, p ¼ 0.986;

drug � age F1,13 ¼ 0.37, p ¼ 0.554; drug � reproductive

status F1,13 ¼ 0.02, p ¼ 0.901).

Eimeria parasites also responded rapidly to nematode rein-

fection post-treatment, with Eimeria infection intensity

declining over the same timescale that nematode infection

probability increased: thus, the dynamics of Eimeria spp. inten-

sity mirrored those of nematode infection probability, showing
temporary increases after each Ivermectin treatment, rapidly

returning to pre-perturbation levels as nematodes re-infected

(figure 1d ). Just as for nematodes, no treatment differences in

Eimeria intensity were detectable one or two months after

first capture (one month: drug F1,23¼ 0.10, p ¼ 0.760; two

months: treatment F2,10¼ 1.17, p ¼ 0.348), indicating treat-

ment-induced increases in Eimeria intensity were similarly

short-lived (figure 1d ). As with nematode infection probability,

the repeated and single-treatment groups diverged in their

Eimeria intensity dynamics beyond one month after first

capture (figure 1d; single versus repeated Eimeria infection

intensity five to seven weeks after first capture, x2
1 ¼ 7.11

p ¼ 0.008), which further supports the conclusion that these

Eimeria intensity dynamics were driven by nematode treatment.

Eimeria spp. infection probability was not significantly

altered by treatment over any timescale examined, whether

considering Eimeria species pooled or separately (electronic

supplementary material, figure S5; pooled Eimeria spp.:

within three weeks of last treatment, drug: x2
1 ¼ 0.76,

p ¼ 0.383, n ¼ 42; one month after first capture: drug

x2
1 ¼ 1.24, p ¼ 0.265, n ¼ 56; two months after first capture:

treatment x2
2 ¼ 1.84, p ¼ 0.399, n ¼ 31; p . 0.10 for all drug

or treatment terms in equivalent models for the individual

species E. hungaryensis and E. apionodes).

Examining the Eimeria intensity response in more detail,

we found evidence for species-specificity in this effect. Two
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species of Eimeria, differing in their infection site within

the gut, are common in these wood mouse populations:

E. hungaryensis and E. apionodes. Eimeria hungaryensis is

found in the anterior half of the small intestine (where

H. polygyrus, the most common nematode in these mice,

resides; table 1) and predominantly infects enterocytes on

the apex of villi, whereas E. apionodes inhabits a more pos-

terior position in the gut, infecting enterocytes on the sides

of villi or in crypts [30]. Ivermectin-treated mice showed a

stronger increase in E. hungaryensis infection intensity than

in E. apionodes intensity (one to three weeks after last treat-

ment, effect of drug for E. hungaryensis: F1,12 ¼ 13.66, p ¼
0.003, E. apionodes: F1,11 ¼ 6.74, p ¼ 0.025), and the dynamics

of E. hungaryensis intensity mirrored those of nematode infec-

tion probability far more closely than the dynamics of

E. apionodes (compare figure 2 with figure 1b).

No treatment effects on the probability of infection with

blood parasites (either pooled or individual Bartonella spp. or

Trypanosoma grosi) were detected one or two months after treat-

ment (see the electronic supplementary material, figure S6;

pooled Bartonella spp. one month: drug x2
1¼ 0.02, p ¼ 0.878,

n ¼ 47; two months: treatment x2
2 ¼ 0.24, p ¼ 0.885, n ¼ 24.

Trypanosoma one month: x2
1 ¼ 0.19, p ¼ 0.662, n ¼ 46; two

months: x2
2 ¼ 3.76, p ¼ 0.153, n ¼ 24; p . 0.35 for drug or treat-

ment effects in equivalent models for the individual species

Bartonella taylorii and Bartonella grahamii). Similarly, we found

no effect of nematode treatment on total GI parasite richness,

either including or excluding nematodes, in the subsequent

three weeks (including nematodes: drug x2
1 ¼ 1.83, p ¼ 0.176,

n ¼ 42; excluding nematodes: drugx2
1 ¼ 0.17, p ¼ 0.679, n ¼ 42).
There were also no differences in total parasite richness or

GI richness (including or excluding nematodes) at one or two

months after first capture ( p . 0.25, for drug or treatment

terms in all cases) and overall, parasite community richness

was not notably altered by Ivermectin treatment over any

timescale (see the electronic supplementary material, figure

S7). Considering all parasite responses examined, non-target

treatment effects were predominantly weak, with only a few

strong, negative interactions detected (figure 3a), and the distri-

bution of absolute treatment effect sizes for non-target parasite

species was highly skewed towards zero (figure 3b).
4. Discussion
Using a novel drug-based perturbation experimental

approach, we provide a rare experimental demonstration of

interaction between co-infecting parasite species in a wild

vertebrate population, but also show that, overall, the

within-host–parasite communities examined were relatively

stable to drug-based perturbation. Mice given Ivermectin

showed a reduction in nematode infection probability,

while concurrently showing more than a 15-fold increase in

Eimeria intensity compared with controls, suggesting signifi-

cant competition between these two GI parasite taxa.

Moreover, this interaction appeared to be highly dynamic,

with Eimeria intensity rapidly returning to pre-perturbation

levels as nematode re-infection occurred (figure 1).

Although we cannot categorically exclude the possibility

that these effects are caused by a direct positive effect of
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Figure 3. (a) Summary of Ivermectin treatment effects on non-target parasites. Effect size estimates (Hedge’s g) for the effect of treatment on non-target parasite
response variables. Negative g-values indicate suppressive effects of nematodes (treatment resulted in higher infection intensities or infection probability for the
non-target parasite than control mice), positive values indicate the opposite. Effect sizes were calculated either for parasite infection probability (using the odds ratio
to calculate g), or from the difference in mean oocyst counts per gram faeces, on a log scale as used in statistical analyses. (b) Frequency histogram of the absolute
effect sizes shown in (a), showing skew of the distribution towards primarily weak interactions.
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the anti-nematode drug on Eimeria parasites, rather than an

indirect effect caused by a reduction in nematodes, a direct

effect seems unlikely for two reasons. First, although macro-

cyclic lactones, including Ivermectin, are known to have non-

specific effects on other organisms besides nematodes,

including arthropods, protozoa and bacteria [31–33], these

tend to be negative, and we can find no instances of direct

positive effects on non-target parasites in the literature,

despite widespread use of Ivermectin in livestock, which

are frequently co-infected. Second, we find evidence for

species-specificity in the effect on Eimeria, which seems

more plausibly attributed to nematode removal than a

species-specific direct effect of Ivermectin. Ivermectin treat-

ment had a much clearer positive effect on E. hungaryensis,

which shares an infection site with the dominant nematode

in this system (H. polygyrus; table 1), than E. apionodes,

which occupies a lower section of the GI tract (figure 2).

These findings strongly suggest the effects of Ivermectin on

Eimeria are due to the drug’s negative effect on H. polygyrus,
and reveal an extremely localized competitive interaction

occurring between a pair of species that inhabit the same sec-

tion of the GI tract. Interestingly, a controlled co-infection

experiment in laboratory mice involving H. polygyrus and

Eimeria vermiformis, a species that inhabits the caecum, did

not find competitive effects as we report here and, if anything,

showed some facilitation of Eimeria by early, but not chronic

stage H. polygyrus infection [34]. This suggests that, as with

free-living systems, species-specific ecological differences are

likely important determinants of interaction mechanism,

direction and strength among parasites.

The mechanism underlying the localized competition we

identified is unknown. However, the fact that we detected an
effect of anti-nematode treatment on Eimeria intensity, but not

on the probability of being Eimeria infected, suggests that

whereas nematodes do not alter susceptibility to acquiring

Eimeria infection per se, they do affect the extent to which

Eimeria parasites replicate once inside the GI tract. We suggest

several potential, non-mutually exclusive mechanisms by

which this could occur. First, it could arise by a resource-

mediated interaction, with H. polygyrus and Eimeria parasites

competing for space or nutrients with the gut. Second, because

H. polygyrus feeds on epithelial tissue [35], in which Eimeria
parasites develop, direct predation of Eimeria parasites by H.
polygyrus may take place. Third, immune mechanisms may be

involved, for example, an immune-mediated increase in entero-

cyte turnover during nematode infection, that could aid the host

in Eimeria expulsion [36].

Although nematodes are expected to be a key interactive

group because of their immunomodulatory effects [9,20,21], in

this experiment the majority of parasites, as well as community

richness as a whole, showed no detectable response to nematode

suppression, producing a distribution of interaction strengths

skewed towards zero. Moreover, non-target parasites that did

respond (Eimeria spp.) quickly returned to pre-perturbation

levels. Hence, these naturally occurring parasite communities

appear to be both resistant and resilient to nematode-targeted

perturbation. Theory suggests several mechanisms could under-

pin such community stability. First, the target parasite group

(nematodes, and H. polygyrus particularly) may have few or rela-

tively weak interactions with co-infecting parasites, although this

would run counter to expectations based on many laboratory

studies [9,10,37]. A second possibility is that shifts in community

structure caused by nematode treatment may be extremely short-

lived, and simply not visible over the timescales monitored
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(weeks to months). The one non-target response we found, invol-

ving Eimeria spp., was detectablewithin weeks, but not months of

treatment, suggesting these parasite communities are extremely

resilient and can recover quickly (within four weeks) from pertur-

bations. A number of studies on the response of human gut

microbial communities to antibiotic perturbation have documen-

ted similar resilience, whereby communities show notable shifts

in the weeks following treatment but largely rebound to their

original state over months or years [38,39]. Third, it may be that

the structure of within-host–parasite communities themselves

is conducive to stability. In particular, the skewed distribution

of interaction strengths observed here (figure 3b) echoes findings

from food webs of free-living species [40,41], and is known to

promote network stability [7]. Furthermore, stability can also

arise through high modularity or compartmentalization,

where a network comprises modules of strongly interacting

species, with weak or few links between modules [6]. It is note-

worthy in this respect that the only significant interaction

detected here was between two parasites that live in close

proximity to each other. Interestingly, a recent literature-

based network study of human co-infection data found signifi-

cant modularity in the parasite community, with distinct

modules of closely interacting species largely reflecting differ-

ent locations in the body (E. C. Griffiths, A. B. Pedersen,

A. Fenton & O. L. Petchey 2012, unpublished data). Thus, it

may be that although strong interactions between co-infecting

parasites do occur within any given module (e.g. body com-

partment), links to other such groups (e.g. through systemic

immune effects) are rare or weaker, facilitating overall stability

of the network in the face of perturbation.

The drug-based perturbations we used resemble current

anthelmintic treatment programmes in humans and livestock,

in terms of the drug used (Ivermectin), the periodic nature of

treatment [42], efficacy level [43] and observed responses
post-treatment, with rapid helminth reinfection after drug

administration [44,45]. Our study shows, for the first time

in a natural mammalian host–parasite system, how such

treatments may impact the wider parasite community, lead-

ing to unintended responses in the abundance of some co-

infecting parasites, but not in others. We also show how a

community ecology framework can help identify how the

strength, type and arrangement of parasite interactions may

contribute to within-host–parasite community stability, and

pinpoint certain parasite characteristics (e.g. shared location

within the host) that predispose non-target parasites to

respond to treatment. Such perturbation studies on natural

parasite communities provide direct empirical demonstra-

tion of how anthelminthic treatment may impact the wider

parasite community, and can inform our understanding of

whether ‘holistic’ disease control programmes, that seek an

indirect, added benefit of deworming through parasite

interactions [46,47] are likely to achieve their goal.
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