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Chronic liver damage caused by viral infection, alcohol, or obesity can result in increased risk for hepatocellular carcinoma (HCC).
Ample epidemiological evidence suggests that there is a strong synergism between hepatitis C virus (HCV) and alcoholic liver
diseases (ALD). The Toll-like receptor (TLR) signaling pathway is upregulated in chronic liver diseases. Alcoholism is associated
with endotoxemia that stimulates expression of proinflammatory cytokine expression and inflammation in the liver and fat tissues.
Recent studies of HCC have centered on cancer-initiating stem cell (CSC), including detection of CSC in cancer, identification
of CSC markers, and isolation of CSC from human HCC cell lines. Synergism between alcohol and HCV may lead to liver
tumorigenesis through TLR signaling.

1. HCV, Alcohol, and HCC

Chronic liver damage caused by viral infection, alcohol, or
metabolic syndrome can result in increased risk for HCC
which is the third most common cancer in the world [1].
This virus is a major cause of HCC, which is the fifth
most common cancer in the world. HCC has a low five-
year survival rate due to the lack of therapeutic options and
is highly prevalent in the world, especially in Africa and
Asia [1]. Clearly, understanding the molecular mechanisms
of HCV-induced hepatocarcinogenesis is required for the
eventual development of improved therapeutic modalities
for this disease [2]. In particular, chronic infection with HBV
or HCV represents a major risk factor for HCC [1]. HCV
affects more than 170 million people worldwide [1, 3, 4].

Ample epidemiological evidence suggests that there is
a strong connection between hepatitis C virus (HCV) and
ALD. First, the prevalence of HCV is significantly higher
among alcoholics than in the general population; for exam-
ple, while the HCV positive rate in the general population
of the U.S. is roughly 1%, it is 16% for alcoholics and
nearly 30% for alcoholics with liver diseases [5]. Second, the
presence of HCV infection correlates with the severity of the
disease in alcoholic subjects, that is, HCV-infected patients
with ALD develop liver cirrhosis and HCC at a significantly

younger age than uninfected ALD patients, suggesting that
alcohol and HCV work synergistically to cause liver damage
[6]. Many studies also support synergistic interactions
between HCV and alcoholism in hepatocarcinogenesis [7–
11]. Heavy alcohol consumption and viral hepatitis synergis-
tically increase the risk for HCC among blacks and whites
in the U.S. [10]. HCC odds ratio increases to 48.3-fold and
47.8 from 8.1 and 8.6 by having concomitant alcohol abuse in
HBV or HCV infected patients, respectively [10]. Indeed, our
recent result demonstrates that the incidence of spontaneous
HCC induction in the HCV core transgenic mice is increased
2-fold by chronic alcohol intake.

Recent studies with mice expressing HCV proteins have
shed pivotal insights into the mechanisms underlying this
synergism. The HCV core protein causes overproduction of
reactive oxygen species which appears to be responsible for
mitochondrial DNA damage [3, 12, 13]. The core protein
also inhibits microsomal triglyceride transfer protein activity
and VLDL secretion [14], which may underlie the genesis of
fatty liver. The core protein also induces insulin resistance
in mice and cell lines, and this effect may be mediated by
degradation of insulin receptor substrates (IRS) 1 and 2
via upregulation of SOCS3 [15] in a manner dependent on
PA28γ 73, or via IRS serine phosphorylation [16]. Thus,
these core-induced perturbations such as oxidant stress and

mailto:kmachida@usc.edu


2 Gastroenterology Research and Practice

insulin resistance, which are also known risk factors for
ALD, may underlie the synergism reproduced in alcohol-
fed core transgenic mice [17]. TLR2 and TLR4 are markedly
upregulated in hepatocytes, Kupffer cells, and peripheral
monocytes of patients with chronic hepatitis C. TLR2-
mediated activation by hepatitis C is linked to the proin-
flammatory cytokine induction [18]. TLR-mediated signals
result in liver disease associated with hepatitis B, hepatitis
C, alcoholicnonalcoholic steatohepatitis, and hepatic fibrosis
[19]. The most devastating consequence of the synergism
between viral hepatitis and alcohol is HCC [7–11]. The
risk of developing HCC as assessed by odds ratio increases
from 8∼12 to 48∼54 by having concomitant alcohol abuse
in HCV/HBV infected patients [9, 10]. The HCV core
and NS3 protein activate TLR2/TLR1 and TLR2/TLR6 on
monocytes to produce inflammatory cytokines [19]. The
aforementioned effects of the core protein may contribute
to the mechanisms of the synergism. However, the more
direct mechanistic evidence has recently been attained by
our research using mice expressing the HCV nonstructural
protein NS5A in a hepatocyte-specific manner. These mice,
when fed alcohol for 12 months, develop liver tumors in a
manner dependent on TLR4 induced by NS5A [20]. This
NS5A-induced TLR4 is activated by endotoxemia associated
with alcohol intake, leading to accentuated TLR4 signaling
which in turn upregulates the stem cell marker Nanog
required for TLR4-dependent liver oncogenesis. This finding
on the NS5A-TLR4-Nanog axis in synergistic oncogenesis, is
beginning to shed a novel insight into molecular mechanisms
for HCC in alcoholic HCV patients.

HCV contains a 9.5-kb single-stranded positive-sense
RNA genome, which encodes a polyprotein that is, processed
into multiple proteins by cellular and viral proteases. Non-
structural protein NS5A may interact with an interferon-
induced, double-stranded RNA-activated protein kinase
PKR [21], thus accounting for the resistance of most HCV
strains to interferon treatment. NS5A has also been shown
to have a cryptic trans-acting activity for some cellular gene
promoters [22]. The core protein deserves special mention
because, in addition to being a viral structural protein, it
serves multiple regulatory functions, including the activation
or suppression of various cellular and viral gene promoters.
Furthermore, it binds to LTβR, TNF receptor and several
other cellular proteins, including apolipoprotein AII [23].
The immune- and cytokine-mediating roles of the HCV core
protein may play a key role in the synergistic effects of alcohol
liver disease (ALD) on HCV-associated liver damage.

2. TLRs Signaling in HCC

The TLR signaling pathway is upregulated in chronic liver
diseases. Many different cell types in the liver express TLRs
[19]. Hepatocytes express TLR1 through TLR9. Stellate cells
express TLR2, 3, and 4. Bile duct epithelium expresses
TLR2, 3, 4 and 5. Kupffer cells express TLR2, 3, and 4.
Chronic alcohol consumption activates other TLRs, such
as TLR1, 2, and 6–9, which further increases the TNF-α
response to LPS in mice [19]. Human monocytes exposed to
ethanol for a week develop hypersensitivity to LPS through

decreased IRAK-M expression, which activates mitogen-
activated protein kinase (MAPK) and NF-κB through TLR4
signaling, leading to activation of NF-κB, AP-1, and ERK
[24].

Hepatocyte-specific deletion of TAK1 in mice causes
spontaneous hepatocyte death, inflammation, fibrosis, and
carcinogenesis partially mediated by TNFR signaling, indi-
cating that TAK1 is an essential component for cellular ho-
meostasis in the liver. In a NASH mouse model, TLR9
signaling induces production of IL-1β by Kupffer cells,
leading to steatohepatitis, inflammation, and fibrosis via
induction of IL-1β [25]. Furthermore, modulation of TGF-
β signaling by a TLR4-MyD88-NF-κB pathway links between
profibrogenic and proinflammatory signals [26].

Several possible mechanisms may explain the high
prevalence rate of HCV among alcoholics and the increased
severity of liver diseases in these patients. First, alcohol
may enhance the replication of HCV and thus increase the
expression of viral RNA and proteins, resulting in more
severe HCV-induced liver injury, independent of the damage
induced by alcohol alone. Indeed, HCV titer has been
shown to exhibit a correlation with the amount of alcohol
consumption [27]. This enhanced effect on HCV replication
could be caused directly by the metabolites of ethanol,
such as acetaldehyde and free radicals, which may stimulate
HCV replication and gene expression. It could also be
caused indirectly through alcohol-induced inhibition of the
antiviral immune response. Indeed, HCV replication is more
active in immunodeficient patients, such as HIV-infected
patients [28], and ethanol consumption can cause im-
munosuppression [29].

Another potential mechanism is the involvement of
cytokines. Both ALD and HCV cause enhanced secretion
of TNF and other cytokines, such as IL-1, IL-6, and IL-8,
[30]. TNF is particularly interesting because there is a tight
correlation between the serum TNF concentration and the
severity of ALD [31, 32], and TNFR1 deficiency ameliorates
experimental ALD [33]. TNF may cause cell death through
the activation of the TRADD/FADD signal transduction
pathway. Oxidative stress may also contribute to TNF
cytotoxicity [34]. On the other hand, a variety of factors can
modulate the effects of TNF; for examples, NF-κB [35–37],
manganous superoxide dismutase (MnSOD) [38], and GSH
inhibit TNF-induced cytotoxicity [39]. In experimental ALD,
the mitochondrial pool of GSH is depleted and the hepato-
cytes become hypersensitive to TNF [39]. We have recently
shown that HCV core protein binds to lymphotoxin-β
receptor and TNF receptor [40] and that the expression
of this protein in several cell lines sensitize them to TNF-
induced cytolysis [41]; therefore, HCV-infected cells are par-
ticularly sensitive to TNF. It is interesting to note that HCV
core protein also sensitizes cells to apoptosis mediated by Fas
[42], which shares with TNF receptors signal transduction
molecules such as FADD. These observations suggest that
HCV-infected hepatocytes are very sensitive to TNF and
possibly other cytokines as well. This enhanced sensitivity,
coupled with the increased secretion of TNF in ALD, may
account for the synergistic effects of ALD on HCV.
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Table 1: Markers for liver cancer stem cells.

Gene name Other name Function Species Organ References

CD133 Prominin 1 (PROM1) Glycoprotein, membrane protrusions Human, mouse Liver, brain [74, 78, 79, 87–89]

CD49f Integrinα chain α6 (ITGA6) Cell adhesion, cell signaling Mouse Liver [74, 78]

CD90 Thy-1 Glycophosphatidylinositol (GPI) anchor Mouse Liver [74]

CD44 Hyaluronic acid receptor Cell adhesion and migration, metastasis Mouse Liver, breast [74, 90]

CD117 KIT C-kit receptor cytokine receptor Mouse Liver [74]

CK19 Cytokeratin 19 Biliary lineage marker Mouse Liver [91, 92]

OV-6 Oval cell marker Early progenitor cells Human Liver [92]

CD34 Glycoprotein Cell-cell adhesion factor Mouse Liver, leukemia [93]

AFP α-fetoprotein Fetal counterpart of serum albumin Mouse Liver [94]

3. TLR4-Mediated AP1 Activation and HCC

Alcoholism is associated with endotoxemia that stimulates
expression of proinflammatory cytokine expression and
inflammation in the liver and fat tissues [43]. Development
of liver cancer in the HCV core mice is associated with
inflammation [44]. Expression of the proinflammatory
cytokine TNF-α and IL-1β is induced by HCV-infected
human B cells (16) and by its core protein in the transgenic
mouse model [45, 46]. Recently, we have shown that HCV
infection, through NS5A protein expression, upregulates
TLR4 expression and proinflammatory cytokines [47], pro-
viding a potential explanation for increased inflammation in
HCV-infected livers. Further accentuation of TLR4 signaling
in HCV would be expected if combined with alcohol abuse.
This may serve as part of the synergistc mechanism when
superimposed by other key patholophysiological events
common in these comorbidities such as CYP2E1 induction.
CYP2E1 induction impairs hepatic insulin signaling [48, 49],
induces oxidative DNA damage [50], primes macrophages
to increase LPS-induced TNF-α production [51], sensitizes
hepatocytes to TNF-α-mediated cell death via c-jun [52,
53], and more importantly, leads to marked potentiation
of endotoxin-induced oxidant liver injury (35). Therefore,
saturated fatty acids which are implicated in obesity and
diabetes could serve as additional ligands to enhance signal-
ing via TLR4 which is already upregulated by HCV NS5A
[54]. Polyunsaturated fats actually result in greater rather
than less liver injury [55]. These interactive and synergistic
mechanisms involving TLR4 in HCV and alcohol most likely
contribute to increased incidence of HCC via oxidant stress
and inflammation and are the focal points of my proposed
research.

c-Jun-deficient mice die between embryonic days E12.5
and E13.5 from massive apoptosis of hepatoblasts, ery-
throblasts, and other cell types [56, 57]. To overcome this
problem, mice harboring a “floxed” c-jun allele that can be
deleted in designated cell types upon expression of the Cre
recombinase have been developed. Using this system, c-Jun
expression was shown to be essential for proper proliferation
in postnatal hepatocytes [58]. Moreover, the deletion of c-
Jun in hepatocytes compromises the ability of these cells
to enter the cell cycle and undergo rapid proliferation after
partial hepatectomy [58]. A well-accepted model of HCC

utilizes a chemical carcinogen DEN (diethylnitrosamine)
as a tumor initiator and phenobarbital as a promoter. By
using this model and tissue-specific knockout mice, the
loss of JNK1 in the liver was shown to reduce DEN-
induced HCC development [59]. The requirement for c-jun
was restricted to an early stage of tumor development in
chemically induced HCC in mice [60]. In our study, c-jun
knockout dramatically reduced the incidence of spontaneous
and DEN-induced HCC in HCV core transgenic mice,
supporting the role of c-jun in this model of hepatocarcino-
genesis (Hepatology in press). Alcoholic liver disease patients
have increased levels of hepatic RANTES/CCL5. Ethanol
augments RANTES/CCL5 expression in rat liver sinusoidal
endothelial cells and human endothelial cells via activation
of NF-κB, HIF-1α, and AP-1 [61]. In vitro studies using
liver-derived cell lines have demonstrated rapid activation
of AP-1 by HBV or HCV proteins [62], and this mitogenic
effect is implicated in hepatocytes’ susceptibility to liver cell
transformation via fixation of genetic mutations caused by
oxidant stress. Indeed, Further c-Jun prevents apoptosis by
antagonizing p53 activity as another contributing factor for
HCC development [60, 63]. Ectopic expression of HCV core
protein constitutively activates AP-1 via JNK [64]. Activation
of JNK is also implicated in ASH and NASH [49, 52].
Therefore, activation of JNK and c-jun most likely plays
pivotal roles in synergistic induction of liver cancer by HCV
and alcohol.

3.1. Cancer Stem Cells and HCC. Stem cells have three
major characteristics: self renewal, asymmetric and multiple
cell division (clonality), and plasticity. The liver has a high
regenerative potential, and hepatic small oval progenitor
cells around the peripheral branches of the bile ducts, the
canals of Hering, can differentiate into biliary epithelial
cells and hepatocytes [65]. These oval liver progenitor cells
share molecular markers with adult hepatocytes (albumin,
cytokeratin 7 [CK7], CK19, oval cell markers (OV-6, A6,
and OV-1), chromogranin-A, NCAM (neural cell adhesion
molecule)) and fetal hepatocytes (α-fetoprotein) (Table 1)
[65, 66]. They are also positive for more common stem
cell markers such as CD34+, Thy-1+, c-Kit+, and Flt-
3+ (FMS-like tyrosine kinase 3) [67]. Thus, it currently
remains unclear whether these stem cells are derived from
the bone marrow and just migrate to this periportal niche
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or whether they represent true resident liver stem/progenitor
cells. Binding of stroma-derived factor-1α (SDF-1α) to its
surface receptor CXCR4 activates oval hepatic cells [68].
Forty percent of HCC have clonality, and thus are considered
to originate from progenitor/stem cells [66, 69–71]. Recent
studies of HCC have centered on CSC, including detection of
CSC in cancer, identification of CSC markers, and isolation
of CSC from human HCC cell lines. CSC were identified as
a CD117+/CD133+ hepatic precursors in regenerating liver
tissue [72] and a CD45−/CD90+ subpopulation of tumor
cells in HCC [73]. The CD90+ cells are not present in
the normal liver and, when injected into immunodeficient
mice, create tumors repeatedly. In human HCC and HCC
cell lines, specifically, CD133+ cells, not CD133− cells, had
the ability to self-renew, create differentiated progenies, and
form tumors [74]. This coincided with the expression of
genes associated with stem/progenitor status, such as β-
catenin, NOTCH, BMI, and OCT3/4. When compared to
CD133− cells, the CD133+ cells isolated from the HCC
cell lines showed higher expression of CD44 and CD34,
but both CD133 subpopulations displayed similar expression
for CD29, CD49f (integrin α6), CD90 and CD117 [74].
Furthermore, CD133+/CD49f+ cells in liver tumors correlate
with tumorigenecity and “stemness” genes, such as Wnt/β-
catenin, Notch, Hedgehog/SMO, Bmi, and Oct3/4 [75–77].
CD133+/CD49f+ HCC cancer stem cells confer resistance
to chemotherapy, and this presents a major obstacle for
the treatment of HCC [78]. One potential reason for this
chemoresistance may lie in the plasticity of cancer stem
cells with dysregulated signaling and gene expression. Several
oncogenic signaling pathways in cancer stem cells of HCC,
have been described including activated PI3K/AKT [79],
signal transducer and activator of transcription 3 (STAT3)
[80, 81], Notch [82], Hedgehog [83, 84], and transforming
growth factor-beta (TGF-β) [85, 86].

Nanog is one of the core transcription factors found in
pluripotent embryonic stem cells (ESCs) [95]. It is essential
for maintaining self-renewal and pluripotency of both
human and mouse embryonic stem cells [96–99]. Overex-
pression of Nanog induces and maintains the pluripotency
and self-renewing characteristics of ESCs under what nor-
mally would be differentiation-inducing culture conditions
[100]. Recently, Nanog expression has been reported in
human neoplasms, including germ cell tumors [101–104],
breast carcinomas [104], osteosarcoma [105], and HCC [79].
Ectopic expression of Nanog induces an oncogenic potential
in NIH3T3 [106].

4. Nanog-Positive Cancer Stem Cells Induced by
HCV and Alcohol

Alcohol synergistically enhances the progression of liver
disease and the risk for liver cancer caused by HCV. Toll-
like receptor 4 (TLR4) is induced by hepatocyte-specific
transgenic (Tg) expression of the HCV nonstructural protein
NS5A, and this induction mediates synergistic liver damage
and tumor development by alcohol-induced endotoxemia
[20]. The stem/progenitor cell marker, Nanog, is upregulated
as a novel downstream gene by TLR4 activation and the

presence of CD133/Nanog-positive cells in liver tumors of
alcohol-fed NS5A Tg mice [20]. Transplantation of p53-
deficient hepatic progenitor cells transduced with TLR4
results in liver tumor development in mice following repet-
itive lipopolysaccharide (LPS) injection, but concomitant
transduction of Nanog short-hairpin RNA abrogates this
outcome [20]. Despite the common understanding that
TLR4 is one of the pattern recognition receptors expressed
predominantly by innate immune cells such as macrophages
and lymphocytes, our study demonstrates that hepatocytes
can be the primary cellular site of both TLR4 upregulation
and its pathologic consequences in the context of HCV infec-
tion. Therefore, the TLR4-dependent mechanism synergizes
liver disease by HCV and alcohol and is partly dependent on
Nanog, a TLR4 downstream gene.

Nanog transduction alone is not as effective as TLR4
activation in liver tumorigenesis, as shown by our cell trans-
plantation experiment [20]. We believe that TLR4 activation
induces other tumor-driver genes which cooperatively work
with Nanog to cause liver oncogenesis. Thus, Nanog is still
essential for TLR4-dependent oncogenesis, but it alone is
poorly oncogenic. In our previous work using a cell line,
we demonstrated that TLR4 promoter up-regulation by
NS5A is mediated by PU.1, Oct-1, and AP-1 elements [47].
The similar transcriptional mechanism may underlie TLR4
induction in primary hepatocytes.

In summary, alcohol and HCV NS5A synergistically
induce liver tumor development via induction and activation
of TLR4 in mice. The importance of Nanog as a direct
downstream gene of TLR4 in this oncogenesis has also been
identified. Pharmacologic inhibition of TLR4 signaling may
become a novel therapeutic strategy for HCV-associated liver
tumors.
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