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More people die from cardiovascular diseases (CVD) than from any other cause. Cardiovascular complications are thought to arise
from enhanced levels of free radicals causing impaired “redox homeostasis,”which represents the interplay between oxidative stress
(OS) and reductive stress (RS). In this review, we compile several experimental research findings that show sustained shifts towards
OS will alter the homeostatic redox mechanism to cause cardiovascular complications, as well as findings that show a prolonged
antioxidant state or RS can similarly lead to such cardiovascular complications. This experimental evidence is specifically
focused on the role of glutathione, the most abundant antioxidant in the heart, in a redox homeostatic mechanism that has been
shifted towards OS or RS. This may lead to impairment of cellular signaling mechanisms and elevated pools of proteotoxicity
associated with cardiac dysfunction.

1. Introduction

Glutathione (GSH) and its reduced form are the most preva-
lent thiol-containing peptides in eukaryotic cells [1, 2].
Although GSH was described as a prominent reducing factor
and the main antioxidant within the cells, subsequent inves-
tigations show that GSH exerts many other cellular functions
[2, 3]. Indeed, GSH exerts multiple physiological functions
including the proliferation, cell cycle regulation, apoptosis,
catabolism of xenobiotics, glutathionylation of proteins, and
the production of some steroids, lipid compound, and deoxy-
ribonucleotides and represents an important source of cyste-
ine [2–5]. Taking into account all these features of GSH, it is
not surprising that GSH plays an important etiological role in
the development of numerous diseases, such as cardiometa-
bolic and cardiovascular diseases (CVD) [6–9].

Development and progression of CVD are characterized
by substantial changes in the concentration of GSH and/or

its oxidation state [9–12]. Three different mechanisms have
been proposed to be involved in GSH diminution: increased
oxidation by intracellular oxidizing agents, increased con-
jugation to proteins, electrophiles, and xenobiotics, and
increased extrusion across the cell membrane [9, 10, 13].
Conversely, increased concentration of GSH in cells may
cause negative effects, such as multidrug resistance [9, 14].
Also, the dysregulation of GSH-dependent enzymes and
GSH synthesis enzymes was observed in endothelial dys-
function [10, 12].

This review aims to highlight the role of GSH in the phys-
iology and pathology of the cardiovascular system.

2. Glutathione Structure and Function

GSH is a peptide ubiquitously present in all cells, but the liver
remains the principal source of GSH in humans [1, 2]. GSH
is a tripeptide formed from glycine, glutamate, and cysteine.

Hindawi
Oxidative Medicine and Cellular Longevity
Volume 2019, Article ID 5028181, 14 pages
https://doi.org/10.1155/2019/5028181

http://orcid.org/0000-0002-5486-0079
http://orcid.org/0000-0001-5435-4750
http://orcid.org/0000-0003-2709-5356
http://orcid.org/0000-0002-0012-2636
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/5028181


In the cell, GSH is synthesized and mostly distributed in the
cytoplasm, while in less amount, it is also found in the organ-
elles such as the nucleus, peroxisomes, mitochondria, and
endoplasmic reticulum. GSH is transported from the cyto-
plasm to the organelles by specific transporters [2, 8, 15]. In
many cells, the concentration of GSH is in the range of 1-
10mM, while the concentration of GSH in plasma is notably
low at 0.01mM [1]. This disproportionate level of GSH con-
centration within cells and circulation principally depends
on its rapid catabolism in blood [8, 16]. However, it is not
possible to determine the total glutathione concentration,
which includes GSH, the glutathione disulfide (GSSG), and
all other forms [17].

Various factors regulate GSH synthesis, such as availabil-
ity of L-cysteine and ATP and the concentration of GSH
[1, 2]. A large amount of GSH competitively inhibits the
activity of glutamate cysteine ligase (GCL) [18, 19]. GSH is
synthesized by GCL and glutathione synthetase (GS) [1, 2].
Firstly, γ-glutamylcysteine is formed from glutamate and
cysteine via GCL activity and consumption of one ATP mol-
ecule. Then, glycine is added to formed dipeptide in the reac-
tion catalyzed by GS and consumption of one more ATP
molecule. Interestingly, the expression of GCL is regulated
by nuclear factor erythroid 2-related factor 2 (Nrf2), which
can be activated by oxidative stress (OS) [16, 20]. Thus, OS
leads to increased GSH production through stimulation
of GCL activity [16, 20]. One of the characteristic structural
features of the GSH is the γ-glutamyl bond, which makes
GSH very stable and resistant to cleavage of most proteases
and peptidases. γ-Glutamyl transferase (GGT) is the enzyme
which catabolizes GSH (located extracellularly) by removing
γ-glutamyl to obtain cysteinylglycine or cysteinylglycine con-
jugates, which dipeptidases further degrade [17].

GSH is the principal intracellular antioxidant, which may
act directly by scavenging reactive oxygen and nitrogen spe-
cies or indirectly by supporting enzymatic activity as a cofac-
tor [3, 21]. Intracellular GSH mainly exists as a monomer in
reduced form and less in the disulfide dimer or GSSG, which
arises after GSH oxidation [1, 3]. GSH can be reverted from
GSSG by the activity of glutathione reductase [13, 22]. The
reduced and oxidized forms of GSH represent the main
cellular redox buffer, and in the physiological condition,
the concentration of GSH is predominant compared with
GSSG [23, 24]. Thus, the ratio of GSH and GSSG is consid-
ered as a marker of OS [23, 24].

Furthermore, glutathionylation of proteins represents an
important regulatory mechanism that influences the activity
and kinetics of different regulatory, metabolic, and structural
proteins [25, 26]. Proteins with thiol groups can respond
to different stimuli, such as OS, and form disulfides [26].
S-Thiolation processes include the formation of a disulfide
bond inside of one protein and between two proteins and
mixed protein/nonprotein disulfides. It was observed that
GSH forms part of almost 85% of mixed protein/nonprotein
disulfides [9, 26, 27]. We today view the process of S-
glutathionylation as a critical signaling system in CVD [28].
S-Glutathionylation is involved in oxidative phosphoryla-
tion, myocyte contraction protein synthesis, and insulin
response [29]. Perturbations in protein glutathionylation

contribute to myocardial infarction, hypertrophy, and
inflammation. Using the ischemia-perfusion technique in
the rat model for myocardial infarction, it was shown that
there is an increase in overall protein glutathionylation
[30]. The protein found to be heavily glutathionylated was
glyceraldehyde-3-phosphate dehydrogenase. The result of
glutathionylation is inhibition of glycolysis and increased
apoptosis [31]. Ras glutathionylation has been investigated
in the progression of cardiac hypertrophy [32]. More
research has been concerned with the role of protein glu-
tathionylation in atherosclerosis [33–35]. Human macro-
phages exposed to oxidized cholesterol, a fundamental
component of the atherosclerotic plaque, show an increase
in protein glutathionylation [36] suggesting that protein glu-
tathionylation has a role in macrophage cell death [36].
Patients with atherosclerosis obliterans or atherosclerosis of
the extremities exhibit increased levels of serum proteins that
have been seen to be heavily glutathionylated [37]. These
findings reflect a redox imbalance produced by OS and pres-
ent a path leading to atherosclerosis of the extremities.

Past research has been concentrated on OS and its rela-
tion to CVD [38], but new studies have given light to the role
of reductants that may lead to the imbalance of normal, phys-
iological production of reactive oxygen species (ROS) to a
state of “reductive stress” (RS). S-Glutathionylation of pro-
teins, in this new light, has to be included in the analysis of
how to control OS and/or RS [38].

Regulating angiogenesis is a major goal in cardiovascular
research. Research into S-glutathionylation on the regulation
on the low molecular weight protein tyrosine phosphatase
(LMW-PTP) which is a key mediator of vascular endothelial
growth factor (VEGF) cell migration [39] was reported. VEGF
causes reversible S-glutathionylation of the LMW-PTP pro-
tein. Research showed that a balanced redox state is needed
for VEGF to process reversible S-glutathionylation of the
LMW-PTP protein and hence cell migration. On the other
hand, it was shown that a shift towards “RS” or “OS” can
inhibit VEGF angiogenic response [39].

There is growing evidence that glutathionyl hemoglobin
may be of use as a biomarker of OS in circulation [40, 41].
GSH also functions in the detoxification of xenobiotics,
which are eventually converted to the mercapturic acids
and excreted through urine or feces [42].

GSH can also achieve a prooxidant effect but to a lesser
extent than antioxidant effect [21]. During the GSH catabolism,
removal of the γ-glutamate residue from the cysteine residue
caused a prooxidant effect and may induce lipid peroxidation
of the plasma membrane on the exposed, outer side [43, 44].
This may cause initiation of a signaling process inside the cell
and increased production of reactive species and further cause
DNA damages and lipid peroxidation [43, 45]. Moreover, the
prooxidant effect of GSH can enhance the reduction of iron
and oxidation of low-density lipoproteins (LDL) involved in
vascular injury and atherogenesis development [21].

3. Glutathione and Reductive Stress

Albert Wendel coined reductive stress, to describe NADH
facilitating a reduction of chelated ferric iron when excessive
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concentrations of NADH are present [46]. It is now known
that RS is the counterpart of OS that is characterized by
excessive levels of reducing bioequivalents [47]. The endoge-
nous intracellular antioxidant, GSH, was shown to be
involved in several RS-related mechanisms.

Salvemini et al. [48] showed that the HeLa cells
when transfected with the human glucose-6-phosphate
dehydrogenase (G6PD) gene, responsible for the generation
of NADPH, exhibited increased levels of GSH and decreased
ROS production. Moreover, these clones displayed signifi-
cant resistance to oxidant-mediated cell killing and resistance
to NF-kappaB activation [48]. Thus, these clones represent a
reduced state to a certain extent.

Heat shock proteins (HSPs) were also shown to exhibit
protection against several stress stimuli in mammalian cells.
In line with this fact, Preville et al. [49] demonstrated that
human heat shock protein 27 (Hsp27)—and murine (L929
fibroblast) heat shock protein 25 (Hsp25)—mediates protec-
tion against H2O2-induced OS by increasing levels of reduced
GSH in a G6PD-dependent manner. Also, Baek et al. [50]
demonstrated that the overexpression of Hsp25 enhances
radiation survival in L929 cells by reducing apoptosis. How-
ever, these clones also showed increased concentrations of
GSH, not as a consequence of glutathione synthesis but
rather a consequence of GSSG being reduced faster to GSH.
Thus, the GSH/GSSG ratio was significantly less in the con-
trols when compared with the clones. These reports provide
the first evidence that HSPs help facilitate the glutathione-
redox cycle by increasing GSH levels thereby promoting a
reduced state [50].

McMahon et al. [51] demonstrated that Kelch-like
ECH-associated protein 1 (Keap1)-dependent proteasomal
degradation of regulatory protein Nrf2 contributes to the
decreased expression of several antioxidant enzymes. It
has been shown in a study by Zhang et al. [52] that
cardiac-related adaptation to chronic stress is facilitated
by NADPH oxidase-4 (NOX4). Brewer et al. [53] showed
the connection between these studies by demonstrating
that NOX4 activated Nrf2 which facilitates the expression
of antioxidant-related genes, which resulted in increased
concentrations of GSH and consequently an increased
GSH/GSSG ratio.

Rajasekaran et al. later demonstrated that increased levels
of GSH, NADPH, and antioxidative pathway enzymes
associated with RS, and decreased OS biomarkers could
be linked to protein aggregation cardiomyopathy and cardiac
hypertrophy [54]. Activation of reactive persulfides and poly-
sulfides that have better scavenging activity than GSH can
also cause “RS-related redox collapse,” but this is not well
studied [55]. Nonetheless, these shifts towards reduction that
induced the “RS-related redox collapse” have been linked
to several complications including lipid damage [56], cyto-
toxicity [57], mitochondrial dysfunction [57], triacylglyc-
erol deposition [58], and cardiac ischemic injury [59].

The role of OS in the cardiovascular system (CVS) has
been well demonstrated in numerous animal and human
studies discussed below. However, more recent work focuses
on the role of RS in CVS, as a consequence of antioxidant-
based treatments often being ineffective.

In line with this thought pattern, Zhang et al. [60]
explored whether overexpression of Hsp27 induces RS that
results in cardiomyopathy using low to high expression
levels of Hsp27 in transgenic mice. High Hsp27-expressing
transgenic mice developed cardiomyopathy. Moreover, an
increased GSH/GSSG ratio increased levels of glutathione
peroxidase 1 (GPx-1), and decreased levels of ROS indicated
that the myopathic hearts were under RS. Zhang et al. [60]
then confirmed the role of RS in cardiomyopathy by demon-
strating that the development of cardiomyopathy is signifi-
cantly attenuated through the inhibition of GPx-1.

The link of the NADPH oxidase (NOX) protein family
has been suggested for several pathologies because it pro-
duces ROS, whose excessive production leads to OS. Thus,
Yu et al. [59] explored the role of NOX4 in cardiac ischemic
injury using mice with cardiac-specific overexpression (CSO)
of NOX4 or dominant negative NOX4. CSO of NOX4 led
to OS, while the dominant negative NOX4 exhibited an
increased GSH/GSSG ratio and decreased NAD(P)(+)/-
NAD(P)H reflective of RS. Moreover, increasing ROS pro-
duction during ischemia did not recover heart function,
whereas limiting levels of reducing equivalent protected
the dominant negative NOX4 hearts from ischemic injury.

Here, a question arises as to whether the RS counter-
part OS could alleviate such complications, in the context
of redox homeostasis distorted towards the RS side. In this
regard, Schulz et al. [61] demonstrated that the glucose
restriction induces catalase activity and ROS formation and
increases OS resistance and survival rates in Caenorhabditis
elegans. In 2011, Ristow and Schmeisser [62] published
a review focused on several such longevity-promoting inter-
ventions that are thought to converge by causing activation
of mitochondrial oxygen consumption which increases
ROS formation.

4. Glutathione Synthesis or
Recuperation Deregulation

Generally, total cellular GSH content and the GSH/GSSG
ratio are controlled by a GSH-negative feedback loop, as
the cells undergo fluctuating OS levels. However, the general
regulation of glutathione synthesis or recuperation will deter-
mine the average around which total GSH and GSH/GSSG
ratio shift. This, among others, will depend on microRNAs,
long noncoding RNAs (lncRNA), and mutations affecting
the core synthesis or recuperation genes and their transcrip-
tion (co)-factors. In light of this review, any of these factors
that increase the average GSH content is of interest. As most
research is focused on the detrimental effects of synthesis
deficiency, there is not a lot of explicit emphasis on changes
that increase the GSH content.

The miRNA miR-96-5p was shown to be upregulated
in hypertrophic cardiomyopathy disease patients compared
to the normal control group [63]. Kinoshita et al. [64]
demonstrated that miR-96-5p increases the levels of GSH
and excitatory amino acid carrier 1 (EAAC1, official name
SLC1A1), the latter being a glutamate and cysteine trans-
porter expressed on mature CNS neurons, contributing in
this way to glutathione synthesis. Their results also showed
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the correlation of the diurnal miR-96-5p rhythm on the
levels of neuronal GSH. Consequentially, the average level
of miR-96-5p could be a factor determining the average
level of GSH [65]. Moreover, to identify the miRNA signa-
ture for myocardial RS, Quiles et al. used the Nrf2 expres-
sion to generate mouse models exhibiting myocardial RS.
These models exhibited increased GSH levels. It was demon-
strated that miR-1983, miR-582-5p, miR-208b-3p, miR-
1927, miR-361-5p, miR-671-5p, miR-491-5p, miR-34c-3p,
and miR-96-5p were significantly upregulated. The miRNA
expression profile seems to be conserved, as sulforaphane-
induced RS in HL-1 cardiomyocytes exhibited increased
levels of miR-208b-3p, miR-1927, miR-671-5p, and miR-
96-5p as well [66].

Glutamate cysteine ligase (GCL) required for GSH bio-
synthesis is a heterodimer made up of glutamate-cysteine
ligase modifier subunit (GCLM) and glutamate-cysteine
ligase catalytic subunit (GCLC) [67]. In ovarian cancer cell
lines that have high expression of GCLC, the expression of
GCLC is predicted to be positively regulated by hsa-miR-
133a and negatively by hsa-miR-140-3p. In this cellular con-
text, GCLC is shown to exert antiapoptotic effects [68–70].
However, GCLC is also known to be tightly regulated
with the negative feedback loop through the Nrf2-Keap1
interplay. There is evidence that Nrf2 expression is directly
regulated by miR153, miR27a, miR142-5p, and miR144 inde-
pendently from the Keap1 interaction [71, 72]. Keap1 mRNA
can be targeted by miR-200a, lowering its expression and
releasing more Nrf2 into the nucleus, whereas Nrf2 nuclear
export is regulated by sirtuin1 (Sirt1) which is targeted by
miR-34a [73]. GCLC is also regulated by LINC00942; this
lncRNA can be targeted with antisense oligonucleotides to
reduce expression of GCLC. It seems to be involved purely
with the transcription of GCLC, and LINC00942 is itself
transcriptionally regulated by Nrf2 [74]. Clinically relevant
variants have been reported for GCLC that affect its binding
with GCLM. GCLC protein of Cys248Ala, Cys249Ala, and
Pro158Leu variants shows similar binding strength with
GCLM as did wild-type GCLC, but they have a large decrease
in catalytic activity. Higher quantities of GCLM can some-
times counterbalance the impact of these less efficiently bind-
ing variants [75, 76]. For GCLM, an upstream variant C588T
has been reported. Using a luciferase reporter gene assay, the
variant was shown to have lower promoter activity in

response to oxidants and consequently lower GSH levels
[77]. GCLC also has a relatively close intergenic LNC
RP11-345L23.1 (LINC01564) at 11 kb that could be relevant
for its expression [74].

Expression of circulating miR-92a, let-7c, miR-145, and
miR-155 was also shown to be significantly reduced in coro-
nary artery disease patients in comparison to the control
group [78]. Overexpression of miR-145 decreases the expres-
sion of the prostate-specific androgen-regulated lncRNA,
Pcgem1 [79]. Pcgem1 regulates expression of glutaminase,
type I gamma-glutamyltransferase, and glutathione reduc-
tase (GSR), all involved in the metabolism of glutamine, a
precursor of glutathione [80]. The overall effect of decreased
Pcgem1 is the decreased production of glutathione.

The combined result of microRNAs, mutations of key
proteins, and to a lesser extent, lncRNA regulation will set a
tissue-specific average level of GSH (Figure 1). When this is
low, it can lead to the diseases caused by OS; on the other
hand, a high average GSH level will cause a continued state
of RS with possible implications for cardiovascular disease.

5. Glutathione in CVS

5.1. Evidence from Animal Studies. OS leads to a number of
diseases, from neurodegenerative disease [81] to CVD and
diabetes type II [82]. Using the model of atherosclerosis in
mice or the apolipoprotein E-deficient mice, Rosenblat et al.
[83] reported that liposomal coated GSH in a dose of
50mg/kg/day for two months showed significant reduction
in serum susceptibility of 2,2′-azobis(2-amidinopropane)
dihydrochloride (AAPH) oxidation, in a correlation with an
increased level of GSH content in peritoneal macrophages,
reduction in lipid peroxides [83], and also a decrease of the
extent of oxidized LDL. Another study by Lin et al. showed
that N-acetyl cysteine (NAC) could increase GSH levels,
and consequently, GSH can reduce significantly cholesterol
levels in the liver and plasma in mice that are on a high satu-
rated fat diet [84]. One explanation is that GSH increases the
expression of cholesterol 7 alpha-hydroxylase, thus resulting
in the increased biosynthesis of bile acids from cholesterol
[84, 85]. Moreover, depressed GSH synthesis will lead to
and/or precede OS and atherogenesis [86]. These results
present a novel pathway of how glutathione in this form
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Figure 1: Overview of key components involved in CV-related reductive stress. Metabolites are shown in blue ovals, proteins in green
rounded rectangles, and RNAs (microRNA or lncRNA) in octagonals. If the latter have a positive impact on GSH content, they are
colored peach; if negative, they are orange. GSH: glutathione; GCL: glutamate cysteine ligase; GSSG: glutathione disulfide; GS: glutathione
synthetase; Keap1: Kelch-like ECH-associated protein 1; Nrf2: nuclear factor erythroid 2-related factor 2; ROS: reactive oxygen species;
GSR: glutathione reductase.
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has antioxidative and antiatherogenic properties and may
lead to remission of atherosclerosis [83, 87].

In the hyperglycemic state [88], the production of nitric
oxide (NO) and a reduction of antioxidant effects are
increased. Using alloxan-induced hyperglycemia into rabbits,
the authors investigated the level of nitrotyrosine (as a stable
product of nitrosative stress) as a marker for NO-dependent
damages. Also, in the same study, the level of GSH was mea-
sured. Hyperglycemic rats show that tissues differ (heart vs.
brain, liver) in neutralizing nitrosative stress, and this process
is placed by different adaptive responses of their GSH redox
cycle [88].

In a previous study [89] using the same experimental
model, the authors analyzed the effect of pioglitazone, an
antidiabetic drug, on the heart. GSH, GSR, GPx, lipid perox-
idation products, ascorbic acid, and other parameters were
measured. The result from this study shows that pioglitazone
increased the GSH system parameters, thus reducing OS, and
the authors proposed that similar action improves athero-
sclerotic problems in diabetic patients.

In the process of atherogenesis, GSH capacity to be syn-
thesized in cells, but especially in macrophages, has an
inverse relationship to the initiation and progression of ath-
erosclerosis in ApoE−/− mice [90]. Results from animal
models (hyperlipidemic mice) show that a crucial event
for the progression of early vascular lesions (atherosclerotic
plaque) is GSH plasma concentrations [83, 90]. These
results are supported by the results showing that bone mar-
row transplants are capable of synthesizing 3x more GSH
than normal and show the reduced progression of lesions
up to 35% [90]. Reduction in Lp(a), apoB, LDL-c, and total
plasma cholesterol has been reported in transhumanized
mice with proatherogenic lipid metabolism after adminis-
tration of ribose cysteine that increases the level of GSH
and GPx activity [91].

Glutathione peroxidase 1 is implicated in DM-associated
atherogenesis [92]. GPx catalyzes the reaction between gluta-
thione and hydrogen peroxide and is the most abundant
(type 1) in all mammalian tissues. In a diabetic apolipopro-
tein E-deficient mouse model [92], decreased levels or lack
of GPx-1 accelerates diabetes-associated atherosclerosis.
Other animal studies [93, 94] showed that GPx-1 when
reduced increases the level of the cell LDL oxidation process.
These results show that GPx-1 which is present in the mito-
chondria and the cytosol is a critical enzyme in the protection
of vessels from OS and atherogenesis.

Altered silencing of protein activity by noncoding RNA
fragments (miRNA) has been proposed to be a mechanism
that may impact CVD [95]. New research [96] shows that
microRNAs are possible regulators of expression of GPx in
obesity-related pathologies. miRNA 494 was found in an
in vivo model to regulate plaque size and the stability of the
lesions and decrease the occurrence of rupture [97]. miRNA
27a and miRNA 223 contribute to cholesterol homeostasis
[98, 99]. Also, Milenkovic et al. [100] reported that plant
polyphenols could modulate the expression miRNAs in
ApoE-deficient mice.

Special attention should be made on exogenous miRNA
as it can be absorbed by our diet and by the gastrointestinal

tract and reaching plasma levels in stable microvesicles
[101] and consequently modulate and influence a number
of antioxidant proteins, including GSH [102].

Results from in vivo studies show that pharmacological
interventions modestly protect against the development of
early fat streak in the aortic sinus [87]. These results coincide
with human intervention studies that show that antioxidant
supplementation does not coincide with any progress in the
attenuation of CVD in mice and humans [103, 104]. Further-
more, interventions on the GSH system by increasing its
endogenous levels show a promising strategy to enhance its
antiatherogenic effects [105–108]. Changes in the GSH con-
tent in macrophages also affect NFκB and other proinflam-
matory cytokines that are responsible for the stimulation
adhesion molecules in endothelial cells and recruitment of
monocytes or macrophages in arterial lesions [109, 110].
These effects are strengthened by the notion that increasing
and decreasing levels of antioxidants of the GSH system in
macrophages are sufficient to impact the already established
atherosclerotic process [108].

5.2. Evidence from Human Studies. There are numerous
results from both animal (Table 1) and human (Table 2)
studies showing beneficial effects of GSH on CVS [111,
112]. Depletion of GSH increases predisposition to OS and
leads to the occurrence of many diseases, including CVD.
Several studies reported that patients with heart disease and
diabetes have a lower level of plasma GSH [113, 114].

One of the first retrospective population-based case-
control studies that evaluated the level of GSH in patients
with CVD was conducted in the mid-90s in Japan. In the
Hisayama study, Shimizu et al. [113] examined the level of
total GSH in plasma and red blood cells of 134 patients with
stroke and myocardial infarction. Results show that the
increased level of GSH leads to decreased values of systolic
and diastolic pressures and that the increased level of GSH
is also followed by a decreased incidence of diabetes. Further-
more, the same authors reported that patients with CVD
have a lower level of GSH compared with control subjects
with no previous history of CVD [113]. Similar results were
obtained in another study, where decreased levels of GSH
and enzymes involved in GSH synthesis were measured in
patients with type 2 diabetes mellitus (T2DM). In contrary,
the level of GSSG and transforming growth factor beta
(TGF-β) was significantly higher in diabetic patients com-
pared with healthy controls. In this study, the authors dem-
onstrated that the increased level of proinflammatory
cytokines (e.g., TGF-β) decreases expression of enzymes
involved in GSH synthesis, such as GS and GCL, and thus
affect GSH decrease faster than it could be synthesized [115].

Chaves et al. [116] in order to assess the role of OS in
hypertension measured the levels of GSH and GSSG in
mononuclear cells of 38 control subjects and 35 patients with
nontreated hypertension. Parameters of OS were measured
in both groups, at the beginning of a study and three months
after the administration of different antihypertensive thera-
pies to individuals with hypertension. Results show that the
level of GSH was decreased in hypertensive patients while
the level of GSSG was increased compared with control
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subjects. On the other hand, three months of antihyperten-
sive therapy decreased the level of OS and GSSG and
increased the level of GSH in hypertensive patients [116].
Similar results were obtained in an observational study by
Redon et al. [117] where the level of GSH was decreased
while the level of GSSG was increased in mononuclear cells
of 66 hypertensive patients compared with 16 control sub-
jects without hypertension. Authors pointed out the impor-
tance of OS in the onset of hypertension and further
development of the CVD [116, 117]. Also, Robaczewska
et al. [118] suggested that the level of GSH and enzymes
involved in the synthesis of GSH is disturbed in old people
with diagnosed hypertension. Rybka et al. [119] went a step
further and investigated the effect of different types of antihy-
pertensive drugs on the level of GSH and enzymes involved
in the synthesis of GSH in old people. The study was con-
ducted on 18 patients diagnosed as hypertensive who were
on antihypertensive therapy and 15 healthy controls. Mea-
surement of the level of GSH, the activity of GSH, and other
values of all antioxidant enzymes was higher in hypertensive
patients on antihypertensive therapy compared with healthy
subjects, and this hint that antihypertensive therapy has pos-
itive effects on the antioxidant system in elderly people [119].

Damy et al. [120] evaluated results of the level of GSH in
76 patients who had some form of cardiac surgery (heart
transplantation, coronary artery bypass grafting, ventricular
assist device implantation, and aortic valve replacement). In
this study, the level of GSH was measured during surgery in
right atrial appendages and blood. The authors noticed that
the lower level of GSH was in patients with coronary artery
disease and that this decrease in the GSH level was consistent
with the severity of left ventricular dysfunction [120]. Addi-
tionally, in comparison with healthy controls, the level of

GSH was 21% and 40% decreased in patients with asymp-
tomatic and symptomatic CVD, respectively. From these
results, the authors concluded that decreases in the level of
GSH are closely linked to cardiac abnormalities in patients
with CVD. Furthermore, since these results show that the
level of GSH was also decreased in patients with still unde-
tected CVD, authors suggested that a blood test for measur-
ing the level of GSH should be used as a new biomarker for
detection of asymptomatic patients with CVD [120].

During cardiac procedures, increased OS could lead to
myocardial infarction (MI). Glutathione S-transferase (GST)
polymorphism is identified as one of the factors that could
lead to an increased incidence of MI during cardiac surgery.
To investigate the association between GST polymorphism
andMI, Kovacs et al. [121] conducted a study on 758 patients
that had cardiac surgery. After measuring levels of troponin 1
(T1) and myocardial-based creatine kinase (CKMB), two
groups of patients were formed. The control group consisted
of 78 patients, with no signs of MI and with double values of
T1 and CKMB after surgery, while the second group con-
sisted of 54 patients, with signs of MI after cardiac surgery
and with five times higher values of T1 and CKMB. Both
groups of patients underwent genetic testing for the presence
of GST polymorphism (GST P1, alleles A, B, and C). Results
show that the presence of BB allele was higher in the control
group of the patient without MI. On the other hand, allele AC
was detected in a group of patients with MI. Authors sug-
gested that the presence of allele B may have a protective role
in the development of MI, while the presence of alleles A and
C was associated with increased risk for MI [121].

Glutathione peroxidase has an important role in OS.
Decreased activity of GPx-1 increases risks for stroke and cor-
onary heart disease [122, 123]. The level of erythrocyte GPx-1,

Table 1: Evidence from animal studies.

Model Species Treatment Effects Ref

ApoE−/− Mice
Liposomal coated GSH

50mg/kg/day for 2 months
Reduction of AAPH oxidation and lipid

peroxides and oxidation of LDL
[83]

ApoE−/− Mice OTC 500mg/kg/day for 6 weeks
Increased level of GSH, reduction of
cellular OS, and oxidation of LDL

[87]

ApoE−/− Mice
GSH is depleted in the atheroma-prone

aortic arch
[86]

ApoE−/−/GCLM−/− Mice Reduced level of GSH; atherogenesis [90]

High saturated fat diet Mice
N-Acetyl cysteine,
oral for 4 weeks

Increased level of GSH; reduced cholesterol
level in plasma and the liver

[84]

Transgenic human lipoprotein(a) Mice
Ribose-cysteine

0.16 g/kg/day for 8 weeks
Increased level of GSH and GPx activity;

antiatherogenic effect
[91]

Endothelial cells Rat
Pretreatment with H2O2 24 h
and Zn supplementation

Increased expression of GCS and synthesis
of GSH

[106]

Macrophage cells Murine Homocysteine 50 μM
Reduced level of GSH; increased OS and

GCS activity
[105]

Alloxan-induced hyperglycemia Rabbit
Different GSH redox cycles in different

tissues (heart, brain, and liver)
[88]

Alloxan-induced hyperglycemia Rabbit Pioglitazone Increased GSH system parameters [89]

AAPH: 2,2-azobis(2-amidinopropane) dihydrochloride; ApoE−/−: apolipoprotein E-deficient mice; ApoE−/−/GCLM−/−: mice doubly deficient in apolipoprotein
E and γ-glutamylcysteine synthetase; BSO: buthionine sulfoximine; DEM: diethyl maleate; GCS: γ-glutamyl cysteine synthetase; GSH: glutathione; GPx:
glutathione peroxidase; H2O2: hydrogen peroxide; OS: oxidative stress; OTC: L-2-oxo-4-thiazolidin carboxylate (which supplies cysteine residues); Zn: zinc
(in form ZnSO4).
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in a study of 83 patients who died from some form of
CVD or had a myocardial infarction and 553 control sub-
jects without any CVD, was lower in patients with CVD
compared with control subjects [123]. These results show
that GPx-1 is inversely associated with CVD and also that
GPx-1 is important for maintenance of a normal level of
GSH. Authors predicted that measuring the level of erythro-
cyte GPx-1 could be used as prognostic value and that
increasing the level of GPx-1 could have a beneficial effect
on CVS [123].

Investigation of connection between GPx-1 polymor-
phism and development of atherosclerosis in 184 Japanese
patients with the T2DM show that GPx-1 is the most impor-
tant enzyme, with the protective role in the development of
endothelial dysfunction and atherosclerosis in diabetes. In
this study, patients were divided into two groups, depending
on the presence of GPx-1 genotype (Pro/Pro: n = 151; Pro/-
Leu: n = 33), and intima-media thickness (IMT) of carotid
arteries was measured. Results show higher values of IMT
in the Pro/Leu group compared with values of IMTmeasured

Table 2: Evidence from human studies.

Group Condition Treatment Effects Ref

CVD Stroke/MI Decreased level of GSH [113]

CVD MI after cardiac surgery
GST polymorphism; presence

of allele AC
[121]

CVD
MI/death from some

form of CVD
Decreased level of erythrocyte GPx-1 [123]

CVD
Heart transplantation/coronary
artery bypass grafting/ aortic

valve replacement
Decreased level of GSH [120]

CVD Cardiac catheterization
Ach (50mg/min) with
GSH (50mg/min) or
saline (50mg/min)

Vasodilatory effects on coronary
arteries and increased blood flow

[112]

Diabetes/CVD
Type 2 diabetes mellitus/some

form of CVD
Increased values of IMT in Pro/Leu

GPx-1 genotype
[94]

Diabetes/CVD Diabetes/coronary heart disease
Decreased level of GSH; increased

level of GSSG
[124]

Diabetes Type 2 diabetes mellitus
Decreased levels of GSH and enzymes
involved in GSH synthesis; increased

level of GSSG and TGF-β
[115]

Diabetes Type 2 diabetes mellitus
NAC in a dose 1200mg/day

for 1 month

Increased levels of GSH and
GSH :GSSG ratio; decreased levels

of VCAM-1 and GSSG
[125]

Diabetes Type 2 diabetes mellitus
Oral NAC (600mg/2x

daily/2 weeks) and oral NAC
(1200mg/2x daily/2 weeks)

Unchanged levels of GSH and
GSH/GSSG ratio

[126]

Hypertension Elderly people with hypertension
Disturbed level of GSH and enzymes
involved in the synthesis of GSH

[118]

Hypertension Elderly people with hypertension Antihypertensive drugs Increased level of GSH and GSR [119]

Hypertension Hypertension
Decreased level of GSH; increased

level of GSSG
[117]

Hypertension Nontreated hypertension
Different antihypertensive
therapies for 3 months

Decreased level of OS and GSSG;
increased level of GSH

[116]

Metabolic disorder Metabolic syndrome

3 weeks with oral NAC
(200mg/day), oral GSH

(450mg/day), or sublingual
GSH (450mg/day)

Increased levels of GSH and
GSH/GSSG ratio in sublingual GSH

[129]

Control Healthy adults
Oral GSH in a dose 500mg
twice a day for 4 weeks

Unchanged markers of OS [128]

Control Healthy adults
Oral GSH; low dose (250mg/day

for 6 months) or high dose
(1000mg/day for 6 months)

High-dose group: increased level of GSH
in lymphocytes, erythrocytes, and plasma;
low-dose group: increased level of GSH

in erythrocytes

[111]

Control Healthy adults Orobuccal GSH Increased level of GSH [130]

GSH: glutathione; NAC: N-acetyl cysteine; OS: oxidative stress; VCAM-1: vascular cell adhesion protein 1; GSSG: glutathione disulfide; IMT: intima-media
thickness; GPx: glutathione peroxidase; TGF-β: transforming growth factor beta; MI: myocardial infarction; Ach: acetylcholine.
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in the Pro/Pro group of subjects. Since increased IMT values
are positively related with the onset of atherosclerosis,
authors concluded that incidence of CVD was higher in a
group of patients with GPx-1 Pro/Leu genotype, which is also
consistent with obtained values of IMT measurement [94].

Gene expression for biosynthesis of glutamate-
ammonia ligase depends on single nucleotide polymorphism
(SNP) rs10911021. SNP rs10911021 is also associated with
coronary heart disease (CHD) in diabetic patients. In a study
with 425 patients with CHD, where 275 of them were dia-
betic, a direct association between SNP rs10911021 and dia-
betes was found among CHD patients. The level of GSH
was lower, while the GSSG level was higher in patients com-
pared with controls. These results suggest that the presence
of SNP rs10911021 may affect the risk for an increase of
CHD in diabetes by promoting OS [124].

De Mattia et al. [125] in a randomized, double-blind
cross-over study with 15 diabetic patients tested the hypoth-
esis that the level of vascular cell adhesion protein 1 (VCAM-
1), which is increased in atherosclerosis, could be decreased
by administration of antioxidant agents. Patients received
oral NAC in a dose of 1200mg per day or placebo for one
month, and the results show that administration of NAC
increased levels of GSH as well as the ratio GSH :GSSG, while
reduced levels of VCAM-1 and GSSG. The decrease of endo-
thelial adhesion molecules after NAC treatment could pre-
vent vascular damage in patients with diabetes [125].

In an open-label pilot study, Szkudlinska et al. [126]
tested their hypothesis that oral administration of NAC
decreases markers of OS, increases levels of GSH, and thus
improves β-cell function in patients with diabetes. For 30
days, 13 subjects with T2DM were on NAC treatment. Dur-
ing the first two weeks, subjects were treated with oral NAC
in a dose 600mg, twice a day, and for the last two weeks twice
a day with a double dose of oral NAC (1200mg). Markers of
OS, GSH, and GSH/GSSG were measured after two and four
weeks of NAC supplementation. At the end of study, authors
concluded that oral administration of NAC had no effect in
patients with T2DM and that levels of GSH and GSH/GSSG
remain unchanged [126].

Most of the studies where attention was on the effects
of oral administration of GSH show that the level of GSH
remains the same in cells, especially in red blood cells
[127]. Effect of oral GSH on markers of OS (GSH, GSSG,
and GSH :GSSG) was tested in 40 healthy adults. After four
weeks of oral administration of GSH (500mg twice a day),
no change in markers of OS was observed [128]. In con-
trary, in a 6-month placebo-controlled, randomized, double-
blinded trial effects of different doses (low dose of GSH
(250mg/day) or high dose of GSH (1000 mg/day)) of oral
administration of GSH on the level of GSH in lymphocytes,
erythrocytes, and plasma show that the level of GSH was
increased in lymphocytes, erythrocytes, and plasma in the
high-dose group of patients, while in the low-dose group of
patients, increases were detected in erythrocyte counts only.
Furthermore, results from the same study show that the
increased level of GSH was only observed during administra-
tion of oral GSH supplementation, and after one month with-
out treatment, the level of GSH returned to normal [111].

Oral administration of GSH may not be the best solution
since it was shown that intestinal and hepatic GGT have the
ability to metabolize GSH and thus decrease the level of
administered GSH [129]. To evaluate the level of GSH in
blood, Buonocore et al. [130] analyzed effects of pure GSH
in the form of an orobuccal tablet with a fast-slow release
on 15 healthy volunteers and concluded that the increased
level of GSH in blood is probably a result of GSH absorption
through mouth mucosa. In a randomized crossover study
performed by Schmitt et al. [129], authors compared the level
of GSH and other markers of OS in the blood of 20 subjects
with metabolic syndrome after administration of different
forms of GSH (oral and sublingual) and NAC. For three
weeks, randomly selected subjects received oral or sublingual
GSH in a 450mg dose or a NAC in a 200mg dose. The exper-
iment was repeated two more times, with two weeks without
treatment before the next administration of GSH or NAC.
Results show that administration of sublingual GSH com-
pared to oral GSH leads to an increase in the level of GSH
and the GSH/GSSG ratio. Also, increased levels of GSH and
GSH/GSSG were detected comparing the effects of sublingual
GSH with NAC. Since overproduction of ROS is involved in
the development of metabolic syndrome, authors concluded
that administration of the sublingual form of GSH could
be a possible treatment for decreasing OS and preventing
the occurrence of metabolic syndrome [129]. Another study
on human subjects investigated the effect of intracoronary
infusion of GSH to patients admitted to the hospital for
chest pain and which were planned for cardiac catheteriza-
tion. All 26 patients were injected with acetylcholine (Ach)
(50mg/min) into the left coronary artery. After 15 minutes,
14 patients received in the same manner GSH (50mg/min
for 6 min), while the remaining 12 patients were treated with
the same dose of saline. Authors noticed that a combination
of Ach and GSH has vasodilatory effects on coronary arteries
and increases blood flow but does not affect blood pressure.
On the other hand, no effect was noticed in patients that
received a combination of Ach and saline. Authors con-
cluded that GSH has positive effects on CVS, increases dilata-
tion of human arteries, and suggest that these positive effects
could be mediated via activation of NO synthase or guanylate
cyclase [112].

6. Concluding Remarks

Glutathione plays an important etiological role in the
development of numerous diseases, such as cardiometa-
bolic disease and CVD [6–9]. To avoid negative health con-
sequences, the redox homeostasis has to be preserved, with
glutathione as one of the key etiological factors in these pro-
cesses. Despite many available literature data, the role of glu-
tathione, in both normal and pathological conditions, such as
CVD, still remains unclear. The literature data discussed in
this review that are related to the effects of glutathione, the
most abundant antioxidant in the heart, in CVS, suggests that
glutathione has an important role in cell redox homeostatic
mechanisms that have been shifted towards OS or RS. Further
studies should focus on the understanding of the molecular
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mechanisms underlying the effects of glutathione in physio-
logical conditions as well as in pathological conditions.
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