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Renal cell carcinoma (RCC) is the most common type of renal cancer, characterized by the
dysregulation of metabolic pathways. RCC is the second highest cause of death among
patients with urologic cancers and those with cancer cell metastases have a 5-years
survival rate of only 10–15%. Thus, reliable prognostic biomarkers are essential tools to
predict RCC patient outcomes. This study identified differentially expressed genes (DEGs)
in the gene expression omnibus (GEO) database that are associated with pre-and post-
metastases in clear cell renal cell carcinoma (ccRCC) patients and intersected these with
metabolism-related genes in the Kyoto encyclopedia of genes and genomes (KEGG)
database to identify metabolism-related DEGs (DEMGs). GOplot and ggplot packages for
gene ontology (GO) and KEGG pathway enrichment analysis of DEMGs with log
(foldchange) (logFC) were used to identify metabolic pathways associated with DEMG.
Upregulated risk genes and downregulated protective genes among the DEMGs and
seven independent metabolic genes, RRM2, MTHFD2, AGXT2, ALDH6A1, GLDC,
HOGA1, and ETNK2, were found using univariate and multivariate Cox regression
analysis, intersection, and Lasso-Cox regression analysis to establish a metabolic risk
score signature (MRSS). Kaplan-Meier survival curve of Overall Survival (OS) showed that
the low-risk group had a significantly better prognosis than the high-risk group in both the
training cohort (p < 0.001; HR = 2.73, 95% CI = 1.97–3.79) and the validation cohort (p =
0.001; HR = 2.84, 95% CI = 1.50–5.38). The nomogram combined with multiple clinical
information and MRSS was more effective at predicting patient outcomes than a single
independent prognostic factor. The impact of metabolism on ccRCC was also assessed,
and seven metabolism-related genes were established and validated as biomarkers to
predict patient outcomes effectively.
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1 INTRODUCTION

As the third most lethal tumor of the urinary system after prostate cancer and bladder cancer, renal
cell carcinoma (RCC) is getting more attention (Global Burden of Disease Cancer et al., 2022). There
are almost 430,000 new RCC patients worldwide each year, of whom approximately 180,000 will die
of this disease (Sung et al., 2021). The prevalence and mortality of RCC continue to rise, posing a
severe threat to human health (Owens, 2016; Turajlic et al., 2018; Elias et al., 2021).
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RCC is a general term for a class of diseases divided into
different pathological subtypes based on histological and
morphological differences. The most common RCC subtype,
clear cell renal cell carcinoma (ccRCC), accounts for
approximately 75% of cases, followed by papillary renal cell
carcinoma (pRCC), accounting for 18.5% of cases. Other rare
subtypes of RCC include renal chromophobe carcinoma and
renal collecting duct carcinoma (Ricketts et al., 2018). Recent
studies have demonstrated metabolic abnormalities in a large
proportion of RCC cases (Linehan et al., 2019; Bobulescu et al.,
2021; Qi et al., 2021).

As imaging diagnostic technology and treatment methods
continue to develop, it becomes easier to detect tumors early
and initiate timely treatment, improving the survival rate of RCC
patients. As a result, the proportion of patients with advanced
RCC has declined from 30 to 17% (Strizova et al., 2019; Schulz
et al., 2021; Tariq et al., 2022). While many small-molecule
targeted drugs with immune checkpoint inhibitors have been
marketed and put into use, side effects and drug resistance limit
their application. In addition, a large proportion of patients
receiving immune checkpoint inhibitor therapy have a similar
prognosis as those receiving targeted agents. Notably, the
prognosis of metastatic RCC patients is still poor, with the 5-
years survival rate remaining at 10–15%. Thus, there is an urgent
need to find reliable biomarkers to predict RCC patient outcomes
(Kabaria et al., 2016; Reed et al., 2019; Lee et al., 2021a; Bedke
et al., 2021; Doppalapudi et al., 2021; Ince and Eisen, 2021).

Metabolism is the most fundamental biological process of
organism self-renewal. Tumor cells have different metabolic
processes than normal cells because they derive most of their
energy from glycolysis while normal cells obtain energy through
oxidative phosphorylation under normoxic conditions (Fang
et al., 2021; Huang et al., 2021; Morrissey et al., 2021; Xing
et al., 2021). Using ccRCC as an example, studies have shown that
loss of VHL gene function or VHL gene loss on the 3P
chromosome exists in more than 90% of hereditary and a
large proportion of sporadic ccRCC (Jonasch et al., 2021).
This weakens the degradation of targeted HIF1/2 transcription
factors, resulting in the accumulation of HIF1/2 transcription
factors under normoxic conditions, putting cells in pseudo-
hypoxic situations that lead to the remodeling of metabolic
processes and upregulation of various growth factors
(Bacigalupa and Rathmell, 2020). Metabolic remodeling of the
tumor causes metabolic abnormalities at the original location (Li
et al., 2014). In addition, tumor cells use exosomes and cytokines
to alter cell metabolism in other body regions, weakening the
immune response and enabling tumor metastasis (Morrissey
et al., 2021).

Since abnormal cell metabolism is an essential marker for
tumorigenesis and progression, it was hypothesized that
metabolism-related genes could predict RCC patient outcomes
(Wettersten et al., 2017). Many studies have assessed the
relationship between metabolic markers and outcomes
associated with the ccRCC subtype (Hakimi et al., 2016; Wu
et al., 2020; Zhang et al., 2021). In contrast, few have explored the
relationship between metabolic prognostic markers and other
significant RCC subtypes. This study investigated the correlation

between the metabolic machinery and the prognosis of ccRCC
patients using the Gene Expression Omnibus (GEO, https://www.
ncbi.nlm.nih.gov/gds/?term) (Barrett et al., 2013) and the Cancer
Genome Atlas (TCGA, https://www.cancer.gov/tcga) databases.
A metabolic gene-based risk score signature was established to
predict ccRCC patient outcomes effectively. The signature was
further validated using pRCC patient data to reveal potential
associations between the major subtypes of RCC.

2 MATERIALS AND METHODS

2.1 KEGG Metabolism-Related Genes
Download
The KEGG database was searched using Homo sapiens as the
species to identify genes that play a role in metabolic regulation.
The number of metabolic pathways was obtained, and metabolic-
related pathway-related genes were downloaded using the R
package, KEGGREST (Therneau and Grambsch, 2000) and
tidyverse (Wickham et al., 2019). All genes in the pathway
were collected for further research (Supplementary Table S1).

2.2 GEO Genes Obtained
Gene expression data was downloaded from the GSE66272
dataset and divided into two subsets, GSE66270 (M0) and
GSE66271 (M1), based on whether the tumor had
metastasized. DEG screening was performed using the limma
package (Ritchie et al., 2015) with the screening conditions set as:
| log2FC | > 2 and adj. p-value <0.05. Visualization was performed
using the ggplot2 package (Wickham, 2016) for the volcano plot.
DEGs in the dataset were collected for further study.

2.3 Intersecting Genes by Venn Diagram
The DEGs were divided into the M0 and M1 groups based on the
subset in which the genes were located and further subdivided
into those with upregulated or downregulated expression.
Upregulated DEGs in the M0 and M1 datasets were
intersected, and the same action was taken for downregulated
DEGs to obtain differentially expressed genes expressed before
and after tumor metastasis. The upregulated and downregulated
DEGs were each intersected with metabolism-related genes to
obtain metabolism-related DEGs (MRGs) in tumors.
Visualization was performed using Venny 2.1 (https://
bioinfogp.cnb.csic.es/tools/venny/index.html).

2.4 Gene Ontology and Kyoto Encyclopedia
of Genes and Genomes Pathway
Enrichment Analysis and Protein-Protein
Interaction Network Construction
MRGs’ GO and KEGG enrichment analysis was performed using
the R package clusterprofiler (Wu et al., 2021), org. Hs.eg.db
(Carlson, 2019) and GOplot (Walter et al., 2015) to assess
biological processes and pathways in which genes play a role.
Enrichment results were filtered by setting adj. p-value < 0.05 as
condition, visualized by ggplot2. Protein functions can impact the
function and expression of other proteins. Thus, protein-protein
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interaction (PPI) data were acquired using the STRING database.
The filtering condition was set to the minimum required
interaction score: highest confidence (0.900). Cytoscape3.8.0
was used to visualize the PPIs.

2.5 Identification of Metabolically Relevant
Prognostic Genes in the TCGA-KIRCCohort
RNAseq data in the level 3 HTSeq-FPKM format was
downloaded from the ccRCC project (KIRC) in TCGA. The
RNAseq data were converted into the resulting TPM format
data, and Log2 (Exp+1) transformation and standardization
processing were performed. After excluding abnormal data,
univariate Cox regression analysis was performed using the
survival package (Therneau, 2022).

The hazard ratio (HR) for selected genes from the univariate
Cox regression analysis was visualized using the ggplot2 package
with a p-value <0.05. The upregulated risk genes and
downregulated protective genes were intersected with DEG
Corresponding trends in change using the Venny2.1 tool for
further analysis. A total of 23 differentially expressed metabolism
genes (DEMGs) were selected.While an HR > 1 indicated that the
gene may be a risk gene and be associated with a poor prognosis,
an HR < 1 indicated that the genemay have a protective effect and
be associated with a good prognosis.

Overall survival (OS) was defined as the time from the
beginning of a random assignment to death for any reason
(the last follow-up time was for patients lost to follow-up and
the end of follow-up was for patients still alive when the study
ended). OS is considered the most efficient endpoint in oncology
clinical trials and is the preferred endpoint when patient survival
can be adequately assessed. Disease-free survival (DFS) was
defined as the time between the start of randomization and
disease recurrence or death (for any reason). Progression-free
interval (PFI) was defined as the time from the randomization
date of primary treatment to disease recurrence. To increase the
prediction accuracy, KM survival curves were plotted by Cox
regression for DEMGs. The OS, DSS, and PFI of the DEMGs were
analyzed, and the genes with a Cox regression p-value <0.05 were
considered metabolism-related prognostic genes.

The Delong test and plotted receiver operating characteristic
(ROC) curves were performed to validate the accuracy of the KM
curves selected to predict the OS of ccRCC patients and
determine whether the selected genes had potential as ccRCC
biomarkers.

2.6 Establishment of aMetabolic Risk Score
Signature (MRSS) for Prognosis
To select potential genes that are reliably associated with ccRCC
prognosis, the glmnet package and survival package was used to
fit the Least Absolute Shrinkage and Selection Operator (LASSO)
regression model on 16 DEMGs. The study subjected parameter
selection to a 10-fold cross-validation, with partial likelihood
biases meeting the minimum criteria.

Subsequently, a multivariate Cox regression analysis was
performed to obtain the regression coefficients of independent

prognostic factors. The DEMGs with significant OS, DFS, and PFI
survival curve differences were identified by combining
multivariate Cox regression coefficients (β-Values), the MRSS
model was built, and the formula was defined as follows (Exp
represents the gene expression level and β represents regression
coefficients from the multivariate Cox analysis):

MRSS � ∑
i

ExpGenei*βi

Data processing was performed using the pROC package
(Robin et al., 2011) and the area under the ROC curve (AUC)
was calculated to test the accuracy of models for predicting 1, 3
and 5-years survival. Data were visualized using the ggplot2
package.

2.7 Metabolism Risk Score Signature
Combined With Clinical Information
The TCGA dataset supplied clinical information, including the
predictive prognosis factors. Univariate Cox analysis was
performed to clarify the correlation between MRSS and OS.
Multivariate Cox regression analysis was then used to evaluate
whether the established MRSS could be an independent
predictor. To evaluate the OS of ccRCC patients as
comprehensively as possible, a prognostic nomogram
including age, gender, stage and MRSS was created using
the RMS package (Harrell, 2020) combined with the
survival package. The concordance index (c-index) was used
to evaluate the predictive accuracy of the nomogram.

2.8 Validation of the MRSS
To evaluate whether the model applies to other renal tumors,
considering that they often have similar anatomic and
pathological manifestations to ccRCC, pRCC (TCGA -
KIRP) was selected as a validation dataset (n = 326).

Genes involved in building the MRSS mode were filtered out
of the dataset and. Their expression was normalized; then,
these data were combined with the MRSS calculation formula
to calculate a risk score for each patient in the TCGA-KIRP
cohort. Based on the median risk score, TCGA-KIRP patients
were divided into a high-risk and a low-risk group. KM
survival and ROC curves were plotted to assess differences
in prognosis for the two groups of patients and whether there
was sufficient accuracy in predicting outcomes using
the MRSS.

The 1 -, 3 - and 5-years survival probabilities of TCGA-
KIRP patients were also compared using a nomogram by
combining age, gender, and disease stage. The calibration
curve was plotted to verify the model’s performance, and
the C-index was used to compare the accuracy of traditional
TNM-stage, MRSS, and nomogram prediction.

To assess the prognostic value of the MRSS in ccRCC, the
KM-plotter online analysis website (Lánczky and Győrffy,
2021) and the GEPIA database (Tang et al., 2017) contain
multiple GEO/TCGA/GTEx datasets were used to plot survival
curves. RNA expression of prognostic renal cancer-related
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genes was collected from the GENT2 website (Park et al., 2019)
and visualized. The protein expression of the MRSS-involved
genes was analyzed using the PDC000127 dataset from The
National Cancer Institute’s Clinical Proteomic Tumor
Analysis Consortium (Edwards et al., 2015) (CPTAC,
https://proteomics.cancer.gov/programs/cptac).

2.9 Cell Culture
The 786-O ccRCC cell line was gifted by Prof Dahong Zhang
from Zhejiang Provincial People’s Hospital. The HK-2 human
normal renal tubular epithelial cell line was obtained from the
cell bank of the Chinese Academy of Sciences. The 2 cell lines
were cultured in Dulbecco’s Modified Eagle Medium (Gibco,
United States) supplemented with 10% fetal bovine serum
(Gibco, United States) and 1% penicillin-streptomycin
(Gibco, United States) at 37 °C in an incubator (Thermo,
United States) with 5% CO2 and saturated humidity.

2.10 RNA Extraction and Quantitative
Real-Time Polymerase Chain Reaction
Total RNA of the 786-O and HK-2 cells was extracted using the
Trizol reagent (Ambion, United States) and dissolved in
RNase-free ddH2O (Takara Bio, China) under the
manufacturer’s instructions. Next, the RNA samples were
utilized for generating cDNA using the PrimeScript™ RT
Master Mix Kit (Takara Bio, China). Finally, the cDNA
samples were employed for qRT-PCR with the TB Green®

Premix Ex Taq™ Kit (Takara Bio, China). The amplification
was performed using the CFX96 Real-Time system (BIO-RAD,
United States). The primers of RRM2, MTHFD2, AGXT2,
ALDH6A1, GLDC, HOGA1, ETNK2 and GAPDH were
synthesized by Sangon (Sangon Biotech, China), and the
sequences are listed in Supplementary Table S10. GAPDH
was applied as an internal control, and the relative expression
level of 7 genes was calculated by the 2−ΔΔCT method
(Schmittgen and Livak, 2008). The detailed procedure for
qRT-PCR is given in Supplementary Table S11.

2.11 Statistical Analysis
Data were summarized and transformed using Excel.
Independent prognostic factors were processed using
univariate/multivariate Cox regression analysis. All data
were further processed and visualized using R (v3.6.3), with
a p-value <0.05 considered significant.

3 RESULTS

3.1 Differentially Expressed Gene Analysis
26 samples in the GSE66271 (M1) dataset and 28 in the
GSE66270 (M0) dataset were downloaded, with tumors and
paracancerous tissues accounting for half of each dataset. All
gene expression data were normalized (Figure 1A, 2A) and
filtered with |log2FC > 2| and adj. p-value <0.05. Volcano plots
(Figure 1B, 2B) were used to assess DEG gene expression

FIGURE 1 | GSE66270 (M0) dataset analysis (A) Boxplots show that the median across samples is essentially on a horizontal line, indicating good normalization.
(B) Volcano map; Blue and red dots represent up and downregulated genes that were eligible for screening. The current threshold was |logFC| > 2 with adj. p-value
<0.05 (C) The samples from each group were separated in the PCA plot The ratio of PC1 and PC2 was high, indicating an obvious difference between groups and
meaningful results of subsequent difference analyses should be reliable. (D) Heatmap of significantly differentially expressed genes.
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broadly, and PCA analysis (Figure 1C, 2C) with a heatmap
(Figure 1D, 2D) was used to assess differences in the
expression patterns of tumor and paracancerous tissue
patterns. Under these conditions, 355 upregulated and 554

downregulated genes were collected from the M1 dataset
(Supplementary Table S2), and 630 upregulated and 805
downregulated genes were collected from the M0 dataset
(Supplementary Table S3). Genes differentially expressed

FIGURE 2 |GSE66271 (M1) dataset analysis (A)Boxplots. (B) Volcanomap; Blue and red dots represent up and downregulated genes. The current threshold was
|logFC| >2 with a adj. p-value <0.05 (C) PCA plot indicated an obvious difference between the groups. (D) Heatmap of significantly differentially expressed genes.

FIGURE 3 | Screening DEMGs by intersecting DEGs and MRGs. Venn diagram of DEGs in M0 (A) and M1 (B) datasets and MRGs. GO and KEGG pathway
enrichment analysis and PPI network.
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before and after tumor metastasis were obtained by taking the
intersection of up and downregulated genes in the M0 and M1
datasets, respectively. The up and downregulated DEGs were
then intersected with metabolic genes from the KEGG
database (Supplementary Table S1) to obtain DEMGs
expressed in the tumor before and after metastasis. 17 and
72 up and downregulated DEMGs were obtained
(Supplementary Table S4), respectively. This process was
visualized with a Venn diagram (Figure 3).

GO (Figure 4A) and KEGG pathway enrichment
(Figure 4B) analyses were performed to clarify the DEGs’
potential biological processes and signaling pathways. DEG
expression was determined using the M1 dataset, and the data
(Supplementary Tables S5, S6) were visualized. The plot can
be divided into the inner and outer circles. Each column of

the inner circle corresponds to an entry, and the height is the
relative size of the adj. p-value. The higher the value, the
smaller the p. adjust of the ID. The color of the corresponding
column represents the Z-score value of the entry. “Up” and
“Down” represent the logFC of the molecules corresponding
to the entry as positive and negative.

Protein coding genes undergo transcription and
translation to produce corresponding proteins with
genetically determined functions. In contrast, the
execution of protein function is not isolated, and there is a
mutual connection between individual proteins. The STRING
database collected PPI information from the DEMGs, and the
“highest confidence (0.900)” was set as the required
minimum interaction score. The data were imported into
Cytoscape (v3.8.0) for network visualization. The color of the

FIGURE 4 | Results of GO enrichment (A) and KEGG pathway analyses (B).

FIGURE 5 | PPI network with node degree value with trends. A more considerable degree value of a target represents more association with other targets. Green
represents downregulation and red represents upregulation.
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network node represents whether a gene is up or
downregulated, and the size of the network node correlates
positively with the degree of the node (Figure 5).

3.2 Result of Cox Regression Analysis and
Screened Prognostic Related DEMGs
At a screening conditional p-value <0.05, univariate Cox
regression analysis results showed that 5 up and 29
downregulated DEMGs were associated with patient prognosis,
and gene-disease associations became smaller when the HR
approached 1. High expression of risk genes (HR > 1) was
associated with poor prognosis, whereas high expression of
protective genes (HR < 1) was associated with good prognosis
(Figure 6A). The risk genes that were upregulated and protective
genes that were downregulated in tumors were of particular
interest. By intersection screening, 3 upregulated risk genes
and 19 downregulated protective genes were obtained from
the DEMGs (Figure 6B, C).

To further screen and explore the relationship between the
obtained genes and prognosis, the expression of each gene in

FIGURE 6 | The forest plot shows the results of the univariate Cox regression analysis (A); The up-regulated risk genes (B) and down-regulated protective genes
(C) in DEMGs were screened by taking the intersection.

TABLE 1 | Significance testing for survival analysis.

Group Tendency DSS p-value OS p-value PFI p-value

IL4I1 Up p = 0.143 p = 0.264 p = 0.107
MTHFD2 Up p = 0.001 p = 0.002 p < 0.001
RRM2 Up p = 0.002 p = 0.002 p = 0.002
ACOX2 Down p < 0.001 p = 0.005 p < 0.001
AGXT2 Down p < 0.001 p < 0.001 p < 0.001
ALDH6A1 Down p < 0.001 p < 0.001 p < 0.001
ALDH4A1 Down p = 0.048 p = 0.05 p = 0.245
ADH6 Down p = 0.001 p = 0.002 p = 0.001
AOX1 Down p < 0.001 p < 0.001 p = 0.058
GLDC Down p = 0.001 p = 0.001 p = 0.001
HOGA1 Down p = 0.009 p = 0.002 p = 0.024
RDH12 Down p < 0.001 p = 0.001 p = 0.006
ATP6V0A4 Down p = 0.505 p = 0.694 p = 0.22
DAO Down p < 0.001 p < 0.001 p = 0.009
EPHX2 Down p < 0.001 p < 0.001 p < 0.001
ETNK2 Down p < 0.001 p < 0.001 p = 0.015
HAO2 Down p < 0.001 p < 0.001 p < 0.001
LDHD Down p < 0.001 p < 0.001 p < 0.001
PC Down p = 0.098 p = 0.289 p = 0.123
PCK1 Down p < 0.001 p < 0.001 p < 0.001
PCK2 Down p < 0.001 p < 0.001 p = 0.003
PRODH2 Down p = 0.054 p = 0.054 p = 0.272
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TCGA-KIRC patients was assessed, duplicates were excluded,
and the gene expression levels were divided into a high
expression (high) and low expression (low) group according
to the median expression level. The patients’ differential OS,
DSS, and PFI were analyzed by Cox regression to plot the KM
survival curves; Screening resulted in 16 prognostically relevant
DEMGs (Table 1) (Supplementary Figures S1, S2). The
expression of potential biomarkers under different survival
outcomes was explored in the TCGA-KIRC cohort. High
expression of risk genes and low expression of protective
genes correspond with worse prognostic outcomes
(Figure 7A). pRCC is the second most prevalent phenotype
among RCC, and similar results were found in the TCGA-KIRP
cohort (Figure 7B).

Delong’s test was used to test the prediction accuracy of
independent DEMGs, and the results were visualized with the
pROC package. The area under the ROC curve range (AUC)
ranged from 0.5 to 1. The closer the AUC is to 1, the higher the
detection accuracy. Conversely, an AUC equal to 0.5 suggests low
accuracy of detection. The selected DEMGs all had high accuracy
and could predict ccRCC outcomes (Figure 8).

Lasso Cox regression analysis was performed to test
whether the screened DEMGs could serve as a prognostic
biomarker for ccRCC (Figures 9A,B). The model achieves
the best prediction when 7 is chosen as the penalty coefficient
(Figure 9C) (Supplementary Tables S7, S8). We also
performed multivariate Cox regression analysis on the 7
metabolism genes, which were still able to enter the

equation as a prognostic predictor (Supplementary Table
S9). The corresponding regression coefficients of 7
metabolic genes, MTHFD2, RRM2, AGXT2, ALDH6A1,
GLDC, HOGA1, and ETNK2 were 0.075, 0.323, - 0.057, -
0.350, - 0.138, - 0.018 and -0.006, respectively (Figure 9D).
The formula of the established MRSS was as follows:

MRSS � ExpMTHFD2p0.075 + ExpRRM2p0.323

+ ExpAGXT2p − 0.057 + ExpALDH6A1p − 0.350

+ ExpGLDCp − 0.138 + ExpHOGA1p − 0.018

+ ExpETNK2p − 0.006

3.3 The Value of MRSS in Predicting Clinical
Characteristics
Based on the MRSS formula, the risk score of each patient in the
TCGA-KIRC cohort was collected, and the patients were
subsequently divided into high-risk and low-risk groups based
on the median score. Results from the KM survival curve for the
prognosis of patients in the high-risk group performed worse
than those in the low-risk group (Figure 10A). ROC curves were
plotted to evaluate the ability of the established models to predict
patient outcomes at 1, 3, and 5 years and the AUC values were
0.716, 0.681, and 0.691, respectively, indicating that the
established models were able to predict patient outcomes
(Figure 10B).

FIGURE 7 | Clinical outcome correlation analysis of the DEMGs. Boxplots showed that DEMG expression differed significantly between patients with different
clinical outcomes. Compared with normal individuals, patients in the TCGA-KIRC cohort (A) and TCGA-KIRP (B) whose clinical outcome was survival had upregulated
risk gene expression and downregulated protective gene expression. This trend was more pronounced in patients with a clinical outcome of death.
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Univariate and multivariate Cox regression analyses
determined whether the established MRSS had prognostic
significance. The univariate Cox regression analysis showed
that risk scores, TNM stage, cancer stage, and serum calcium
concentration may be reliable prognostic indicators.
Furthermore, the risk score was the only significant
predictor in the multivariate Cox regression analysis.
These results suggested that the established MRSS model
could be a valuable biomarker for predicting ccRCC
outcomes (Table 2).

The nomogram is a standard clinical tool to evaluate patient
prognosis, combining different prognostic factors and variables
to comprehensively assess the probability of clinical events within
a certain period. Compared with traditional disease staging, the
user-friendly nomogram brings higher accuracy and is more
accessible to understand prognoses by digitizing various
factors and simple calculations (Balachandran et al., 2015).
Several factors showed prognostic correlation, so a nomogram
containing a variety of pathological factors was established,
including the MRSS model. The nomogram (Figure 10C)
showed that many prognostic factors were digitally assigned,
and ccRCC patient outcomes could be reliably predicted by
calculating the score.

The consistency index (c-index) refers to the proportion of all
patient pairs whose predicted results are consistent with actual
observations. The c-index was used to evaluate the predictive
ability of various characteristics. The nomogram c-index that
combined multiple clinicopathological factors was the highest at
0.771 and slightly weaker at MRSS, with a c-index of 0.769
compared with 0.755 in the conventional TNM stage c-index
(Table 3). As a result, the model outperformed conventional
TNM stage prediction but was weaker than the comprehensive
nomogram. Consistent with the c-index, the nomogram that
incorporated multiple clinicopathological factors performed
best in the DCA curve (Figures 10D–F).

3.4 Validation of Other Kidney Cancer
Species
According to the WHO classification of urinary cancers,
ccRCC, characterized by malignant tumors composed of
clear or eosinophilic cytoplasmic cells, is the largest
pathological renal cancer subtype, accounting for 60–85% of
cases. The second most common RCC is pRCC, which
originates from tubular epithelial cells and accounts for
18.5% of reported RCC cases.

FIGURE 8 | ROC curves for the 3 upregulated risk genes (A) and the 19 downregulated protective genes (B)–(E). Construction and Evaluation of the MRSS
Prognostic Value.
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The model in this study was validated using representative
pRCC and clinical data from the TCGA-KIRP cohort. A risk
score was calculated for each patient in the TCGA-KIRP cohort
using the previously established MRSS formula. The cohort was
divided into high- and low-risk groups based on the median
patient risk score.

Survival analysis showed that the low-risk group had a
better prognosis than the high-risk group (Figure 11A) (p =
0.001; HR = 2.84, 95% CI = 1.50–5.38). Time-dependent ROC
analysis curves showed good agreement between the actual OS
of the model built-in patients in predicting OS (Figure 11B,
0.828, 0.743, and 0.707 in 1, 3, and 5 years, respectively). A
predictive nomogram was developed using standard
clinical features and MRSS for predicting the likelihood of
1, 3, and 5-years prognostic survival in patients with pRCC
(Figure 11C). The calibration curve showed that the predictive
effect of the model on patient survival outcomes fitted well
with the actual observation (Figure 11D). C-index and
DCA curve results consistently revealed that the
predictive effect of MRSS on the prognostic survival
probability of pRCC was better than that of conventional
TNM staging, and the nomogram had the best predictive
effect (Figures 11E–G).

To further investigate the prognostic value of the established
model, GENT2 (Figure 12A) and CPTAC (Figure 12B)
databases were used to examine the expression of each gene in
the MRSS model at the transcription and protein levels; we also
tested transcript levels in cultured cells (Figure 12C). Consistent
with the TCGA database, the respective genes composing MRSS
maintained similar transcription and protein expression. The
GEPIA database (Supplementary Figure S3A) and Kaplan-
Meier plot (Supplementary Figure S3B) results showed that
the expression of each gene in MRSS was highly correlated with
the prognosis of ccRCC patients, and the respective independent
genes could serve as potential biomarkers.

4 DISCUSSION

RCC, also known as renal adenocarcinoma, is a highly malignant
tumor in the urinary system that accounts for 80–90% of
malignant renal tumors. This disease has a high degree of
heterogeneity, because it is associated with mild symptoms in
its early stages and is thus usually diagnosed and treated once it
has advanced (Hsieh et al., 2017; Motzer et al., 2022). Kidney
cancer is the third most common cancer of the genitourinary

FIGURE 9 | MRSS built using ccRCC patient data (A) Optimization of the model parameters by 10-fold cross-validation. (B) The risk score, survival status, and
heatmap of 7 DEMGs in the TCGA-KIRC patient cohorts (C) Lasso coefficient profiles of the 16 DEMGs from the survival analysis and (D) coefficient value barplot of each
model gene.

Frontiers in Genetics | www.frontiersin.org July 2022 | Volume 13 | Article 90206410

Huang et al. Prognostic Biomarkers for Renal Carcinoma

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


FIGURE 10 | Establishment of MRSS and assessment of its predictive value using nomograms (A)OS survival curves were significantly different between the high-
and low-risk groups in the TCGA-KIRC dataset. (B) Time-dependent ROC curves showed that MRSS predicted patients 1 -, 3 - and 5-years OS with sufficient accuracy
(C) Nomogram for predicting patient outcome in the TCGA-KIRC cohort incorporating multiple clinicopathologic factors. DCA curves to examine the clinical application
of MRSS, nomogram, and independent clinicopathological factors at 1- (D), 3- (E), and 5-years (F).

TABLE 2 | Univariate and multivariate Cox regression analysis of clinicopathological factors associated with OS of ccRCC patients.

Variables Patient N (539) Univariate Analysis Multivariate Analysis

HRa [95% CI] P HR [95% CIb] P

Age Young 250 1
old 289 1.802 [1.315,2.468] <0.001* 0.992 [0.679,1.452] 0.969

Sex male 353 1
female 186 1.075 [0.788,1.465] 0.648

T stage T1 278 1
T2 179 1.515 [0.908,2.526] 0.112 0.341 [0.104,1.120] 0.076
T3 71 3.354 [2.373,4.742] <0.001* 0.488 [0.181,1.316] 0.156
T4 11 10.829 [5.467,21.451] <0.001* 0.519 [0.166,1.620] 0.259

N stage N0 241 1
N1 16 3.565 [1.895,6.705] <0.001* 1.320 [0.579,3.010] 0.510
NX 282 0.818 [0.601,1.114] 0.203 0.773 [0.562,1.063] 0.113

M stage M0 428 1
MX 31 0.828 [0.262,2.615] 0.748 0.495 [0.124,1.967] 0.193
M1 78 4.400 [3.219,6.014] <0.001* 0.417 [0.112,1.555] 0.318

Stage Stage I 272 1
Stage II 59 1.210 [0.652,2.247] 0.546 2.739 [0.715,10.494] 0.142
Stage III 123 2.711 [1.804,4.073] <0.001* 1.888 [0.593,6.013] 0.282
Stage IV 83 6.782 [4.633,9.929] <0.001* 4.894 [0.872,27.448] 0.071

Riskscore 537 2.718 [2.297,3.217] <0.001* 2.663 [1.739,4.079] <0.001*

aHR, hazard ratio; bCI, confidence interval. *p < 0.05.
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system, second only to prostate and bladder cancer, accounting
for 2–3% of malignant tumors in adults (MacLennan et al., 2012).
The incidence and mortality of RCC are rising each year, drawing
worldwide attention (Mokdad et al., 2017).

Past studies have explored the molecular mechanisms of
common RCC subtypes such as ccRCC and pRCC. The
findings suggest that genes associated with kidney cancer,
including VHL, MET, FH, FLCN, TSC1, TSC2, and SDH, are
involved in metabolic pathways linked to oxygen and iron or
nutrient sensing, thus characterizing kidney cancer as a cellular
metabolic disease (Linehan et al., 2010). Indeed, the carcinogenic
process of ccRCC, the primary subtype of RCC, is closely related
to metabolism. A hallmark of ccRCC is metabolic remodeling,
including stabilization of HIF1/2 transcription factors resulting
from VHL mutations, which create pseudohypoxia, increase
glycolysis and angiogenic growth factor secretion, and elevate

expression of proteins, including CCND1, PDK1, LDH, and
GLUT1, that are associated with glucose metabolism
regulation and cell proliferation (Linehan et al., 2010; Linehan
et al., 2019; Xiao et al., 2020).

More patients show no significant prognostic improvement
following applied tumor immunotherapy, suggesting that reliable
biomarkers for predicting treatment outcomes should remain a
significant focus of oncology research efforts (Motzer et al., 2018;
Motzer et al., 2019; Rini et al., 2019; Braun et al., 2021). The
current study aims to establish reliable biomarkers associated
with metabolism to effectively predict the prognostic outcome of
ccRCC patients. The role of metabolism-related genes in the
development and metastasis of ccRCC was used to construct a
prediction model by analyzing and validating it using the TCGA-
KIRP cohort and external datasets. Since the two pathological
subtypes, ccRCC, and pRCC, account for more than 90% of RCC
case reports, they were used to assess the efficacy of the
established prediction model in RCC.

Human-derived genes using metabolic terms were downloaded
from the KEGG database, and the GSE66272 dataset was
downloaded from GEO. Since the GEO dataset has pre- and
post-tumor metastasis subsets, we separated these into the
GSE66270 and GSE66271 datasets to find DEGs. These genes
were intersected to obtain differentially expressed before and after
metastasis. The DEGs were crossed with metabolism-related genes to
obtain DEMGs before and after tumor metastasis. GO and KEGG
pathway enrichment analysis results showed that DEMGs were

TABLE 3 | C-index.

Cancer Species Variables C-Index (95%CI)

KIRC TNM-stage 0.755 (0.729–0.781)
MRSS 0.769 (0.750–0.787)
nomogram 0.771 (0.753–0.790)

KIRP TNM-stage 0.573 (0.530–0.616)
MRSS 0.758 (0.716–0.801)
nomogram 0.842 (0.802–0.881)

FIGURE 11 | The predictive performance of MRSS using the TCGA-KIRP cohort (A) OS survival curves show that the low-risk group has better prognostic
outcomes than the high-risk group. (B) Time-dependent ROC curve analysis of MRSS at 1, 3, and 5 years (C) Nomogram used to predict 1-, 3-, and 5-years survival
probabilities for patients in the TCGA-KIRP cohort. (D) Calibration curves were used to evaluate the fitting effect of the nomogram on the prediction of patient survival
probability at 1, 3, and 5 years with the actual outcomes. DCA curve of the nomogram, MRSS, and pathology-based tumor staging to evaluate the survival
prediction of patients in the TCGA-KIRP cohort at 1(E), 3(F), and 5(G) years.
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FIGURE 12 | RCC biomarker expression at the transcript and protein level (A) 7 independent biomarkers had different transcript expressions in tumor and normal
tissues. (B) 7 independent biomarkers had different protein expression in tumor and normal tissues. (C) 2 risky genes, RRM2 and MTHFD2, significantly increased in
786-O cells compared with HK-2 cells at the transcript level. The remaining 5 protective genes, AGXT2, ALDH6A1, GLDC, HOGA1, and ETNK2, were significantly down-
regulated in 786-O cells compared to HK-2 cells at the transcript level. All results are expressed as mean ± SD, n = 6 per group.
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associated with multiple metabolism-related biological processes and
pathways. The TCGA-KIRC cohort was then selected as the data
cohort to elucidate the correlation between metabolism and ccRCC.
Using univariate Cox regression analysis on the DEMGs, the HRs of
DEMGs for ccRCC were obtained. Of these, upregulated risk genes
and downregulated protective genes were selected to coincide with
tumor progression.

The prognosis-related ROC curves of each gene were plotted
to assess the relationship between prognosis-relevant DEMGs
and the OS, DSS, and PFI by KM patient survival curves. The
prognosis-related DEMGs were selected for further model
construction. MRSS predictive prognosis was developed using
Lasso-Cox regression analysis of the selected genes. These
included the RRM2 gene, which encodes a ribonucleotide
reductase subunit and provides raw materials for DNA
synthesis. Deregulated cell proliferation dramatically increases
DNA replication in cancer cells, increasing the demand for raw
materials needed for DNA synthesis. Studies indicate that RRM2
is involved in cytogenetic material synthesis and promotes the
growth and metastasis of various cancers (Dawany et al., 2011;
Das et al., 2021). In contrast, silencing RRM2 gene expression
induced cell cycle arrest and inhibited cell proliferation (Yang
et al., 2017). Moreover, RRM2 promoted RCC cell acquired
resistance to VEGF tyrosine kinase inhibitors, inhibiting the
effect of PD-1 blocker immunotherapy (Xiong et al., 2021).

MTHFD2 encodes a bifunctional methylenetetrahydrofolate
dehydrogenase/cyclohydrolase, a mitochondrial enzyme that
participates in one-carbon metabolism, and studies indicate
that in RCC, MTHFD2 can remodel metabolism through
RNA methylation. In contrast, knockdown of MTHFD2
expression reduced xenograft tumor growth (Green et al.,
2019). This may be associated with modulation of the
NADPH to NADP ratio in cancer cells, depleting GSH, and
triggering cancer cell apoptosis (Yang et al., 2022). MTHFD2 is
also a metabolic checkpoint linking purine metabolism to
autoimmune responses (Sugiura et al., 2022). It is highly
expressed in various cancers, playing a role in metabolic
remodeling and regulating of the cell cycle in the
mitochondria and nucleus, respectively (Lee et al., 2021b; Liu
et al., 2021; Yao et al., 2021; Ren et al., 2022).

AGXT2 is a multifunctional mitochondrial aminotransferase
with diverse cellular physiological functions predominantly
expressed in kidney cells and hepatocytes. Its substrates are
biomarkers for renal, cardiovascular, and metabolic diseases
(Rodionov et al., 2014; Ye et al., 2021).

ETNK2 is an ethanolamine kinase that has enhanced
expression in gastric, non-small cell lung, and prostate cancers
(Miwa et al., 2021). ETNK2 promotes liver metastasis of gastric
cancer by inhibiting the p53-Bcl2 apoptotic pathway, resulting in
a poor prognosis. Phosphatidylethanolamine synthesis in non-
small cell lung cancer is significantly enhanced by ETNK2,
whereas reduced ETNK2 expression in prostate cancer results
from the loss of TET2 targeted demethylation (Kamdar et al.,
2019; Lesko et al., 2021).

HOGA1 encodes the mitochondrial 4-hydroxy-2-oxoglutarate
aldolase, and mutations cause oxalate accumulation in the kidney
and primary hyperoxaluria type 3 (Ventzke et al., 2017).

GLDC primarily regulates glycine metabolism and is an
essential metabolic enzyme for protein and amino acid
metabolism. GLDC also promotes non-small cell lung cancer
progression by inducing glycolysis with pyrimidine metabolism.
GLDC inhibition impairs pyruvate metabolism in cancer cells,
resulting in loss of their metabolic energy source (Zhang et al.,
2012; Woo et al., 2018). GLDC upregulation induces autophagy
in HCC cells and inhibits liver cancer metastasis. High GLDC
expression in neuroblastoma cells prevents the accumulation of
toxic metabolites. In contrast, GLDC inhibition in glioblastoma
causes an accumulation of glycine and results in reduced cell
viability, indicating that glycine catabolism by GLDC is critical
for proliferation and tumorigenesis (Alptekin et al., 2019;
Abdollahi et al., 2021). However, GLDC was significantly
decreased in ccRCC, while overexpression suppressed the
proliferation and migration of tumor cells (Chen et al., 2020).

Previous studies indicate that the ALDH6A1 gene is related to
the aldehyde dehydrogenase family of proteins, and the
mitochondrial methylmalonate semialdehyde dehydrogenase
encoded by ALDH6A1 functions in the valine and pyrimidine
catabolic pathways. There is an inverse correlation between
ALDH6A1 expression and both RCC progression and patient
outcomes (Perroud et al., 2009). A similar trend was reported
during collecting duct cancer and the progression of liver cancer
(Wach et al., 2019; Shin et al., 2020). Studies have also shown that
ALDH6A1 was positively expressed in breast cancer stem cells, and
gradually decreased during tumor progression (Johansson et al.,
2015; Xu et al., 2021). These results indicate that the same trends
occur in the progression of different cancer types, suggesting that
ALDH6A1 may be involved in tumor initiation and progression.

PRCC is the second most common RCC subtype,
histologically resembling ccRCC in anatomic location and
sharing many similar oncogenic factors (Guimarães-Teixeira
et al., 2021; Tian et al., 2021; Weng et al., 2021). As a result of
possible similarities in anatomical location, causative factors, and
histological type, TCGA-KIRP data was used as a validation
cohort to evaluate the predictive value of MRSS.

Results of the survival analysis were used to divide patients into a
high-risk and low-risk group based on the median risk score
calculated by MRSS. There was a significant difference in the OS
of the two groups of patients, indicating that MRSS may have the
potential to become an effective biomarker for predicting ccRCC and
pRCC outcomes. Furthermore, the ROC curve drawn by Delong’s
test results indicated that the model was in good agreement with the
observed patient prognosis. The nomogram with age, gender,
pathological stage, and TNM stage as covariates showed that the
established model remained a reasonable independent predictor. To
better decipher the power of the model in predicting disease
outcomes, nomograms that combined multiple clinical variables
were developed to score the survival probability of each patient. DCA
curve and c-index results showed that MRSS had a higher predictive
accuracy than traditional TNM staging for this outcome. However,
nomograms that integratedmultiple clinical variables still performed
best. Interestingly, the MRSS constructed as a biomarker could
reliably predict ccRCC and pRCC patient outcomes, indicating
that the model was robust and broadly applicable. These findings
may expand the horizons of RCC treatment.
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In RCC and other carcinoma research, biomarkers for
predicting outcomes have become widely used (Huang et al.,
2016; Mo et al., 2018; Qu et al., 2018; Wei et al., 2019). At the time
of preparation of this manuscript, the existing literature had
established and published studies on metabolic risk models for
ccRCC (Liu et al., 2020; Guo et al., 2021). The number of
metabolic genes associated with prognosis was different from
those shown here due to varying screening criteria. However,
however, the RRM2 and ALDH6A1 genes were included in the
results, indicating that the model was reliable and robust.

This study explored a potential association between metabolism
and ccRCC. The predictive effect of the established biomarkers
based on the sevenmetabolic genes was verified as reliable and stable
for patients with ccRCC and pRCC. The established model could
serve as an independent prognostic biomarker, provide potential
therapeutic targets for the clinical treatment of RCC, including
ccRCC and pRCC, and add a dimension for correlation studies.
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