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Abstract: Background: Early detection of heart failure is the basis for better medical treatment and
prognosis. Over the last decades, both prevalence and incidence rates of heart failure have increased
worldwide, resulting in a significant global public health issue. However, an early diagnosis is
not an easy task because symptoms of heart failure are usually non-specific. Therefore, this study
aims to develop a risk prediction model for incident heart failure through a machine learning-based
predictive model. Although African Americans have a higher risk of incident heart failure among all
populations, few studies have developed a heart failure risk prediction model for African Americans.
Methods: This research implemented the Least Absolute Shrinkage and Selection Operator (LASSO)
logistic regression, support vector machine, random forest, and Extreme Gradient Boosting (XGBoost)
to establish the Jackson Heart Study’s predictive model. In the analysis of real data, missing data are
problematic when building a predictive model. Here, we evaluate predictors’ inclusion with various
missing rates and different missing imputation strategies to discover the optimal analytics. Results:
According to hundreds of models that we examined, the best predictive model was the XGBoost that
included variables with a missing rate of less than 30 percent, and we imputed missing values by
non-parametric random forest imputation. The optimal XGBoost machine demonstrated an Area
Under Curve (AUC) of 0.8409 to predict heart failure for the Jackson Heart Study. Conclusion: This
research identifies variations of diabetes medication as the most crucial risk factor for heart failure
compared to the complete cases approach that failed to discover this phenomenon.

Keywords: heart failure; machine learning; prediction model; LASSO logistic regression; support
vector machine; random forest; XGBoost

1. Introduction

The incidence and prevalence of heart failure have been increasing in recent years,
and this phenomenon has become a serious global public health issue [1]. Research has
estimated that more than 5.8 million people are suffering from heart failure in the United
States, and this is increasing at a rate of at least 550,000 per year, while in the world, more
than 23 million people are suffering from heart failure [2]. Other studies also pointed out
that African Americans have a higher incidence of heart failure than other races [3,4], and
even before the age of 50, the risk of heart failure of African Americans is 20 times that of
whites [4].

Machine learning is equipped with algorithms that improve performance with experi-
ence [5]. A machine learns if its performance at a task improves with experience [6]. In
constructing a model using machine learning techniques, the first step divides the entire
data into two parts: the training data and the testing data. The training data refers to
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the dataset used to train the machine learning hyperparameters. The optimized model
parameters are estimated based on the training datasets. The testing data is independent of
the training data. The testing data will not participate in the training process but will only
be used to evaluate the trained model. To avoid overfitting [7], K-Fold Cross Validation
(CV) is a common strategy. The CV errors based on accuracy, Mean Square Error (MSE),
and F1 Score are adopted [8].

Although it has been indicated that African Americans have a higher risk of incident
heart failure among all populations [3], few studies have developed a risk prediction model
for heart failure in African Americans. Therefore, this study utilized the Jackson Heart
Study (JHS), the most prominent African American research database in the United States,
and machine learning methods to construct comprehensive predictive models for heart
failure. Our large-scale analysis structure aimed to discover missing and yet important
information in such a big-data approach.

Random forest can provide feature importance through decision trees [9]. Breiman
discussed the complete algorithm in 2001 [10], a type of ensemble method that collects
multiple weak classifiers that produce a robust classifier [11]. The Classification and
Regression Tree (CART) is a decision tree for predictive classification and continuous
value [12] that adopts the binary division rule. Each time a division generates two branches,
and the Gini classification method determines which branch is the best. Extreme Gradient
Boosting (XGBoost) is a further extension from GBDT (Gradient Boosted Decision Tree) [13].

After missing data are correctly imputed, four methods, including (1) the Least Ab-
solute Shrinkage and Selection Operator (LASSO) logistic regression, (2) Support Vector
Machine (SVM) [6,7], (3) random forest, and (4) Extreme Gradient Boosting (XGBoost),
would be constructed for a predictive model for heart failure based on the African Ameri-
can population. The inclusion of the four strategies considers the essential aspects of the
analysis concepts. LASSO logistic regression is the conventional statistical approach with a
penalty term λ ∑

p
j=1

∣∣β j
∣∣ that avoids overfitting in regression models. The SVM is a machine

learning tool dealing with classification problems. The SVM classifies subjects according to
the separating hyperplane, which is defined as ωTxi + b = 0, where ωTxi + b ≥ 1, ∀yi = 1
and ωTxi + b ≤ −1, ∀yi = −1. The last two methods are tree-based machine learning.
However, the random forest and XGBoost are based on different mathematical optimiza-
tions. Random forest is an ensemble learning method that constructs a multitude of
decision trees at training time. However, the XGBoost depends on gradient boosting
trees, and the objection function is defined as Obj(t) = ∑T

j=1

[(
Gj
)
wj +

1
2
(

Hj + λ
)
w2

j

]
+ γT,

where Gj = ∑i∈Ij
gi is the sum of the first derivative of the loss function in the jth leaf and

Hj = ∑i∈Ij
hi represents similar calculations for the second derivative.

As a result, we examined 112 scenarios, and Figure 1 displays the analysis plan.
To date, this research had the most extensive models, with seven missing patterns for
quality control, four missing imputation strategies, and four power machine learning
models. We aimed to discover novel indications for heart failure from such a big scale of
analysis models.
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2. Materials and Methods

Following the previous work [14], the JHS initially included 3883 people. After
excluding those who had experienced heart failures and those who were unsure whether
they had heart failures or not at the baseline, 3327 people remained in the study. At the end
of the study, 246 incident heart failure cases were identified. Table 1 shows the descriptive
statistics. Subjects with heart failures accounted for 7.4% of the overall study sample.

Table 1. Descriptive statistics of the study population.

Baseline
Characteristic

Total Population
n = 3327

Non-HF
n = 3081
(92.6%)

HF
n = 246
(7.4%)

Age 54.96 (12.59) 54.24 (12.37) 63.91 (11.98)
BMI 31.82 (7.2) 31.72 (7.18) 33.02 (7.31)

Waist 100.83 (16.03) 100.4 (15.93) 106.9 (16.14)
High School Graduate 2761 (83.26%) 2607 (84.92%) 154 (62.60%)

Gender
Male 1228 (36.91%) 1132 (36.74%) 96 (39.02%)

Female 2099 (63.09%) 1949 (63.26%) 150 (60.98%)
Current Smoker 406 (12.31%) 374 (12.25%) 32 (13.11%)

Hypertension (HTN) 1845 (55.47%) 1644 (53.38%) 201 (81.71%)
Diabetes Mellitus (DM) 710 (21.5%) 593 (19.39%) 117 (47.95%)

Regarding the missing data, variables in the database were classified according to the
missing rates, which were <1%, <3%, <5%, <10%, <20%, <30%, and <40%. The missing
rate was specific to the variable but not the proportion of missing data in the whole dataset.
The column (<40%) means that this dataset contained all variables with missing rates
less than 40%. Therefore, more variables were included in the analyses compared to
other missing rates. Four imputation techniques dealt with the missing values, including
(1) complete cases, (2) simple imputation, (3) the K Nearest-Neighbor (KNN) interpolation
method [15], and (4) random forest imputation. More details of the imputation strategy and
the statistical properties are available in a former article [16]. Besides, the random forest
interpolation method is a machine learning-based imputation of the improved “MissForest”
interpolation method [17].

After missing values were imputed, the next step was to generate dummy variables for
the unordered category variables. This research adopted the Python language with “one-
hot encoding” for categorical variables. We normalized continuous variables according to
Min-Max normalization. The formula is x′ = x−min(x)

max(x)−min(x) . The Min-Max normalization
limited the range of each variable in the dataset to [0, 1]. In this way, each variable had the
same scale, which could improve the predictive performance by avoiding an extremely
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skewed distribution. Finally, we divided the dataset into the training set (70%) and the
testing set (30%). Figure 2 demonstrates the flow chart of the entire data processing.
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Note that subjects with heart failures in this study population accounted for 7.4% of the
overall sample. For machine learning models, this is an imbalance problem that introduces
biases when building the model. We controlled the “class weight” in the LASSO logistic
regression, SVM, and random forest to avoid potential biases. The “class weight” parameter
in this paper is “balanced,” and the formula is: wj =

n
knj

, where “wj” represents the weight
of the jth category of the sample, “n” represents the sample size, “k” represents the number
of categories, and “nj” represents the sample size of the jth category. In the XGBoost,
increasing the weight by adjusting the parameter “scale_pos_weight” could increase the
predictive ability. The “scale_pos_weight” parameter finds the most appropriate value
through K-fold cross-validation, and its range is between 1 and 10.

The logistic regression model is estimated by maximum likelihood [18], but we im-
plemented the Least Absolute Shrinkage and Selection Operator (LASSO)-based model
in this research [19]. The SVM [20] with various kernel functions were considered, in-
cluding the linear kernel, polynomial kernel, and radial basis function kernel. Ten-fold
cross-validation found the most suitable kernel function to establish the optimal SVM to
predict heart failure.

This research’s XGBoost model is based on 10-fold cross-validation to find the best
parameters to establish a heart failure prediction model. The parameters and ranges are
as follows: “scale_pos_weight”: range 1~10. “n_estimators”: initial training 90~150, final
training 500~3500, “max_depth”: range 2~10. “min_child_weight”: range 1~10. “Gamma”:
range 0~5. “Subsample”: range 0.3~1. “colsample_bytree”: range 0.3~1. “reg_lambda”:
range 10−3~102. “reg_alpha”: range 10−3~102. “learning_rate”: range 0.01~0.1. As
there are too many XGBoost parameters, it is time-consuming to train all the parameters
simultaneously. Therefore, our procedure adopted training one set of two sets of parameters
and gradually trained the XGBoost model (Figure 3).
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3. Results

If the analyses excluded missing data, Figure 4 shows the corresponding results, where
the Y-axis is Area Under Curve (AUC), and the X-axis is the proportion of the missing
value of the data. The predictive ability of XGBoost was better than the other three in most
scenarios, and the best AUC was 0.808 when the missing rates of included variables were
less than 3%. The best AUC of random forest was 0.8003 when the missing rates were
less than 3%. The best AUC of SVM was 0.7892 when the missing rates were less than 3%.
The best AUC of LASSO logistic regression was 0.7676 when the missing rates were less
than 3%.
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In summary, the best overall AUC performance occurs when the missing rates of
included variables are less than 3%. When we included more variables in the analysis,
we also excluded more subjects from the analysis due to missing values. As a result, the
AUC decreased.

If the simple interpolation method is adopted, Figure 5 reveals the corresponding
results. Similarly, XGBoost was the best performer, and the highest AUC was 0.8239
when the missing rates were less than 30%. The predictive abilities of random forest and
LASSO logistic regression are very similar. The best AUC of random forest was 0.813, and
LASSO logistic regression demonstrated a value of 0.814. Lastly, the AUC of SVM was 0.79
on average.
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In summary, the best overall AUC performance was when the proportion of missing
values of the included variables was less than 30%. If we further included the variables
whose missing value ratio was less than 40%, the AUC decreased. Therefore, if a follow-up
researcher wants to use a simple interpolation method to establish a prediction model,
the suggestion from the results of this paper is to include variables whose proportion
of missing values is less than 30%. The prediction performance will be relatively good,
of which the best performance was the XGBoost prediction model, which had an AUC
of 0.8239.

If the KNN interpolation method is adopted, Figure 6 shows the corresponding results.
Among all scenarios, XGBoost remained the best performer, and the highest AUC was
0.8369 if the missing rates were less than 30%. Random forest and LASSO logistic revealed
similar performance. The best AUC of random forest was 08136 when the missing rates
were less than 30%, and LASSO logistic regression was 0.8157 when the missing rates were
less than 20%. Finally, the AUC of SVM was 0.79 if the missing rates were less than 30%. In
summary, the best AUC occurs when the missing rates are less than 30%.
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If the random forest interpolation method is adopted, Figure 7 shows the correspond-
ing results. The XGBoost outperformed the other three methods in all analyses, and the
best AUC was 0.8409 when the missing rates were less than 30%. Random forest and
LASSO logic regression have similar predictive abilities. The best AUC of random forest
was 0.8191 when the missing rates were less than 30%, while LASSO logic regression was
0.8166 when the missing rates were less than 20%. Lastly, the AUC of SVM was still about
0.79. In summary, the best AUC occurs when the missing rates are less than 30%.

According to these results, our analysis plan is an excellent example for future studies
in various health outcomes. We conclude that even when variables have a missing rate
as high as 30%, as long as we adopt the random forest imputation before the analysis the
XGBoost provides the best predictive ability.
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4. Conclusions

In this research, the largest African American database in the United States, the JHS,
was comprehensively examined by four different machine learning techniques to establish
a heart failure predictive model. We also considered the impact of different missing rates
and missing data imputation strategies on the predictive ability to discover the best analytic
model. Besides, this work provides a series of guidelines for researchers interested in the
JHS for future studies.

Based on these results, we conclude that (1) the XGBoost has the best performance in
most situations to predict heart failure, especially when we implemented the random forest
interpolation with the missing rates at the category of less than 30%. (2) The predictive
performance using imputed data would be better than the models without imputations.
Even the simplest imputation outperforms the complete cases scenario. (3) When building
a predictive model, including too many variables (missing rates less than 40%) results in
a worse prediction. The results revealed that in the analysis of complete cases, including
variables with a missing rate of 3%, the predictive model performs better. Regarding the
imputed data, it can tolerate up to 30% of the missing rates.

Finally, our work uses the feature importance function in random forest and XGBoost
to discover which variables significantly contribute to predicting heart failures. Feature
importance scores can provide insight and guidance in building the predictive model. We
could use the importance scores to delete variables with the lowest scores and keep the
variables with the highest scores.

Since the XGBoost performs better than random forest, we did not show the results
of random forest. Tables 2–5 display details of the XGBoost. If we excluded missing
data from the analysis, risk factors could not be identified consistently (Table 2). In
contrast, if the analyses incorporated the imputed data, diabetes medication (DMmeds)
was the most crucial feature suggested by the XGBoost results regardless of the imputation
strategy. In Table 2, for data missing <5%, the feature importance of diabetes medication is
0.0492 compared to the age variable with 0.0290. Thus, diabetes medication is almost two
times more important when building the predictive model (0.0492/0.029). DMmeds is a
dichotomous variable. In this research, 15.25% of the population had a value of 1 with at
least one diabetes medication. In total, 84.75% were without diabetes medication. Therefore,
variations of diabetes medication were the most influential risk factor for heart failure.

Table 2. The selected parameters of the final HF prediction model for XGBoost using complete cases (feature importance is
in the parenthesis).

<1% <3% <5% <10% <20% <30% <40%

age
(0.0923)

age
(0.0213)

DMmeds
(0.0492)

DMmeds
(0.0222)

dmMeds
(0.0178)

CVDHx
(0.0267)

frs_chdtenyrrisk
(0.0507)

DMmeds
(0.0647)

RepolarAntLat
(0.0189)

age
(0.0290)

Diabetes
(0.0192)

MIHx
(0.0174)

ascvd_tenyrrisk
(0.0260)

ALDOSTERONE
(0.0367)

Diabetes
(0.0431)

DMmeds
(0.0187)

BP3cat
(0.0270)

CVDHx
(0.0189)

EF
(0.0170)

rrs_tenyrrisk
(0.0220)

eGFRmdrd
(0.0352)

eGFRckdepi
(0.0315)

Diabetes
(0.0180)

HTN
(0.0267)

bpjnc7_3
(0.0187)

HbA1cIFCC
(0.0150)

numbnessEver
(0.0203)

occupation
(0.0331)

MIecg
(0.0305)

CVDHx
(0.0174)

sbp
(0.0237)

CHDHx
(0.0176)

HbA1c
(0.0148)

nutrition3cat
(0.0194)

abi
(0.0317)

RepolarAntLat
(0.0297)

eGFRmdrd
(0.0173)

eGFRckdepi
(0.0233)

eGFRckdepi
(0.0174)

strokeHx
(0.0141)

FEV1PP
(0.0193)

sbp
(0.0297)

antiArythMeds
(0.028)

eGFRckdepi
(0.0173)

CVDHx
(0.0188)

FPG
(0.0170)

Diabetes
(0.0141)

totchol
(0.0186)

calBlkMeds
(0.0292)

RepolarAnt
(0.0272)

statinMeds
(0.0168)

QTcFrid
(0.0187)

age
(0.0170)

visionLossEver
(0.0140)

asthma
(0.0180)

FVC
(0.0289)
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Table 2. Cont.

<1% <3% <5% <10% <20% <30% <40%

statinMeds
(0.0268)

edu3cat
(0.0163)

BPmeds
(0.0184)

sbp
(0.0164)

statinMeds
(0.0129)

BPmeds
(0.0177)

eGFRckdepi
(0.0253)

CVDHx
(0.0262)

CardiacProcHx
(0.0162)

waist
(0.01831)

waist
(0.0160)

frs_chdtenyrrisk
(0.0129)

HTN
(0.0177)

SCrCC
(0.0242)

Note: The above abbreviations are available in Table A1.

Table 3. The selected parameters of the final HF prediction model for XGBoost using simple imputations.

<1% <3% <5% <10% <20% <30% <40%

Diabetes
(0.0455)

DMmeds
(0.0346)

DMmeds
(0.0588)

DMmeds
(0.0233)

DMmeds
(0.0630)

DMmeds
(0.0210)

DMmeds
(0.0337)

DMmeds
(0.0439)

age
(0.0273)

Diabetes
(0.0327)

age
(0.0221)

age
(0.0383)

age
(0.0196)

DialysisEver
(0.0252)

age
(0.0408)

CVDHx
(0.0265)

DialysisEver
(0.0243)

eGFRckdepi
(0.0185)

Diabetes
(0.0297)

Diabetes
(0.0158)

CVDHx
(0.0207)

HTN
(0.0336)

eGFRckdepi
(0.0263)

MIAntLat
(0.0191)

Diabetes
(0.0183)

DialysisEver
(0.0190)

BPmeds
(0.0150)

age
(0.0151)

CVDHx
(0.0277)

HTN
(0.0260)

age
(0.0189)

FEV1
(0.0163)

ConductionDefect
(0.0183)

CVDHx
(0.0147)

Afib
(0.0142)

HSgrad
(0.0273)

HSgrad
(0.0246)

HSgrad
(0.0157)

CVDHx
(0.0158)

sex
(0.0180)

age
(0.0145)

MIHx
(0.0136)

BPmeds
(0.0272)

Diabetes
(0.0237)

Afib
(0.0148)

FVC
(0.0156)

occupation
(0.0159)

ConductionDefect
(0.0141)

eGFRckdepi
(0.0129)

eGFRckdepi
(0.0238)

eGFRmdrd
(0.0225)

edu3cat
(0.0138)

CHDHx
(0.0152)

MIant
(0.0143)

FEV1
(0.0141)

SystLVdia
(0.0128)

RepolarAntLat
(0.0229)

MIHx
(0.0212)

CVDHx
(0.0135)

eGFRmdrd
(0.0151)

CVDHx
(0.0129)

eGFRckdepi
(0.0139)

EF
(0.0117)

ecgHR
(0.0206)

sbp
(0.0191)

EF
(0.0130)

HbA1cIFCC
(0.0148)

idealHealthSMK
(0.0125)

CHDHx
(0.0126)

ConductionDefect
(0.0115)

Table 4. The selected parameters of the final HF prediction model for XGBoost using KNN imputations.

<1% <3% <5% <10% <20% <30% <40%

Diabetes
(0.0435)

age
(0.0320)

DMmeds
(0.0848)

DMmeds
(0.0261)

DMmeds
(0.0443)

DMmeds
(0.0145)

DMmeds
(0.0318)

DMmeds
(0.0409)

DMmeds
(0.0266)

age
(0.0302)

age
(0.0177)

age
(0.0420)

age
(0.0142)

DialysisEver
(0.0294)

age
(0.0386)

MIHx
(0.0234)

MIant
(0.0245)

CVDHx
(0.0175)

CVDHx
(0.0321)

eGFRmdrd
(0.0138)

age
(0.0234)

HTN
(0.0299)

Diabetes
(0.0213)

CVDHx
(0.0241)

eGFRckdepi
(0.0173)

EF
(0.0188)

Diabetes
(0.0130)

Diabetes
(0.0145)

CVDHx
(0.0277)

CVDHx
(0.0209)

Diabetes
(0.0236)

Diabetes
(0.0167)

eGFRckdepi
(0.0182)

SCrCC
(0.0122)

Afib
(0.0143)

BPmeds
(0.0274)

eGFRckdepi
(0.0205)

HSgrad
(0.0206)

eGFRmdrd
(0.0153)

FEV1
(0.0179)

eGFRckdepi
(0.0118)

CVDHx
(0.0128)

HSgrad
(0.0264)

HSgrad
(0.0176)

ConductionDefect
(0.0201)

FEV1
(0.0153)

ConductionDefect
(0.0174)

statinMeds
(0.0115)

eGFRckdepi
(0.0126)

eGFRckdepi
(0.0222)

HTN
(0.0172)

antiArythMedsSelf
(0.0152)

CHDHx
(0.0152)

MIHx
(0.0172)

CVDHx
(0.0112)

MIHx
(0.0120)

RepolarAntLat
(0.0209)

antiArythMeds
(0.0171)

CHDHx
(0.1431)

edu3cat
(0.0142)

MajorScarAnt
(0.0172)

everSmoker
(0.0111)

calBlkMeds
(0.0116)

ecgHR
(0.0196)

eGFRmdrd
(0.0164)

AntiArythMeds
(0.1374)

DialysisEver
(0.0139)

eGFRmdrd
(0.0170)

rrs_tenyrrisk
(0.0108)

FEV1
(0.0113)
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Table 5. The selected parameters of the final HF prediction model for XGBoost using MissForest imputations.

<1% <3% <5% <10% <20% <30% <40%

Diabetes
(0.0455)

antiArythMeds
(0.0339)

dmMeds
(0.0340)

DMmeds
(0.0263)

DMmeds
(0.0443)

DMmeds
(0.0163)

DMmeds
(0.0290)

DMmeds
(0.0363)

DMmeds
(0.0332)

age
(0.0279)

age
(0.0251)

DialysisEver
(0.0323)

Diabetes
(0.0161)

ascvd_tenyrrisk
(0.0255)

age
(0.0344)

age
(0.0301)

Diabetes
(0.0271)

Diabetes
(0.0234)

MIAntLat
(0.0241)

rrs_tenyrrisk
(0.0148)

age
(0.0218)

HTN
(0.0336)

eGFRckdepi
(0.0241)

eGFRckdepi
(0.0269)

CVDHx
(0.0218)

Diabetes
(0.0208)

age
(0.0132)

eGFRckdepi
(0.0210)

CVDHx
(0.0318)

HTN
(0.0232)

CVDHx
(0.0235)

CHDHx
(0.0194)

age
(0.0194)

ascvd_tenyrrisk
(0.0130)

rrs_tenyrrisk
(0.0191)

HSgrad
(0.0274)

SCrIDMS
(0.0220)

eGFRmdrd
(0.0212)

eGFRmdrd
(0.0192)

Afib
(0.0184)

MIant
(0.0127)

frs_cvdtenyrrisk
(0.0179)

eGFRckdepi
(0.0243)

MIHx
(0.0207)

HSgrad
(0.0198)

eGFRckdepi
(0.0162)

calBlkMeds
(0.0154)

eGFRckdepi
(0.0125)

MIHx
(0.0162)

CHDHx
(0.0241)

CVDHx
(0.0198)

SCrIDMS
(0.0187)

HSgrad
(0.0162)

CVDHx
(0.0152)

CVDHx
(0.0118)

LEPTIN
(0.0147)

RepolarAntLat
(0.0238)

eGFRmdrd
(0.0197)

BPMeds
(0.0170)

FEV1
(0.0149)

eGFRckdepi
(0.0149)

FEV1
(0.0106)

calBlkMeds
(0.0135)

QTcBaz
(0.0221)

Diabetes
(0.0195)

HbA1c
(0.0158)

SCrIDMS
(0.0148)

EF
(0.0140)

CHDHx
(0.0104)

CardiacProcHx
(0.0127)

Furthermore, most of the findings revealed that heart failure was related to age, sex,
diabetes, kidney function, and past heart disease history. Previous studies also pointed out
that these variables are risk factors for heart failure [21–23], suggesting that our prediction
models established by machine learning could discover crucial risk factors. In particular,
a former study indicated significant predictors, including age, sex, body mass index,
diabetes mellitus, systolic blood pressure, creatinine, serum albumin or total protein,
LV hypertrophy, and coronary artery disease [24]. Compared to the simple AHEAD
scoring system [25], the other AHEAD-U scoring system proposed by Chen et al. [26], and
the most recent HANBAH score by Guo et al. [27], the most crucial feature importance
variables determined by the XGBoost are similar to these variables used in the scoring
system. However, variations of diabetes medications have never been reported previously.
Therefore, the XGBoost discovered a novel influential risk factor and other similar factors
that match previous studies.

In summary, the results suggest using variables with missing rates of less than 30% and
adopting the Random Forest imputations when building a heart failure predictive model
using the JHS database. Finally, we recommend that the XGBoost build the risk model,
and the highest predictive accuracy is 0.8409. Most importantly, this research identifies
variations of diabetes medication as the most crucial risk factor for heart failure, regardless
of the missing data imputation strategy, since the variable of diabetes medications has the
highest feater importance. In contrast, the commonly adopted approach that only uses
complete cases failed to provide such novel findings.

The variable “diabetes medication” indicates that patients had diabetes, which is
different from the conventional understanding of diabetic treatment [28]. The superficial
understanding suggests that patients receiving diabetic treatment had a worse prognosis
than those without treatment. It can be misunderstood that diabetes medication is the most
crucial risk factor for heart failure. In this research, we interpret the variable “diabetes
medication” as variations of diabetes medication since this variable has multiple levels,
and we treated it as a dummy variable in the analysis.

In previous research [29,30], the authors used five methods to predict heart failure,
including logistic regression, decision tree, random forest, simple Bayesian classifier, and
support vector machine (SVM). The source of the data is from the Cleveland database. The
number of samples included was 303, and the number of variables included was 14. For
the data’s missing values, the study used the K-Nearest Neighbor (KNN) interpolation
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method. In the final predictive results, the study adopted accuracy to conclude that the
five methods have good prediction accuracy (87.36%, 93.19%, 89.14%, 87.27%, 92.30%), and
the decision tree performed best.

Later, the random survival forest [31] built a predictive model. The database was
Action to Control Cardiovascular Risk in Diabetes (ACCORD). There were 8756 samples
included. After excluding variables with a missing value greater than 10%, the number of
variables included was 109. Regarding the missing values, this research imputed missing
data using random forest interpolation. The C-index evaluated the final predictive results,
and the random survival forest yielded a value of 0.74.

Another study implemented three methods, including logistic regression, SVM,
and Ada-Boost, to predict heart failure [32]. They came from the Geisinger Clinic Elec-
tronic Health Record system (Electronic Health Record). The sample size was 4489, and
the number of variables was 179. For the missing values, this study used the miss-
ing indicator method. For model optimization and selection of parameters, this study
adopted a 10-fold CV. The study used the Area Under the Curve (AUC) to compare
the final predictive results. The Receiver Operating Characteristic (ROC) curve is an ex-
cellent diagnostic tool [33]. The Youden Index is also a popular choice [34] defined as
argmax(true positive rate + true negative rate− 1, 1). The higher Area Under the Curve

(AUC) [35] also indicates a better prediction [36]. Previous research suggested the interpre-
tations of different cutoffs of AUC higher than 0.5 [37]. The logistic regression results were
similar to the Ada-Boost with an AUC of 0.77, and the SVM was relatively unsatisfactory
with an AUC of 0.62.

In future development, one could further discuss the following aspects. The problem
of imbalanced data explains the weight of a small number of samples to be adjusted. There
are many methods to deal with this issue, such as undersampling, which reduces multiple
types of samples, or oversampling (SMOTE [38]) to generate more small samples, such that
a ratio of normal and diseased samples of 1:1.

Other methods can build predictive models, such as the artificial neural network,
naive Bayes, or other ensemble algorithms. These areas are essential topics in the future.
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Appendix A

Table A1. Coding book for variables included in this research.

Variable Name Variable Types Variable Description

1. Demographics
age Continuous Age in Years
sex Categorical Participant Sex
alc Categorical Alcohol drinking in the past 12 months (Y/N)

alcw Continuous Average number of drinks per week
currentSmoker Categorical Self-Reported Cigarette Smoking Status

everSmoker Categorical Self-Reported History of Cigarette Smoking
2. Anthropometrics

weight Continuous Weight (kg)
height Continuous Height (cm)
BMI Continuous Body Mass Index (kg/m2)
waist Continuous Waist Circumference (cm)
neck Continuous Neck Circumference (cm)
bsa Continuous Calculated Body Surface Area (m2)

obesity3cat Categorical

Ideal Health: BMI < 25 (Normal)
Intermediate Health: 25 ≤ BMI < 30

(Overweight)
Poor Health: BMI ≥ 30 (Obese)

3. Medications
medAcct Categorical Medication Accountability

BPmedsSelf Categorical Self-Reported Blood Pressure Medication Status
(Y/N)

BPmeds Categorical Blood Pressure Medication Status (Y/N)
DMmedsIns Categorical Diabetic Insulin Medication Status (Y/N)
DMmedType Categorical Diabetes Medication Type

dmMedsSelf Categorical Defined as Yes (Treated), if the participant
reported being on diabetic

DMmeds Categorical Diabetic Medication Status (Y/N)

statinMedsSelf Categorical Defined as Yes (Treated), if the participant
reported being on statin medication.

statinMeds Categorical Statin Medication Status (Y/N)
hrtMedsSelfEver Categorical Self Reported HRT Medication Status (Y/N)

hrtMedsSelf Categorical Self Reported Current HRT Medication Status
(Y/N)

hrtMeds Categorical HRT Medication Status (Y/N)
betaBlkMeds Categorical Beta Blocker Medication Status (Y/N)

calBlkMeds Categorical Calcium Channel Blocker Medication Status
(Y/N)

diureticMeds Categorical Diuretic Medication Status (Y/N)

antiArythMedsSelf Categorical Defined as Yes (Treated), if the participant
reported being on antiarrhythmic medication.

antiArythMeds Categorical Antiarrhythmic Medication Status (Y/N)
4. Hypertension

sbp Continuous Systolic Blood Pressure (mmHg)
dbp Continuous Diastolic Blood Pressure (mmHg)

BPjnc7 Categorical JNC 7 BP Classification
HTN Categorical Hypertension Status
ABI Continuous Ankle Brachial Index
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Table A1. Cont.

Variable Name Variable Types Variable Description

5. Diabetes
FPG Continuous Fasting Plasma Glucose Level (mg/dL)

FPG3cat Categorical Fasting Plasma Glucose Categorization
HbA1c Continuous NGSP Hemoglobin HbA1c (%)

HbA1c3cat Categorical NGSP Hemoglobin HbA1c (%) Categorization

HbA1cIFCC Continuous IFCC Hemoglobin HbA1c in SI units
(mmol/mol)

HbA1cIFCC3cat Categorical IFCC Hemoglobin HbA1c in SI units
(mmol/mol) Categorization

fastingInsulin Continuous Fasting Insulin (Plasma IU/mL)
HOMA-B Continuous HOMA-B
HOMA-IR Continuous HOMA-IR
Diabetes Categorical Diabetes Status (ADA 2010)
diab3cat Categorical Diabetes Categorization

6. Lipids
ldl Continuous Fasting LDL Cholesterol Level (mg/dL)

ldl5cat Categorical Fasting LDL Categorization
hdl Continuous Fasting HDL Cholesterol Level (mg/dL)

hdl3cat Categorical Fasting HDL Categorization
trigs Continuous Fasting Triglyceride Level (mg/dL)

trigs4cat Categorical Fasting Triglyceride Categorization
totChol Continuous Fasting Total Cholesterol (mg/dL)

7. Biomarkers

hsCRP Continuous High Sensitivity C-Reactive Protein
(Serum mg/dL)

endothelin Continuous Endothelin-1
(Serum pg/mL)

sCort Continuous Concentration of Cortisol Levels
(Serum µg/dL)

reninRIA Continuous Renin Activity RIA (Plasma ng/mL/hr)
reninIRMA Continuous Renin Mass IRMA (Plasma pg/mL)
aldosterone Continuous “Concentration of Aldosterone

leptin Continuous (Serum ng/dL)”
adiponectin Continuous Concentration of Leptin (Serum ng/mL)

8. Renal
SCrCC Continuous CC Calibrated Serum Creatinine (mg/dL)

SCrIDMS Continuous IDMS Tracebale Serum Creatinine (mg/dL)
eGFRmdrd Continuous eGFR MDRD

eGFRckdepi Continuous eGFR CKD-Epi
CreatinineU24hr Continuous 24-hour urine creatinine (g/24hr)
CreatinineUSpot Continuous Random spot urine creatinine (mg/dL)
AlbuminUSpot Continuous Random spot urine albumin (mg/dL)
AlbuminU24hr Continuous 24-hour urine albumin (mg/24hr)

DialysisEver Categorical Self-reported dialysis
DialysisDuration Continuous Self-reported duration on dialysis (years)

CKDHx Categorical Chronic Kidney Disease History
9. Respiratory

asthma Categorical Physician-Diagnosed Asthma
maneuvers Continuous Successful Spirometry Maneuvers

FVC Continuous Forced Vital Capacity (L)
FEV1 Continuous Forced Expiratory Volume in 1 s (L)
FEV6 Continuous Forced Expiratory Volume in 6 s (L)

FEV1PP Continuous FEV1 % Predicted
FVCPP Continuous FVC % Predicted
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Table A1. Cont.

Variable Name Variable Types Variable Description

10. Echocardiogram
LVMecho Continuous Left Ventricular Mass (g) from Echo
LVMindex Continuous Left Ventricular Mass Indexed by Height(m)ˆ2.7

LVH Categorical Left Ventricular Hypertrophy
EF Continuous Ejection Fraction

EF3cat Categorical Ejection Fraction Categorization
DiastLVdia Continuous Diastolic LV Diameter (mm)
SystLVdia Continuous Systolic LV Diameter (mm)

FS Categorical Fractional Shortening
RWT Continuous Relative Wall Thickness

11.
Electrocardiogram

ConductionDefect Categorical Conduction Defect
MajorScarAnt Categorical Anterior QnQs Major Scar
MinorScarAnt Categorical Anterior QnQs Minor Scar

RepolarAnt Categorical Anterior Repolarization Abnormality
MIAnt Categorical Anterior ECG defined MI

MajorScarPost Categorical Posterior QnQs Major Scar
MinorScarPost Categorical Posterior QnQs Minor Scar

RepolarPost Categorical Posterior Repolarization Abnormality
MIPost Categorical Posterior ECG defined MI

MajorScarAntLat Categorical Anterolateral QnQs Major Scar
MinorScarAntLat Categorical Anterolateral QnQs Minor Scar

RepolarAntLat Categorical Anterolateral Repolarization Abnormality
MIAntLat Categorical Anterolateral ECG defined MI

MIecg Categorical ECG determined MI
ecgHR Continuous Heart Rate (bpm)

Afib Categorical Atrial Fibrillation
Aflutter Categorical Atrial Flutter

QRS Continuous QRS Interval (msec)
QT Continuous QT Interval (msec)

QTcFram Continuous Framingham Corrected QT Interval (msec)
QTcBaz Continuous Bazett Corrected QT Interval (msec)
QTcHod Continuous Hodge Corrected QT Interval (msec)
QTcFrid Continuous Fridericia Corrected QT Interval (msec)

CV Continuous Cornell Voltage (microvolts)
LVHcv Categorical Cornell Voltage Criteria

12. Stroke History
speechLossEver Categorical History of Speech Loss
visionLossEver Categorical History of Sudden Loss of Vision

doubleVisionEver Categorical History of Double Vision
numbnessEver Categorical History of Numbness
paralysisEver Categorical History of Paralysis
dizzynessEver Categorical History of Dizziness

strokeHx Categorical History of Stroke
13. CVD History

MIHx Categorical Self-Reported History of MI
CardiacProcHx Categorical Self-Reported history of Cardiac Procedures

CHDHx Categorical Coronary Heart Disease Status/History
CarotidAngioHx Categorical Self-Reported history of Carotid Angioplasty

CVDHx Categorical Cardiovascular Disease History
14. Healthcare

Access
Insured Categorical Visit 1 Health Insurance Status
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Table A1. Cont.

Variable Name Variable Types Variable Description

15. Psychosocial
Income Categorical Income Status

occupation Categorical Occupational Status
edu3cat Categorical Education Attainment Categorization
HSgrad Categorical High School Graduate

dailyDiscr Continuous Everyday Discrimination Experiences
lifetimeDiscrm Continuous Major Life Events Discrimination
discrmBurden Continuous Discrimination Burden

depression Continuous Total Depressive Symptoms Score
weeklyStress Continuous Total Weekly Stress Score

perceivedStress Continuous Total Global Stress Score
16. Life’s Simple 7

SMK3cat Categorical AHA Smoking Categorization
idealHealthSMK Categorical Indicator for Ideal Health via Smoking Status

BMI3cat Categorical AHA BMI Categorization
idealHealthBMI Categorical Indicator for Ideal Health via BMI

PA3cat Categorical AHA Physical Activity Categorization
idealHealthPA Categorical Indicator for Ideal Health via Physical Activity
nutrition3cat Categorical AHA Nutrition Categorization

idealHealthNutrition Categorical Indicator for Ideal Health via Nutrition
totChol3cat Categorical AHA Total Cholesterol Categorization

idealHealthChol Categorical Indicator for Ideal Health via Total Cholesterol
BP3cat Categorical AHA BP Categorization

idealHealthBP Categorical Indicator for Ideal Health via BP
glucose3cat Categorical AHA Glucose Categorization

idealHealthDM Categorical Indicator for Ideal Health via Glucose
17. Nutrition

vitaminD2 Continuous 25(OH) Vitamin D2 (ng/mL)
vitaminD3 Continuous 25(OH) Vitamin D3 (ng/mL)

vitaminD3epimer Continuous ep-25(OH) Vitamin D3 (ng/mL)
darkgrnVeg Continuous Dark-green Vegetables

eggs Continuous Eggs
fish Continuous Fish

18. Physical Activity
sportIndex Continuous Sport Index

hyIndex Continuous Home/Yard Index
activeIndex Continuous Active Living Index

19. Risk Scores
frs_chdtenyrrisk Continuous Framingham Risk Score-Coronary Heart Disease
frs_cvdtenyrrisk Continuous Framingham Risk Score-Cardiovascular Disease

frs_atpiii_tenyrrisk Continuous Framingham Risk Score-Adult Treatment Panel
(III)—Coronary Heart Disease

rrs_tenryrisk Continuous Reynolds Risk Score

ascvd_tenyrrisk Continuous
American College of Cardiology—American

Heart Association—Atherosclerotic
Cardiovascular Disease
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