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Background and purpose: Futile recanalization occurs when the endovascular

thrombectomy (EVT) is a technical success but fails to achieve a favorable

outcome. This study aimed to use machine learning (ML) algorithms to

develop a pre-EVT model and a post-EVT model to predict the risk of futile

recanalization and to provide meaningful insights to assess the prognostic

factors associated with futile recanalization.

Methods: Consecutive acute ischemic stroke patients with large vessel

occlusion (LVO) undergoing EVT at the National Advanced Stroke Center

of Nanjing First Hospital (China) between April 2017 and May 2021 were

analyzed. The baseline characteristics and peri-interventional characteristics

were assessed using four ML algorithms. The predictive performance was

evaluated by the area under curve (AUC) of receiver operating characteristic

and calibration curve. In addition, the SHapley Additive exPlanations (SHAP)

approach and partial dependence plot were introduced to understand the

relative importance and the influence of a single feature.

Results: A total of 312 patients were included in this study. Of the four

ML models that include baseline characteristics, the “Early” XGBoost had a

better performance {AUC, 0.790 [95% confidence intervals (CI), 0.677–0.903];

Brier, 0.191}. Subsequent inclusion of peri-interventional characteristics into

the “Early” XGBoost showed that the “Late” XGBoost performed better [AUC,

0.910 (95% CI, 0.837–0.984); Brier, 0.123]. NIHSS after 24h, age, groin to

recanalization, and the number of passages were the critical prognostic factors

associated with futile recanalization, and the SHAP approach shows that NIHSS

after 24h ranks first in relative importance.

Conclusions: The “Early” XGBoost and the “Late” XGBoost allowed us

to predict futile recanalization before and after EVT accurately. Our study
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suggests that including peri-interventional characteristics may lead to

superior predictive performance compared to a model based on baseline

characteristics only. In addition, NIHSS after 24h was the most important

prognostic factor for futile recanalization.

KEYWORDS

futile recanalization, machine learning, large vessel occlusion, endovascular

thrombectomy, predictive model

Introduction

Endovascular thrombectomy (EVT) is standard-of-care in

patients with large vessel occlusion (LVO) stroke of the anterior

circulation according to the latest international guidelines (1).

Its benefit and safety have been repeatedly underlined in a

series of randomized clinical trials (RCTs) (2). The therapeutic

target of EVT is to achieve recanalization to improve long-term

functional outcomes. However, futile recanalization considered

a poor long-term function outcome despite adequate vessel

recanalization, remains a common phenomenon. Previous

studies showed that the incidence of futile recanalization

among LVO patients ranged from 47 to 67%, and these futile

recanalization cases may occur due to poor microvascular

compromise, poor collateral circulation, technology difference,

and cerebral blood flow regulation (3–7). Patients with futile

recanalization undergoing EVT may suffer reperfusion injury

and consume resources and time, so early prediction of futile

recanalization is critical.

Many predictors associated with futile recanalization in

LVO patients undergoing EVT have been reported. Baseline

clinical characteristics such as advanced age, female gender, and

severe neurological deficits, have been reported to be correlated

with futile recanalization (3, 8). Neuroimaging characteristics

such as baseline Alberta Stroke Program Early Computed

Tomography Score (ASPECTS), poor collateral circulation,

and final infarction volume, have also been suggested as

important factors (3–5). There are also peri-interventional

characteristics such as general anesthesia and delayed puncture

to reperfusion (9). However, all the predictors are based on

traditional statistical algorithms and even if all those predictors

are taken into account, it should be emphasized that they

are not efficient in perfectly predicting futile recanalization in

LVO patients. Therefore, to improve individual stroke care,

it is crucial to establish a reliable and data-driven model

that integrates information from various sources (clinical,

neuroimaging, peri-interventional characteristics) to accurately

predict futile recanalization in LVO patients and differentiate

between them based on whether they will or will not benefit

from EVT. Unfortunately, no reliable models are designed

to predict futile recanalization in stroke patients subjected

to EVT.

Machine learning (ML) can analyze kinds of characteristics

and leverage the integrated predictive value of these

characteristics. Moreover, the ML approach can detect

non-linear relationships in clinical data and uncover new

patterns from existing information. Indeed, ML algorithms have

already been proven to help predict functional outcomes after

endovascular treatment in ischemic stroke patients (10), classify

stroke mechanisms (11), and detect early infarction from

non-contrast-enhanced CT (12). Notably, these sophisticated

computer algorithms have gained significant interest in the

widespread use of electronic health record systems and the

accessibility of data from patients.

Here, we aimed to evaluate the prognostic factors associated

with futile recanalization using ML algorithms and develop

a pre-EVT model (the “Early” model) and a post-EVT

model (the “Late” model) to effectively predict the risk of

futile recanalization, and more importantly, to improve stroke

emergency care and provide patients’ relatives with reliable

information about the prognosis.

Materials and methods

Study design and population

Consecutive acute ischemic stroke (AIS) patients receiving

EVT at the National Advanced Stroke Center of Nanjing First

Hospital (China) between April 2017 and May 2021 were

included in the study. All patients had a clinically confirmed

diagnosis of AIS with LVO of the anterior circulation and

underwent EVT according to the standard of care using stent-

retrievers and/or aspiration catheters at the Department of

Neurology at Nanjing First Hospital. Patients were selected

if they fulfilled the following criteria: (1) age 18 years or

older; (2) LVO in the anterior circulation, including the

internal carotid artery (ICA), M1/M2 segment of the middle

cerebral artery (MCA); (3) successful recanalization [defined

as modified Thrombolysis In Cerebral Infarction (mTICI)

scale grades 2b or 3]; (4) premorbid modified Rankin

Scale (mRS) score ≤ 2; (5) known National Institutes of

Health Stroke Scale (NIHSS), ASPECTS, and mRS score at

90 days; (6) time from onset to puncture ≤ 6 or 6–24 h
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with evidence of perfusion mismatch. Patients who missed

more than one data were to be excluded. The flowchart

is summarized in Supplementary Figure S1. We dichotomized

eligible patients with mTICI ≥ 2b into two groups utilizing

the 90-day mRS score, which included the futile recanalization

(90-day mRS of 3–6) and meaningful recanalization (90-

day mRS of 0–2). The 90-day mRS scores were assessed

via telephone-based interview or outpatient visit 3 months

after onset. The scientific use of the data was approved by

the Ethics Committee of Nanjing First Hospital (document

number: KY20130424-01) and all patients provided written

informed consent.

Data collection and definitions

Demographics and clinical characteristics were recorded on

admission. We also collected data on treatment information and

complication. More details of the definition can be found in the

Supplementary methods.

Feature selection and model
development

To assess the accumulative predictive power of clinical,

neuroimaging, and peri-interventional characteristics, we built

two ML models to predict futile recanalization risk: The

first “Early” model was based on baseline clinical and

neuroimaging characteristics at admission. The second “Late”

model was developed via all variables from the “Early” model

+ peri-interventional characteristics. For model development,

the original dataset was randomly stratified into training

and test sets per 8:2, which meant that the proportion

of patients with futile recanalization in the two sets was

consistent with the original dataset. Then, the least absolute

shrinkage and selection operator (LASSO) regression, a sparse

method, was performed to select the important features in

the training set. Furthermore, all features determined by

LASSO were introduced into the four ML models to assess

futile recanalization risk. This included logistic regression

with L2 regularization (LR with L2), random forest classifier

(RFC), support vector machine (SVM), and extreme gradient

boosting (XGBoost). To avoid overfitting, we utilized a grid

search algorithm with 10-fold cross-validation to fine-tune the

optimal hyperparameters (Supplementary Tables S1A, S1B) in

the training set. A separate test set was used to assess the

models’ generalization performance. In addition, all continuous

variables were standardized using Z-score normalization.

The algorithms involved above were performed in Python

3.7 using Scikit-learn version 0.24.1 and XGboost version

1.2.1 libraries.

Model evaluation and interpretation

We focused on discrimination and calibration to evaluate

the performance of the “Early” and the “Late” model. The

discrimination was mirrored using the area under the receiver

operating characteristic curve (AUC), and the Delong test (13)

was applied to describe the statistical difference of AUC. In

addition, the following metrics: sensitivity, specificity, positive

predictive value, negative predictive value, and accuracy, were

also calculated accordingly. Calibration ability was assessed

by the Brier score, which calculated the difference between

real-world and model-predicted index outcomes. A lower

score indicated better calibration. Furthermore, the incremental

benefit of ML model calibration was compared using the null

model Brier score (14).

To better understand the predictive process of the

ML model, we applied the model-agnostic interpretability

techniques, including the feature importance and partial

dependence plot (PDP) (15). The feature importance was

performed by the Shapley Additive exPlanations (SHAP)

algorithm (16). This sorting process is based on the mean

of absolute SHAP values for all individuals. PDP was

introduced to help understand how a single feature influences

futile recanalization. These interpretability techniques were

implemented in Python using SHAP version 0.39.0 and PDPbox

version 0.2.0.

Statistical analyses

All analyses were conducted using SPSS version 25.0.

Initially, missing values were supplemented per the multiple

imputation method. Then continuous variables were tested

for normality. Notably, premorbid mRS and NIHSS scores on

admission were regarded as continuous variables in all analyses

for increasing the model’s efficiency. All variables were shown

with descriptive statistics. Univariate analyses were performed

using the Student t-test or Mann-WhitneyU-test for continuous

variables, when appropriate. And Fisher’s exact test or theχ2 test

were applied for categorical variables.

Results

General condition

Out of 569 patients, 312 patients were eligible. Overall,

179 developed futile recanalization. As shown in Table 1A,

those who developed futile recanalization were more likely

to be older {median age: 75 [interquartile range (IQR), 67–

81] vs. 66 [IQR, 60–76]} and suffered from more severe

strokes [median NIHSS score on admission: 16 (IQR, 12–20)

vs. 11 (IQR, 8–16)] compared with patients with meaningful
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TABLE 1A Demographics and clinical characteristics.

Total

(n = 312)

Meaningful recanalization

(n = 133, 42.6%)

Futile recanalization

(n = 179, 57.4%)

p-value

Baseline characteristics

Age, years, median (IQR) 72.00 (63.25–79.00) 66 (60–76) 75 (67–81) <0.001

Male sex, n (%) 186 (59.6) 89 (66.9) 97 (54.2) 0.023

BMI, kg/m2 , median (IQR) 23.88 (21.48–26.67) 24.22 (22.04–26.70) 23.66 (21.22–26.12) 0.167

Education, years, n (%) 0.280

0–6 174 (55.8) 67 (50.4) 107 (59.8)

6–9 67 (21.5) 29 (21.8) 38 (21.2)

9–12 42 (13.5) 22 (16.5) 20 (11.2)

>12 29 (9.3) 15 (11.3) 14 (7.8)

Premorbid mRS (IQR) 0 (0–0) 0 (0–0) 0 (0–0) <0.001

NIHSS on admission, median (IQR) 14 (11–18) 11 (8–16) 16 (12–20) <0.001

Baseline SBP, mmHg, mean (SD) 138.02 (23.24) 137.36 (23.36) 138.51 (23.21) 0.665

Baseline DBP, mmHg, mean (SD) 84.02 (15.01) 83.09 (14.44) 84.70 (15.42) 0.348

Risk factors of vessels

Hypertension, n (%) 236 (75.6) 95 (71.4) 141 (78.8) 0.135

Diabetes mellitus, n (%) 101 (32.4) 39 (29.3) 62 (34.6) 0.321

Dyslipidemia, n (%) 76 (24.4) 35 (26.3) 41 (22.9) 0.488

Coronary artery disease, n (%) 62 (19.9) 25 (18.8) 37 (20.7) 0.682

Atrial fibrillation, n (%) 99 (31.7) 37 (27.8) 62 (34.6) 0.201

Previous ischemic stroke/TIA, n (%) 67 (21.5) 24 (18) 43 (24) 0.204

Previous hemorrhagic stroke, n (%) 4 (1.3) 0 (0) 4 (2.2) 0.139

Smoking, n (%) 0.002

Never smoker 191 (61.2) 67 (50.4) 124 (69.3)

Former smoker 23 (7.4) 11 (8.3) 12 (6.7)

Current smoker 98 (31.4) 55 (41.4) 43 (24)

Drinking, n (%) <0.001

Never drinker 224 (71.8) 85 (63.9) 139 (77.7)

Former drinker 15 (4.8) 3 (2.3) 12 (6.7)

Current drinker 73 (23.4) 45 (33.8) 28 (15.6)

Radiological baseline characteristics

ASPECTS on admission, median (IQR) 5 (4–7) 5 (4–7) 5 (4–7) 0.083

Cause of stroke, n (%)

LAA 121 (38.8) 58 (43.6) 63 (35.2) 0.131

CE 158 (50.6) 58 (43.6) 100 (55.9) 0.032

SAO 4 (1.3) 3 (2.3) 1 (0.6) 0.316

SOC 8 (2.6) 7 (5.3) 1 (0.6) 0.012

SUC 21 (6.7) 7 (5.3) 14 (7.8) 0.372

Vascular occlusion site, n (%)

ICA 97 (31.1) 39 (29.3) 58 (32.4) 0.561

MCAM1 194 (62.2) 84 (63.2) 110 (61.5) 0.759

MCAM2 21 (6.7) 10 (7.5) 11 (6.1) 0.632

Side of occlusion, n (%)

Left 147 (47.1) 64 (48.1) 83 (46.4) 0.759

Right 151 (48.4) 63 (47.4) 88 (49.2) 0.754

Both side 14 (4.5) 6 (4.5) 8 (4.5) 0.986

(Continued)
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TABLE 1A Continued

Total

(n = 312)

Meaningful recanalization

(n = 133, 42.6%)

Futile recanalization

(n = 179, 57.4%)

p-value

Medication use history

Previous antiplatelet, n (%) 43 (13.8) 17 (12.8) 26 (14.5) 0.659

Previous anticoagulation, n (%) 26 (8.3) 10 (7.5) 16 (8.9) 0.654

Previous statin, n (%) 29 (9.3) 14 (10.5) 15 (8.4) 0.518

IQR, interquartile range; SD, standard deviation; BMI, body mass index; mRS, modified Ranking Scale; NIHSS, National Institutes of Health Stroke Scale; SBP, systolic blood pressure; DBP,

diastolic blood pressure; TIA, transient ischemic attacks; ASPECTS, Alberta Stroke Program Early CT Score; LAA, large artery atherosclerosis; CE, cardioembolism; SAO, small artery

occlusion; SOC, stroke of other determined cause; SUC, stroke of undetermined cause; ICA, internal carotid artery; MCA, middle cerebral artery.

TABLE 1B Treatment information and complication.

Total

(n = 312)

Meaningful

recanalization

(n = 133, 42.6%)

Futile

recanalization

(n = 179, 57.4%)

p-value

Treatment information

Intravenous thrombolysis, n (%) 138 (44.2) 63 (47.4) 75 (41.9) 0.336

Number of passages, n (%) 2 (1–3) 1 (1–2) 2 (1–3) <0.001

Onset to emergency, min, median (IQR) 150.00 (60.50–287.50) 150 (60–295) 145 (65–278) 0.894

Onset to image, min, median (IQR) 194.00 (120.75–331.50) 215 (120–347) 190 (123–320) 0.420

Onset to groin, min, median (IQR) 259.00 (185.00–406.75) 270 (185–420) 251 (185–380) 0.444

Onset to recanalization, min, median (IQR) 342.50 (249.25–474.00) 340 (240–510) 344 (259–460) 0.926

Groin to recanalization, min, median (IQR) 64.50 (49.00–89.00) 56 (43–75) 72 (53–95) <0.001

Later than 6 h from onset to puncture, n(%) 93 (29.8) 45 (33.8) 48 (26.8) 0.180

Later than 8 h from onset to puncture, n(%) 55 (17.6) 25 (18.8) 30 (16.8) 0.640

mTICI score, n (%) 0.387

2b 126 (40.4) 50 (37.6) 76 (42.5)

3 186 (59.6) 83 (62.4) 103 (57.5)

NIHSS after 24 h 12 (6–17) 5 (3–10) 16 (12–21) <0.001

Post-treatment blood pressure variability

SBP

SD, median (IQR) 11.54 (7.42–16.91) 11.06 (7.54–16.36) 11.89 (7.33–17.24) 0.351

CV, median (IQR) 0.09 (0.06–0.13) 0.09 (0.06–0.12) 0.09 (0.06–0.13) 0.591

DBP

SD, median (IQR) 8.48 (5.63–11.21) 8.73 (5.59–11.61) 8.17 (5.79–11.15) 0.809

CV, median (IQR) 0.11 (0.08–0.15) 0.11 (0.08–0.15) 0.11 (0.08–0.14) 0.932

Complications

Brain edema, n (%) 14 (4.5) 0 (0) 14 (7.8) 0.001

END, n (%) 39 (12.5) 5 (3.8) 34 (19) <0.001

sICH, n (%) 9 (2.9) 0 (0) 9 (5) 0.012

IQR, interquartile range; mTICI, modified Thrombolysis in Cerebral Infarction; SBP, systolic blood pressure; DBP, diastolic blood pressure; SD, standard deviation; CV, coefficient of

variation; NIHSS, National Institutes of Health Stroke Scale; END, early neurological deterioration; sICH, symptomatic intracranial hemorrhage.

recanalization. Furthermore, as seen in Table 1B participants

with futile recanalization spent more time in the procedure

of groin to recanalization [median of 72min (IQR, 53–95) vs.

56min (IQR, 43–75)] and had greater postprocedural NIHSS

after 24 h [median of 16 (IQR, 12–21) vs. 5 (IQR, 3–10)].

Furthermore, all characteristics were well-balanced between the

training and test sets (Supplementary Tables S2A, S2B).

“Early” models

The details of the model’s performance on the

training set are shown in Supplementary Figure S2 and

Supplementary Table S3A. In terms of discriminatory

ability, there were no significant differences in AUCs

in all the “Early” ML models, AUCs ranged from 0.738
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FIGURE 1

(A) The receiver operating characteristic curve and (B) the calibration curve of the “Early” machine learning models on the testing set. (C,D)

Feature importance ranking based on Shapley Additive exPlanations (SHAP) values in “Early” XGBoost. AUC, area under the curve; LR with L2,

logistic regression with L2 regularization; SVM, support vector machine; RFC, random forest classifier; XGBoost, extreme gradient boost. NIHSS,

National Institutes of Health Stroke Scale.

TABLE 2A Scores of each “Early” model on the test set.

Model AUC (95% CI) Sensitivity Specificity PPV NPV Accuracy Brier score

LR with L2 0.784 (0.671–0.898) 0.806 0.593 0.725 0.696 0.714 0.194

RFC 0.799 (0.686–0.913) 0.722 0.704 0.765 0.655 0.714 0.191

SVM 0.738 (0.606–0.870) 0.750 0.704 0.771 0.679 0.730 0.195

XGBoost 0.790 (0.677–0.903) 0.556 0.889 0.870 0.600 0.698 0.191

AUC, the area under the receiver operating characteristic curve; CI, confidence intervals; PPV: positive predictive value; NPV, negative predictive value; LR with L2, logistic regression with

L2 regularization; RFC, random forest classifier; SVM, support vector machine; XGBoost, extreme gradient boosting.

to 0.799 on the test set. Nevertheless, when considering

the calibration, the overall performance of the XGBoost

model was better than other ML models revealed by

a smaller Brier score. For the sake of simplicity, we

only considered the XGBoost as a prediction model. A

summary of the results is given in Figure 1, Table 2A, and

Supplementary Table S4A.

Next, the visual interpretation of the “Early” model

(XGBoost) was provided. Sorted by the mean absolute

SHAP value, the rank of feature importance in descending

order was as follows: age, NIHSS score on admission, and

smoking. A dot in Figure 1C represents an individual.

Red indicates the larger distribution of SHAP values,

while blue indicates smaller. The high SHAP values of

age and NIHSS reveal positive contributions to futile

recanalization, whereas smoking was negative. Additionally,

PDP shows the impact of each feature on the predicted risk

(Supplementary Figure S3). For the age feature, although the

impact appears to be a little fluctuating, on average, the impact

increases drastically with age from 63 to 71 years. And it

remains stable at other ages. For the NIHSS score between

6 and 22, on average, the higher the NIHSS, the larger the

risk. And then, the impact remains constant after NIHSS

of 22.
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TABLE 2B Scores of each “Late” model on the test set.

Model AUC (95% CI) Sensitivity Specificity PPV NPV Accuracy Brier score

LR with L2 0.905 (0.834–0.976) 0.889 0.704 0.800 0.826 0.810 0.129

RFC 0.905 (0.829–0.981) 0.917 0.815 0.868 0.880 0.873 0.159

SVM 0.882 (0.801–0.962) 0.889 0.630 0.762 0.810 0.778 0.141

XGBoost 0.910 (0.837–0.984) 0.861 0.815 0.861 0.815 0.841 0.123

AUC, the area under the receiver operating characteristic curve; CI, confidence intervals; PPV: positive predictive value; NPV, negative predictive value; LR with L2, logistic regression with

L2 regularization; RFC, random forest classifier; SVM, support vector machine; XGBoost, extreme gradient boosting.

FIGURE 2

(A) The receiver operating characteristic curve and (B) the calibration curve of the “Late” machine learning models on the testing set. (C,D)

Feature importance ranking based on Shapley Additive exPlanations (SHAP) values in “Late” XGBoost. AUC, area under the curve; LR with L2,

logistic regression with L2 regularization; SVM, support vector machine; RFC, random forest classifier; XGBoost, extreme gradient boost. NIHSS,

National Institutes of Health Stroke Scale.

“Late” models

The details of the model’s performance on the

training set are provided in Supplementary Figure S4 and

Supplementary Table S3B. In the testing step, all “Late” model

also scored a similar AUC since the statistical insignificant

differences of AUCs were found {AUC of 0.910 [95% confidence

intervals (CI), 0.837–0.984] for XGBoost vs. 0.905 [95% CI,

0.834–0.976] for LR, 0.905 [95% CI, 0.829–0.981] for RFC and

0.882 [95% CI, 0.801–0.962] for SVM}. And homoplastically,

the overall performance of the XGBoost model outperformed

other ML models with the consideration of the smaller Brier

score (0.123 for XGBoost vs. 0.129 for LR, 0.159 for RFC, and

0.141 for SVM). A summary of the results is given in Figure 2,

Table 2B, and Supplementary Table S4B.

Next, the visual interpretation of the optimal “Late” model

(XGBoost) was provided. Figure 2C shows that NIHSS after 24 h,

age, groin to recanalization, and the number of passages were the

four important features. And the high SHAP values of these four

features revealed positive contributions to futile recanalization.

Furthermore, from the PDP, we can see that for NIHSS after

24 h (Figure 3A), the increase in NIHSS score (3–22) is positively

related to futile recanalization and remains stable whenNIHSS is

over 22. For the age feature (Figure 3B), on average, the increase

in age (63–71) is positively related to futile recanalization, which

performs similarly to the “Early” model but with less fluctuation.
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FIGURE 3

Partial dependence plots (PDP) of “Late” XGBoost model features. (A) NIHSS after 24 hours, (B) age, (C) groin to recanalization, and (D) the

number of passages. The shaded blue region shows the magnitude of the confidence interval, and the Y-axis represents the change in the

predicted outcome. NIHSS, National Institutes of Health Stroke Scale.

For the groin to recanalization feature (Figure 3C), on average,

it (46–105) was positively related to futile recanalization, and

then the impact remains constant after groin to recanalization

of 105min. For the number of passages feature (Figure 3D), the

impact increased gradually with the number from one to three

and remained stable when the number was over three.

Comparison of models

We compared the performance of the “Early” and “Late”

models (Figure 4; Supplementary Figure S5). All “Late” models

substantially outperformed “Early” models on both the training

and testing set.

Discussion

In the present study, we derived and validated a series of

ML models with the capacity to predict futile recanalization

in LVO patients undergoing EVT. The XGBoost algorithm has

optimal predictive performance in both the “Early” model and

the “Late” model. As a result, we generated highly reliable futile

recanalization risk estimates and made predictions at two points

(pre- and post-EVT) in the care continuum with the explicit

goal of improving stroke emergency care. In addition, results

in our study suggest that the inclusion of peri-interventional

characteristics may lead to superior predictive performance

compared to a model based on baseline characteristics

only. Although several pieces of literature have reported

many prognostic factors associated with futile recanalization,

none integrated those factors for building predictive models.

Considering the hazards of futile recanalization, such models

are important.

Using “Early” XGBoost may offer neurologists effective

support in patient selection for EVT therapy. According to

the HERMES meta-analysis, “the number needed to treat with

endovascular thrombectomy to reduce disability by at least

one level on Mrs for one patient was 2.6” if the clinical

trial criteria were used (2). In real-world practice, however, a

higher number would be needed given the potential benefit

for a portion of patients. Hence, patient selection criteria for

EVT tend to be more liberal, often accompanied by disastrous

futile recanalization. Reliable pre-EVT prognostic tools can

facilitate the process of patient selection by generating an

accurate prediction of futile recanalization. However, it must
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FIGURE 4

The comparison of the receiver operating characteristic curve of “Early” machine learning models and “Late” machine learning models on the

test set. LR with L2, logistic regression with L2 regularization; SVM, support vector machine; RFC, random forest classifier; XGBoost, extreme

gradient boost.

be admitted that although the “Early” XGBoost constructed in

our study achieved an AUC of 0.790, this model needs further

improvement due to the existence of the “smoking paradox.”

On the other hand, the “Late” XGBoost with the inclusion

of peri-interventional characteristics outperformed the “Early”

XGBoost by amargin of 12.0% for AUC. The accurate prediction

provided reliable and objective prognostic after EVT and, in

turn, can aid in the counseling of patients and their relatives.

There are two points to emphasize, with the expectation

that the “Early” XGBoost and the “Late” XGBoost can be

integrated into real-world practice. On the one hand, because

of the irreplaceability of clinical judgment, the proposed

use for the “Early” XGBoost and the “Late” XGBoost is

to serve as adjuncts, rather than surrogates, to clinical

judgment to facilitate evidence-based, prediction-driven, and

personalized decision-making in the clinical workflow of LVO

patients. On the other hand, this study represents only one

component in the development of robust and reliable tools

for the risk screening of futile recanalization in LVO patients.

Further implementation, impact, and validation studies are

essential if those models are going to be integrated into the

clinical workflow.
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In addition to clinical applications, results in our study

can provide meaningful insights to reveal diverse and new

predictors. The SHAP algorithm and PDP have discovered

several predictors of futile recanalization. SHAP algorithm can

provide feature importance scores from XGBoost, and explain

the logic behind predictions; PDPwas used to show themarginal

effect of a single feature. When XGBoost integrated information

from baseline clinical and radiological characteristics before

EVT, the SHAP algorithm demonstrated that—in the present

study—patients presenting with greater age and with severe

neurological deficit on admission had higher rates of futile

recanalization. Nevertheless, this of course does not suggest

that EVT is not indicated in patients with a higher baseline

NIHSS. It is essential to consider the results of a meta-

analysis of five randomized trials, which provides evidence

of no differential benefit from endovascular treatment across

the entire NIHSS severity range (2). Although it might be

surprising at first glance, current smoking was associated with

decreased risk of futile recanalization in the present study.

The so-called “smoking paradox” phenomenon has appeared

in patients undergoing intravenous thrombolysis and EVT (17,

18). One assumption was that the negative relation between

current smoking and futile recanalization was related to an

age effect (19). Indeed, current smokers were younger than

former smokers or never smokers in the present study (p

< 0.001) (Supplementary Table S5). However, such a result

must not be misinterpreted that the effect of smoking is

beneficial due to the observational study design. Surprisingly,

the ML algorithm did not select ASPECTS on admission as

one of the predictors for futile recanalization. Such a result

can be explained by the firm, linear, negative correlation

between ASPECTS and NIHSS on admission and the higher

univariate performance of the latter as compared with the

former for predicting futile recanalization (20). Unfortunately,

pre-treatment collateral status was not incorporated in the

model building process due to its unavailability in the dataset.

Previous studies have shown the positive effect of good collateral

status on clinical outcomes after EVT (21, 22). Such results

can be explained by the fact that more robust collateral flow

can compensate for the brain areas with restricted blood flow

and subsequently increase the recanalization and reperfusion

rates (23). However, these studies did not consider the degree

of revascularization achieved. According to a study published

in the Stroke journal (23), reperfusion success is associated

with good collateral status, which indicates that the effect

of collateral status on clinical outcome is possibly indirect.

In addition, patients in the present study who received

EVT and recanalization achieved an mTICI score of >2a,

which means that those patients are likely to have good

collateral status.

Subsequent inclusion of peri-interventional characteristics

into the XGBoost demonstrated that NIHSS after 24 h, age,

groin to recanalization, and the number of passages were

the key predictors for futile recanalization. As shown in the

PDP, in the age group between 63 and 71, there was an

abrupt rise of futile recanalization by around 20% independent

of other patient characteristics, while it remains stable at

other ages. Although age is known to be prominent for

the efficacy of EVT (3, 4), the observed drastic change

in the probability of futile recanalization has not been

described before. Interestingly, the “late” XGBoost with peri-

interventional characteristics shows that NIHSS assessed at

24 h replaced NIHSS on admission and became the strongest

predictor of futile recanalization. Indeed, as demonstrated

by previous studies, NIHSS after 24 h is strongly associated

with long-term functional outcomes and is a great potential

early surrogate clinical endpoint for clinical trials (10, 24).

For the groin to recanalization feature (Figure 2C), on

average, the increase in the groin to recanalization (46–

105min) is positively related to futile recanalization. Such

results are in line with those from previous studies which

flagged a time dependency to clinic outcome of LVO stroke

treated with EVT (25, 26). Also, the likelihood of futile

recanalization got sequentially higher as the number of

passages increased. Although the technical expertise of the

operator is important, the increased number of passages may

be due to some uncontrollable factors such as increased

clot fragmentation with distal embolization or accumulated

endothelial damage (27). In addition, the impact of the

groin to recanalization and the number of passages on futile

recanalization supports the conclusion of previous studies that

an angiographic recanalization does not necessarily lead to

functional independence if it was achieved at the expense of

longer procedural times (28).

The present study has some limitations. Firstly, the patients

included in the present study were selected from a single-center,

retrospective data set, leading to selection bias. For example,

older age patients are more likely to be excluded from EVT.

Indeed, such selection bias is inherent in any prediction model.

Secondly, the definition of successful reperfusion itself should be

challenged as it is assessed on the final angiogram. Because our

study design was retrospective, we could not reliably confirm

which patients went on to develop spontaneous re-occlusion

or recanalization at 24–48 h. However, this phenomenon is

only present in a small percentage of patients. Thirdly, other

significant data sources, such as angiographic characteristics, are

likely to add extra predictive value. We did not include these

in our study because such data were unavailable and may be

a logistical challenge when applied, especially in the primary

stroke centers.

Conclusions

The “Early” XGBoost and the “Late” XGBoost allowed

us to accurately predict futile recanalization in LVO patients
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before and after EVT. Our study suggests that the inclusion

of peri-interventional characteristics may lead to superior

predictive performance compared to a model based on

baseline characteristics only. In addition, NIHSS after

24 h was the most important prognostic factor for futile

recanalization. Although our results represent only one step

in developing screening tools for futile recanalization, they

can provide meaningful insights to reveal diverse and new

prognostic factors.
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