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1  | INTRODUC TION

Cartilage is a hydrated tissue with no vascular and neural networks. 
They are divided into three major groups: hyaline, fibrous and elastic 
cartilages. Hyaline cartilage is the most frequent form and is found 
in synovial joints, ribs, nose, trachea, bronchi, etc1 The main roles of 
this articular hyaline cartilage are to tolerate bone load and forming a 
lubricant environment to enable joint movement.2 Extracellular ma-
trix (ECM) synthesized by chondrocytes constitutes the main part 

of each cartilage. Collagen type II is the most frequent ECM mole-
cule in hyaline cartilage and accounts for 90%- 95% of total collagen 
molecules.3,4 Collagen II forms filamentous structures with collagen 
IX, responsible for cartilage tensile and shear stress. Proteoglycans, 
such as aggrecan, and glycosaminoglycans (GAG), such as chondroi-
tin sulphate, are the other components of the articular cartilage 
ECM.5,6 The integrity of ECM is vital for the normal function of car-
tilage. Therefore, changes in ECM elements and composition are the 
main feature of cartilage diseases.7
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Abstract
Extracellular vesicles (EVs), mainly exosomes and microvesicles, are bilayer lipids con-
taining biologically active information, including nucleic acids and proteins. They are 
involved in cell communication and signalling, mediating many biological functions 
including cell growth, migration and proliferation. Recently, EVs have received great 
attention in the field of tissue engineering and regenerative medicine. Many in vivo 
and in vitro studies have attempted to evaluate the chondrogenesis potential of these 
microstructures and their roles in cartilage regeneration. EVs derived from mesen-
chymal stem cells (MSCs) or chondrocytes have been found to induce chondrocyte 
proliferation and chondrogenic differentiation of stem cells in vitro. Preclinical stud-
ies have shown that exosomes derived from MSCs have promising results in cartilage 
repair and in cell- free therapy of osteoarthritis. This review will focus on the in vitro 
and in vivo chondrogenesis and cartilage regeneration of EVs as well as their poten-
tial in the treatment of osteoarthritis.
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Osteoarthritis (OA) is characterized by progressive cartilage 
damage and is the most prevalent cartilage- related disease. OA 
mainly affects elderly people and is more prevalent in women than 
men.8 Trauma and pathological conditions such as obesity and con-
genital abnormalities are the main cause of the disease and usually, 
knee and hip cartilages are affected.9 Chondrocytes that produce 
and secrete ECMs are the main cell source of cartilage; however, they 
constitute only 2% of cartilage volume. They need a suitable micro-
environment for their survival and function. This microenvironment 
is changed during cartilage diseases results in chondrocyte apopto-
sis. On the other hand, they have limited replication capacity.10,11 
In addition, inflammation which is one of the main characteristics 
of OA causes more changes in cartilage ECM and therefore exac-
erbates tissue damage.12 Despite the high prevalence of cartilage 
diseases such as OA, no definitive therapy is available. Surgical and 
non- surgical therapies are associated with side effects, and their ef-
ficacy is not satisfactory.13 As many cartilage diseases are associated 
with chondrocyte loss or dysfunction, cell- based therapy has been 
suggested as an alternative therapy. Stem cells including embryonic 
stem cells (ESCs), induced pluripotent stem (iPS) cells and mesen-
chymal stem cells (MSCs) are widely used in tissue engineering and 
regenerative medicine to restore and repair injured tissues.14 These 
cells are mainly used to differentiate into somatic cells of the organ. 
Furthermore, some types of stem cells, such as MSCs, can induce 
endogenous progenitors and stem cells to migrate, proliferate and 
differentiate.15 Since many functions of MSCs are mediated through 
paracrine effects and with regard to cell transplantation complica-
tions such as immune rejection, cell- free secretome has been pro-
posed for the treatment of cartilage diseases.16

2  | THE BIOLOGY AND 
PATHOPHYSIOLOGY OF E X TR ACELLUL AR 
VESICLES IN OA

The secretome includes extracellular vesicles (EVs) and is secreted 
from many cell types.17 EVs are considered as small bilayer lipids 
with 30- 1000 nm diameters. EVs are usually defined as exosomes, 
microvesicles and apoptotic bodies.18 Among them, exosomes and 
microvesicles share many characteristics, but vary in size as well as 
protein composition. Exosomes are 30- 100 nm cup- shaped vesicles, 
while microvesicles are heterogeneous with 50- 1000 nm in diam-
eter.19 Exosomes are released from their origin cells by fusion with 
the plasma membranes, while microvesicles are released through 
shedding from the plasma membrane. Coding and non- coding RNAs, 
proteins, antigen- presenting molecules and DNA are the main com-
positions of exosomes.20- 22 Microvesicles consist of bilayer lipids 
containing mRNAs, miRNAs as well as lipids and cytosol. Because 
of their size and composition, exosomes are considered to be more 
important in the field of tissue engineering and regenerative medi-
cine. Almost all of the cells, both in normal and pathological states, 
including lymphocytes, antigen- presenting cells, platelets, mesen-
chymal stem cells (MSCs), many mature somatic cells and tumour 

cells, release exosomes and microvesicles into almost all body flu-
ids. The cargo of each exosome reflects its origin cells. They include 
cell- specific receptors, heat shock proteins (HSPs), tetraspanins (CD 
markers), lipid rafts such as flotillin- 1 and integrins, which mediate 
exosomes- cell interactions in a paracrine manner.19,23,24

Exosomes are present in the synovial fluid (SF); however, the 
quantity and compositions of SF- exosomes and more importantly 
their functions are changed in cartilage- related diseases. Studies 
have shown a higher levels of exosomes in patients with early and 
late- stage OA than in the normal population.25 Changes in proteins, 
miRNAs and lnRNAs have been also observed in the SF of patients 
with joint diseases.25,26 In addition, the composition of exosomes dif-
fers between various joint disease.27 In patients with joint diseases, 
exosomes derived from fibroblast- like synoviocytes (FLS) activate 
CD4+ lymphocytes and increase the secretion of inflammatory cy-
tokines.28 Furthermore, these exosomes mediate bone and cartilage 
degradation through inducing matrix metalloproteinases and pro-
moting the osteoclast function, respectively.29 Plasma- derived exo-
somes in patients with RA increase the activity of pro- inflammatory 
cytokines produced by peripheral blood immune cells.30 In addition, 
these exosomes can activate complement systems and increase in-
filtration of immune cells such as neutrophils and M1 macrophages, 
which further degrade cartilage.31 These data suggest the role of 
exosomes in the joint disease pathology and provide a perspective 
on the treatment of affected patients.

Recently, many studies have evaluated the potential use of exo-
somes as diagnostic markers as well as carriers of genes for the ther-
apeutic purpose.32- 34 It is also used to suppress immune responses 
during cell and organ transplantation to avoid immune rejection.35,36 
Exosomes could be used to regenerate and repair tissues including 
bone and cartilage.37,38 As exosomes play key roles in the modula-
tion of inflammation and immune responses, they have been widely 
used by researchers in the treatment of autoimmune and inflamma-
tory diseases such as OA.39,40 In the following sections, the in vitro 
and in vivo potential roles of exosomes in chondrogenesis and heal-
ing OA are discussed.

3  | THE IN VITRO CHONDROGENIC 
POTENTIAL OF E VS

In the field of cartilage tissue engineering, iPS and various sources 
of MSCs have been widely used to differentiate into mature 
chondrocytes.41- 43 Some studies have used growth factors and 
miRNAs to induce chondrogenic differentiation.43- 45 Some in vitro 
studies have shown that EVs or exosomal miRNAs can enhance 
chondrogenesis and chondrogenic differentiation directly or indi-
rectly (Table 1). Huilei Yu et al showed that MSC- derived exosomes 
promote proliferation and chondrogenic differentiation of tendon 
stem/progenitor cells (TSPCs) into mature chondrocytes.46 Cosenza 
et al showed that MSC- derived exosomes and microparticles can 
protect osteoarthritis- derived murine chondrocytes in vitro and in 
vivo. It was found that exosomes from murine bone marrow– derived 
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MSCs (BM- MSCs) increased the expression of chondrocyte mark-
ers including aggrecan and type II collagen. On the other hand, 
exosomes inhibited the expression of immune and inflammatory ele-
ments responsible for cartilage degradation such as matrix metal-
loproteinases (MMPs). The exosome- activated chondrocytes were 
not able to activate CD4+ and CD8+ T lymphocytes and B lympho-
cytes in vitro.47 The same results were also observed in the study 
of Yubao Liu et al48 MSC- derived exosomes were found to inhibit 
apoptosis in chondrocytes and promote their proliferation. The lu-
ciferase activity assay showed that exosomal lncRNA- KLF3- AS1 in-
hibited miR- 206 which in turn facilitates G- protein- coupled receptor 
kinase interacting protein- 1 (GIT1) expression in chondrocytes.48 It 
is shown that GIT1 mediates chondrocyte proliferation and inhibits 
apoptosis in chondrocytes. The expression of GIT1 is suppressed by 
miR- 206.49,50 In fact, exosomes transfer bioactive molecules includ-
ing miRNAs and growth factors that can affect many cellular pro-
cesses such as proliferation and differentiation.51 Exosomes derived 
from MSCs and chondrocytes contain molecules that direct the 
chondrogenic differentiation of stem cells/progenitors or promote 
proliferation and migration of chondrocytes. Therefore, they can be 
beneficial for in vivo treatment of diseases such as OA that is defined 
by cartilage degradation.52

It is well known that exosomal miRNAs mediate many func-
tions of exosomes such as cell proliferation and differentiation as 

well as inhibition of cell apoptosis.53,54 Hui Jing et al55 showed that 
miR- 381- enrich small extracellular vesicle (sEV) promotes stem cell 
chondrogenesis in vitro. They obtained miR- 381- enrich sEV by cul-
turing human umbilical cord mesenchymal stem cells (hUCMSCs) in a 
medium containing Kartogenin (KGN). KGN is a small drug- like mol-
ecule that promotes chondrogenic differentiation in stem cells and 
progenitors. This study showed that miR- 381- 3p directly suppresses 
TAOK1 (TAO Kinase 1) which in turn suppresses Hippo signalling 
pathway.55 Hippo pathway is involved in the promotion of cell apop-
tosis and inhibition of cell proliferation.56 Mao et.al reported that 
exosomes from miR- 92a- 3p- overexpressing MSCs increase chon-
drocyte migration and proliferation. It was found that exosomal miR- 
92a- 3p suppresses WNT5A (Wnt family member 5A) that is a key 
factor in the pathogenesis of OA.57 Further study revealed that the 
exosomes isolated from miR- 95- 5p- overexpressing chondrocytes 
promote chondrogenic differentiation of MSCs and induce cartilage 
matrix expression in chondrocytes. miR- 95- 5p inhibits the expres-
sion of histone deacetylase 2/8 (HDAC2/8) that is increased in OA.58 
It is shown that HDAC2/8, HDAC1 and HDAC3 inhibit the expres-
sion of COL2A1 (collagen type II alpha 1 chain) and aggrecan.59,60

Hao Sun et al evaluated the expression pattern of exosomal mi-
croRNAs during chondrogenesis of human bone marrow stem cells 
(hBMSCs). They found that 35 miRNAs are up- regulated during 
chondrogenesis including miR- 320c. Subsequently, they transfected 

Approach Examples

Extracellular 
vesicle as an 
inducer

MSC- derived exosomes promoted TSPC proliferation and differentiation.46
MSC- derived exosomes re- induced OA- like murine chondrocytes markers 

and inhibit catabolic and inflammatory markers.47

Exosomes from human MSCs enhanced proliferation and decreased 
apoptosis of chondrocytes by increasing the expression of GIT1.48

Chondrocyte- derived and BMSC- derived exosomes increased chondrogenic 
markers on CPCs co- cultured with HUVEC.72

Modified 
extracellular 
vesicle as an 
inducer

MiR- 381- abundant sEVs derived from KGN- preconditioned hUCMSCs 
promoted chondrogenesis of hUCMSCs by targeting TAOK1.55

Exosomes from miR- 92a- 3p- overexpressing MSCs increased chondrocyte 
migration and proliferation by suppressing WNT5A.57

Exosomes from miR- 95- 5p- overexpressing chondrocytes promoted 
chondrogenic differentiation of MSCs and induced cartilage matrix 
expression in chondrocytes by inhibition of the expression of HDAC2/8.58

Exosomes from miR- 320c- overexpressing hBMSCs promoted chondrocyte 
proliferation and migration and enhanced hBMSC chondrogenic 
differentiation.61

Exosomal 
miRNAs

Exosomal miR- 8485 derived from human chondrocytes enhanced 
chondrogenic differentiation of BM- MSCs by regulation of Wnt/β- catenin 
pathways.64

Extracellular 
vesicles as a 
vehicle

Blood- circulating exosomes were used as a carrier for miR- 140 and enhanced 
the chondrogenic differentiation of BM- MSCs in vitro.65

Abbreviations: miR: microRNA, BM- MSCs: bone marrow- derived mesenchymal stem cells, 
hUCMSCs: human umbilical cord mesenchymal stem cells, KGN: Kartogenin, TAOK1: TAO kinase 
1, sEV: small extracellular vesicles, OA: osteoarthritis, CPC: cartilage progenitor cell, HUVEC: 
human umbilical vein endothelial cell, MMP: matrix metalloproteinase, ADAMTS5: A disintegrin 
and metalloproteinase with thrombospondin motifs 5, iNOS: inducible nitric oxide synthase, GIT1: 
G- protein- coupled receptor kinase interacting protein- 1, TSPCs: tendon stem/progenitor cells, 
WNT5A: Wnt family member 5A and HDAC2/8: histone deacetylase 2/8.

TA B L E  1   The in vitro chondrogenic 
potential of exosomes and exosomal 
miRNAs
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hBMSCs with miR- 320c and found that hBMSC- 320c- Exos are more 
powerful in chondrocyte proliferation and chondrogenic differentia-
tion of hBMSCs.61 miR- 320c has been found to inhibit the expression 
of MMP- 13 and Runt- related transcription factor 2 (RUNX2) that 
mediate inflammatory responses during cartilage degradation.62,63

Chondrocyte- derived exosomal miR- 8485 was also found to 
induce BM- MSC differentiation into chondrocytes. miR- 8485 tar-
gets GSK3B (glycogen synthase kinase 3 beta) that finally activates 
Wnt/β- catenin pathway and promotes stem cell differentiation into 
chondrocytes.64

In the other study, Gi Won Lee et al used blood- circulating exo-
somes to transfer miR- 140 into rabbit BM- MSCs. They showed that 
exosomes themselves or in a combination with miR- 140 promote 
chondrogenic differentiation of rabbit BM- MSCs. Of note, miR- 140 
increased the chondrogenic inductivity of exosomes.65 This finding 
can be supported by the other studies that show miR- 140 is involved 
in cartilage homeostasis and regeneration.66,67

4  | THE IN VITRO THER APEUTIC S OF E VS

MSCs have been known to promote cartilage repair and chondro-
cyte differentiation through a paracrine effect via cytokine se-
cretion. These factors including transforming growth factor beta 

(TGF- β) and hepatocyte growth factor (HGF) constitute a major part 
of MSCs secretome.68 Furthermore, MSCs have been found to se-
crete chemokines and vascular endothelial growth factor (VEGF) 
into the synovial fluid to promote cartilage repair in OA patients.69,70 
It is shown that the secretome of MSCs has a therapeutic function 
in the treatment of liver, kidney, skin and other organ injuries.71 
Preclinical studies have shown that exosomes derived from MSCs 
have promising results in cartilage repair. Yet, the exact mechanisms 
of tissue repair have not been elucidated. However, it seems that 
MSCs have a pivotal role in the maintenance of the mesenchymal 
tissue microenvironment.11 Here, the therapeutic functions of EVs 
derived from MSCs and other sources in the treatment of cartilage 
repair are discussed. Table 2 summarizes the in vivo functions of EVs 
in the treatment of cartilage repair.

4.1 | Inducing chondrocyte differentiation

Besides the in vitro chondrogenesis role of EVs, some studies have 
tried to evaluate their potential in the induction of chondrocyte dif-
ferentiation in animal models. Chen et al implanted rabbit CPC (car-
tilage progenitor cell)- alginate subcutaneously in mice. Thereafter, 
exosomes derived from chondrocytes (CC- Exos) or BMSCs (BMSC- 
Exos) were found to be transplanted at the site of implantation. 

TA B L E  2   The in vivo functions of EVs in the treatment of cartilage repair

Function Cell sources Animal model Description

Inducing chondrocyte differentiation Rat BMSC Rat patellar tendon 
defect model

Controlled release of BMSC- Exos at 
rat tendons induced the proliferation, 
migration and differentiation of 
endogenous tendon stem/progenitor cells 
(TSPCs).46

Rabbit chondrocytes (CC- Exos) or 
BMSCs (BMSC- Exos)

Mouse model of 
tendon defect

The increase in CPC proliferation, 
differentiation and migration, and the 
ectopic neo- cartilage formation have 
been shown in the animal model.

Inducing chondrocyte proliferation Human MSCs Collagenase- induced 
rat model of OA

Exosomes derived from MSCs were 
capable to induce chondrocyte 
proliferation and inhibit cell apoptosis.76

miR- 140- 5p- overexpressing 
Synovial mesenchymal stem 
cells (SMSCs)

OA model of rat 
Sprague- Dawley rats

Exosomes derived from miR- 140- 5p- 
overexpressing MSCs induced articular 
chondrocyte (AC) proliferation.77

Human embryonic stem cell– 
derived MSCs

Rat osteochondral 
defect model

Exosomes induced chondrocyte 
proliferation through CD73- Akt/Erk 
pathway.82

Increasing bioenergetics Mouse chondrocytes Mouse model of 
tendon defect

Exosomes derived from chondrocytes 
increased the intracellular ATP level in 
chondrocytes.87

Reducing inflammation and immune 
responses

Human embryonic stem cell– 
derived MSCs

immunocompetent rat 
model

Exosomes derived from MSCs induced 
the infiltration of M2 but not M1 
macrophages into the synovial fluid in 
an immunocompetent rat model and 
therefore reduce the inflammation.82

Human amniotic fluid stem cell 
(AFSC)

Rat model of OA Exosomes directed the polarization of 
macrophages into M2 type.106
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Twelve weeks following implantation, stable cartilage tissue with 
a high amount of collagen deposition and low vascular ingrowth 
was observed.72 This study showed the potential of exosomes in 
chondrogenesis and the formation of cartilage tissue. In this study, 
BMSC- Exos was used as positive control and the results showed 
that the CPC proliferation, differentiation and migration are higher 
in mice treated with BMSC- Exos when compared to those treated 
with CC- Exos. However, there is evidence for ectopic cartilage hy-
pertrophy in animal models treated with BMSC- Exos and this study 
showed that CC- Exos may be more favourable for neo- cartilage 
formation. Of note, BMSC or chondrocyte- derived exosomes ex-
hibit no inflammation and immune responses following exosome 
transplantation, underlying the advantages of cell- free secretome 
therapy in comparison to stem cell therapy.72 In the study by Jing 
et al, KGN- preconditioned small EVs induced transplanted hUCM-
SCs to differentiate into functional chondrocytes in rabbits with 
full- thickness cartilage defects. This induction was attributed to the 
overexpression of miR- 381- 3p in KGN- sEVs.55

Yu et al showed that the controlled release of BMSC- Exos at rat 
tendons induces the proliferation, migration and differentiation of 
endogenous tendon stem/progenitor cells (TSPCs) in rat patellar 
tendon defect model. Following the exosomes- fibrin injection, a 
neo- tendon with a high expression of mohawk, tenomodulin and 
type I collagen was formed at the site of the defect.46 Liu et al also 
showed that the human MSC- derived exosomes induce the prolifer-
ation of chondrocytes and inhibit their apoptosis in an OA rat model. 
They showed that non- coding RNAs including lncRNAs and miRNAs 
are involved in this phenomenon.48 Mao et al reported that miR- 92a- 
3p- overexpressing exosomes enhance in vivo chondrogenesis and 
inhibit cartilage degradation by targeting WNT5A in collagenase- 
induced mouse model of OA.57 The protective effects of exosomes 
were also observed in the study of Cosenza et al47,73 Altogether, 
these findings indicate that exosomes derived from stem cells or 

chondrocytes can induce the migration, proliferation and differen-
tiation of transplanted or endogenous stem/progenitor cells, while 
they increase the proliferation of chondrocytes at the site of tendon 
defects (Figure 1), suggesting the potential of exosomes in the treat-
ment of cartilage defects in a cell- free strategy.

4.2 | Inducing chondrocyte proliferation

The inflammation and oxidative stress in OA cause ECM and cell 
destruction and loss. Thus, an increase in cell numbers and subse-
quently an increase in ECM biosynthesis can reduce the OA- related 
complications.74 The elevated level of proliferative cell nuclear an-
tigen (PCNA), a proliferation marker, has been observed by Zhang 
et al following MSCs- exosome injection, suggesting the role of ex-
osomes in increasing chondrocytes proliferation in an immunocom-
petent rat osteochondral defect model. Notably, no inflammation 
and destructive immune reactions were observed in the rats treated 
with human MSC- derived exosomes, showing the importance of 
cell- free therapy using EVs.75 Further, Liu et al reported that the 
exosomes derived from human MSCs are capable to induce chon-
drocyte proliferation and inhibit cell apoptosis in the collagenase- 
induced rat model of OA.76,77

Mechanistically, exosomes have been found to mediate cell pro-
liferation through Akt and Erk1/2 signalling pathways,78 and CD73 
has a major role in the induction of these pathways.79 Damaged tis-
sues release ATP in response to injury or trauma. This extracellular 
ATP is found to play as a danger signal that activates immune cells 
to remove the damaged and dead cells. This process also affects 
the healthy neighbouring cells in a bystander effect. Extracellular 
ATP and ADP have a short half- life and are rapidly hydrolysed into 
AMP.80 CD73 from exosomes was found to hydrolyse AMP into ad-
enosine that is a potent activator of survival kinases. These kinases 

F I G U R E  1   The in vivo chondrogenesis 
of exosomes. (1) Exosomes are capable 
to induce transplanted as well as 
endogenous stem/progenitor cells to 
migrate, proliferate and differentiate into 
fully functional chondrocytes. In addition, 
the stem/progenitor cells are activated 
to inhibit apoptosis, hypertrophy, 
fibrosis and inflammation. (2) Exosomes 
in the cartilage induce the resident 
chondrocytes to proliferate to maintain 
and sustain the cartilage. (3) The injected 
exosomes reduce the inflammation in the 
damaged cartilage possibly by inhibiting 
inflammatory molecules such as IL- 1, 
IL- 6 and TNF- α, which are responsible 
for cartilage inflammatory diseases such 
as OA
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act through kinase receptors involved in the Akt and Erk1/2 signal-
ling pathways, thereby inducing cell proliferation.81 Zhang et al con-
firmed the role of the CD73- Akt/Erk pathway in exosome- mediated 
cell proliferation. They showed that the blocking of this pathway by 
a CD73 inhibitor (AMPCP) and theophylline (an antagonist of ade-
nosine receptor) decreases the number of chondrocytes; however, 
the matrix synthesis remains unchanged.82 Qi et al also showed 
that exosomes derived from MSCs inhibit chondrocyte apoptosis 
via p38, ERK and Akt pathways, thereby increasing the chondro-
cyte frequency.83 Exosomes from other cell sources have also been 
shown to induce chondrocyte proliferation. It was reported that 
exosomes derived from platelet- rich plasma promote chondrocyte 
proliferation through the Wnt/β- catenin signalling pathway.84 In 
contrast, exosomes derived from osteoarthritic chondrocytes inhib-
ited the proliferation and induced the apoptosis of chondrocytes.85 
Moreover, exosomes isolated from human synovial MSCs (SMSCs) 
and synovial membrane- derived MSCs (SMMSCs) were found to 
induce chondrocyte proliferation and migration, and promote ECM 
secretion in the cartilage of defected animal model.77,86

4.3 | Increasing bioenergetics

The destruction and dysfunction of mitochondria decrease cell bi-
oenergetics and play a major role in the pathogenesis of OA. It is 
shown that chondrocytes from OA patients have a lower level of bio-
energetics due to reduced mitochondrial biogenesis and decreased 
mitochondrial electron transport chain (ETC) proteins. A study by 
Zheng and coworkers showed that exosomes from primary chon-
drocytes cultured in normal culture contain more mitochondrial 
proteins than those derived from OA inflammatory environments.87 
A decrease in mitochondrial proteins leads to the reduction of ATP 
production, generation of oxidative stress and a perturbation in ECM 
synthesis by chondrocytes in the cartilage of OA patients. This situa-
tion results in inflammation, matrix calcification and catabolism, de-
fective chondrocyte matrix biosynthesis, and cell apoptosis that are 
the main characteristics of OA.88,89 In such a situation, restoring mi-
tochondrial biogenesis and increasing bioenergetics could be helpful 
in reducing inflammation and inducing regeneration. Exosomes con-
tain a variety of glycolytic enzymes (such as phosphoglucokinase, 
pyruvate kinase and adenylate kinase) involved in ATP synthesis; 
they can increase ATP and energy level of resident chondrocytes in 
vivo.90 Therefore, the use of exosomes may alleviate the symptoms 
of OA through the increase in ATP synthesis. This ATP production 
is mediated by glycolytic enzymes. Although the ATP production by 
these enzymes is inefficient compared to the mitochondrial ETC, it 
is compensated through the increase in the glycolytic flux by a factor 
of 10- 100.39 The glycolysis intermediates are also involved in tissue 
repair by increasing redox potential.91 Although Zheng et al showed 
an elevated intracellular ATP level in exosome- treated chondro-
cytes,87 there is a lack of information about the role of exosomes 
from different sources on chondrocyte bioenergetics in both pre-
clinical animal models and the human population.

4.4 | Reducing inflammation and immune responses

Inflammation is known to be involved in the initiation and development 
of OA disease.92 Following cartilage injury, an inflammatory reaction is 
triggered through the release of pro- inflammatory factors such as IL- 1, 
IL- 8 and MMPs secreted from immune cells, leading to additional ECM 
destruction in the cartilage of the patients.93 These pro- inflammatory 
cytokines are through immune cells such as macrophages. Notably, M1 
and M2 macrophages are located in the cartilage. Such that CD163+ re-
generative M2 macrophages support the chondrocyte functions, while 
CD86+ M1 macrophages produce a high amount of pro- inflammatory 
cytokines including IL- 1β and TNF- α.94

Since inflammation plays a major role in the pathogenesis of 
OA, inhibiting inflammatory responses could be helpful in cartilage 
repair.95,96 It is shown that the exosomes derived from MSCs pro-
tect the cartilage tissue from the inflammatory responses and ECM 
component loss. An immunomodulatory function is one of the main 
MSCs characteristics. This is achieved through the paracrine effects 
of MSCs by the secretion of trophic factors such as TGF- β, INF- γ 
and HGF.97- 99 Of note, exosomes contain more than 200 immuno-
modulatory proteins.100,101 It has been found that exosome contents 
increase the level of anti- inflammatory factors including IL- 10, TGF- β 
and INF- γ and decrease the level of inflammatory factors such as 
TNF- α and IL- 1β. In addition, exosomes induce Tregs which in turn 
suppress the inflammatory responses in OA..102 AMSC-  and BMSC- 
derived exosomes have been shown promising results in reducing 
the inflammation in OA animal models. These sources of MSCs can 
inhibit the activation of macrophages, weaken the nitric oxide and 
MMP13 production, and decrease the pro- inflammatory cytokine 
production.47,82,103- 105 Furthermore, exosomes from other sources 
of MSCs have been also shown to suppress cartilage inflammation 
in animal models. Zhang et al showed that exosomes derived from 
human embryonic stem cell– derived MSCs induce more infiltration 
of M2 macrophages into the synovial fluid in an immunocompetent 
rat model.82 Zavatti et al also reported that exosomes derived from 
amniotic fluid stem cells (AFSC) change the polarization of macro-
phages into M2 type. They showed that either MSCs or their exo-
somes reduce the inflammatory cytokines in an animal model.106 It 
was also reported that exosomes derived from stem cells from human 
exfoliated deciduous teeth (SHEDs) inhibited cartilage inflammation 
by inhibiting mTOR pathway which is mediated by miR- 100- 5p.107 
Exosomes from other cell sources also could inhibit inflammation 
and suppress immune reactions in cartilage.84,87,105,107,108 However, 
exosomes derived from osteoarthritic chondrocytes have been 
shown to induce inflammation and increase IL- 1 production by 
macrophages.108

5  | E XPRESSION PAT TERN OF E XOSOMAL 
MIRNA S DURING CHONDROGENESIS

Exosomal miRNAs have been found to induce the proliferation and 
differentiation of stem/progenitor cells into chondrocytes.55,58 
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Therefore, it seems that miRNAs are involved in the chondrogen-
esis function of exosomes. Chondrocytes and MSCs are the main 
cell sources of these exosomes. MSCs are capable to differentiate 
into chondrocytes in proper conditions. Defining the exosomal miR-
NAs preserved or overexpressed during chondrogenic differentia-
tion may help the researchers to explore the miRNA targets involved 
in the chondrogenic differentiation. Sun et al tried to define the 
expression pattern of exosomal miRNAs during chondrogenesis of 
BM- MSCs. They analysed and compared the exosomal miRNAs in 
BM- MSCs before and after chondrogenic induction. The microarray 
data showed that more than 140 miRNAs differentially express by 
over a twofold change. It was indicated that the expression levels of 
miR- 1246, miR- 1290, miR- 193a- 5p, miR- 320c and miR- 92a are highly 
up- regulated, while the expression levels of miR- 377- 3p and miR- 
6891- 5p are dramatically down- regulated. They also found that the 
exosomes derived from miR- 320c- overexpressed MSCs are more 
potent than normal MSC exosomes in chondrocyte proliferation 
and matrix deposition.61 miR- 320c is known to inhibit MMP- 13 ex-
pression and repress the inflammation induced by interleukin- 1β.109 
These findings show the importance of exosomal miRNAs during 
chondrogenesis and can help to increase the efficiency of chon-
drogenesis of exosomes in further studies. However, more in vitro 
and in vivo studies are required to well define the differentially ex-
pressed exosomal miRNAs and their roles in chondrogenesis and 
cartilage repair. It is also important to compare the chondrogenic po-
tential of exosomal and non- exosomal miRNAs derived from MSCs 
and chondrocytes.

6  | CONCLUSIONS

Many studies indicated the potential role of exosomes in chondro-
genesis and cartilage regeneration. Exosomes derived from both 
chondrocytes and MSCs have been found to induce the differ-
entiation of progenitors and stem cells into mature chondrocytes 
in vitro. These exosomes have also a capability in the induction 
of cartilage endogenous stem/progenitor cells to migrate, pro-
liferate and differentiate into chondrocytes in vivo. Exosomes 
derived from MSCs increase the chondrocyte proliferation and 
bioenergetics level in the damaged cartilage. They also increase 
the level of anti- inflammatory and immunoregulatory cytokines 
and molecules, and decrease the level of inflammatory cytokines. 
Therefore, the use of exosomes from MSCs, as a cell- free thera-
peutic option, has a great potential in the treatment of OA and 
other diseases characterized by cartilage damage and chondro-
cyte loss. However, more studies are needed to evaluate the exact 
mechanisms of exosomes during cartilage repair. Nevertheless, 
there are some limitations that should be further considered. The 
efficient isolation and purification of exosomes are still a challeng-
ing task. In some cases, the atrophy of cartilage has been observed 
following MSC- derived exosome transplantation. Moreover, suf-
ficient cartilage regeneration is challenging when exosomes from 
various sources were transplanted.
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