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Mitochondrial dysfunction is a crucial contributor to heart diseases. Alterations in
energetic metabolism affect crucial homeostatic processes, such asATP production,
the generation of reactive oxygen species, and the release of pro-apoptotic factors,
associated with metabolic abnormalities. In response to energetic deficiency, the
cardiomyocytes activate the Mitochondrial Quality Control (MQC), a critical process
in maintaining mitochondrial health. This process is compromised in cardiovascular
diseases depending on the pathology’s severity and represents, therefore, a potential
therapeutic target. Several potential targeting molecules within this process have
been identified in the last years, and therapeutic strategies have been proposed to
ameliorate mitochondria monitoring and function. In this context, physical exercise is
considered a non-pharmacological strategy to protect mitochondrial health. Physical
exercise regulates MQC allowing the repair/elimination of damaged mitochondria and
synthesizing new ones, thus recovering the metabolic state. In this review, we will deal
with the effect of physical exercise on cardiac mitochondrial function tracing its ability to
modulate specific steps in MQC both in physiologic and pathologic conditions.
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INTRODUCTION

Mitochondria are considered the “energy power station” of the cells due to their ability to
regulate energy metabolism. These organelles also regulate critical cellular processes, such as
calcium homeostasis, and cell survival (Giorgi et al., 2018; Sprenger and Langer, 2019; Fan et al.,
2020). Thus, their health is critical to maintaining wellness in organs and tissues (Youle and van
der Bliek, 2012; Eisner et al., 2018), especially in high metabolic active tissues that need much
energy to support their activities. In this context, cardiac cells should supply the heart’s large
energy requests for its pumping activity. Therefore, mitochondria quality control is essential to
avoid alterations in cardiac physiological processes such as ATP production, ROS generation,
and survival/apoptotic mechanisms. To avoid metabolic alterations, mitochondria are carefully
monitored through a complex process, called mitochondrial quality control (MQC; Ni et al., 2015).
Such a process includes post-translational modification of mitochondrial proteins, mitochondrial
dynamics, and autophagy (Fan et al., 2020). In response to stimuli, such as cardiotoxic drugs,
ischemia/reperfusion, pressure overload, mitochondria health is compromised, favoring heart
disease development, such as cardiac hypertrophy, dilated cardiomyopathy, ischemia/reperfusion
injury, heart failure. Compensatory mechanisms are therefore activated by cardiac cells to favor
cell survival (mitochondrial dynamics): the cleavage of the damaged parts of mitochondria and
the fusion of healthy ones (fission/fusion), the elimination of irreversibly damaged mitochondria

Frontiers in Physiology | www.frontiersin.org 1 April 2021 | Volume 12 | Article 660068

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2021.660068
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fphys.2021.660068
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2021.660068&domain=pdf&date_stamp=2021-04-27
https://www.frontiersin.org/articles/10.3389/fphys.2021.660068/full
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-660068 April 21, 2021 Time: 16:30 # 2

Sorriento et al. Mitochondrial Quality Check and Exercise

(mitophagy), and the replacement of lost mitochondria
(mitochondrial biogenesis). Alterations in one of these steps
lead to mitochondrial dysfunction, compromise cell metabolism,
and trigger pathologic conditions (Figure 1). Several targeted
approaches have been proposed to ameliorate mitochondrial
function in failing hearts, including agonists for the PPARs and
ERRs, SIRT1, and AMPK (Andreux et al., 2013). In this field,
physical exercise is emerging as a non-pharmacologic tool to
attenuate mitochondrial dysfunction in pathologic conditions,
including cardiovascular diseases.

THE MOLECULAR MECHANISMS OF
MITOCHONDRIA MONITORING IN THE
HEART

The pathogenesis of heart dysfunction is based on the
activation of multiple and complex mechanisms. Among
them, mitochondrial dysfunction is a common hallmark of
cardiomyocyte damage (Bayeva et al., 2013; Ciccarelli et al.,
2020). To support energetic heart demands, cardiac cells
are rich in mitochondria (30% of the total cell volume) to
provide adequate ATP supply. Therefore, in these cells, MQC
is fundamental to ensure good mitochondrial homeostasis
(Disatnik et al., 2013, 2015). In the heart, the distribution
and metabolic function of mitochondria is associated with the
myocardium’s developmental stage (Vasquez-Trincado et al.,
2016). Indeed, in neonatal cardiomyocytes, energy derives
mainly from glycolysis and glucose oxidation, mitochondria
have a reticular distribution in the cytosol and can move freely
within the cell (Lopaschuk and Jaswal, 2010; Vasquez-Trincado
et al., 2016). In adult cardiomyocytes, energy oxidation of
fatty acids is the primary energy source, mitochondria have
interfibrillar, subsarcolemmal, and perinuclear localization and
their movements are limited (Stanley et al., 2005; Vasquez-
Trincado et al., 2016). Cardiac mitochondria are part of
dynamic networks depending on the balance between fusion
and fission processes and are relevant to several processes of
cardiovascular biology, such as cardiac development, responses
to ischemia/reperfusion injury, heart failure, and apoptosis
(Vasquez-Trincado et al., 2016). In normal conditions, the
levels of mitochondrial proteins involved in fusion should
be high to support oxidative phosphorylation capacity (Youle
and van der Bliek, 2012). Post-translational modifications of
specific mitochondrial proteins, such as ubiquitination of Myro2,
increased SUMOylation of DRP1, decreased SUMOylation of
mitofusins (MFN2), phosphorylation of DRP1, or alterations in
their expression levels, such as excessive increase or deficiency
of PGC1-alpha, increased levels of DRP1, reduced expression of
MFN2 or OPA-1, leads to several heart diseases (Fan et al., 2020).
This evidence comes from studies in preclinical models based on
the downregulation or knockout of specific mitochondrial genes,
MFNs, optic atrophy 1 (OPA1), and DRP1 (Papanicolaou et al.,
2011, 2012a,b; Piquereau et al., 2012; Sharp et al., 2014) proposing
these proteins as potential targets to ameliorate cardiac function.
Research in the field is still ongoing to better define the specific
pathways that are active in the heart in response to stress.

Mitochondria Fission and Fusion
The organelle’s morphology dictates the mitochondrial function:
a critical feature in the MQC is the mitochondrial network
structure’s dynamic nature. Through fission and fusion
events, mitochondria continuously change their shape (from
small puncta to interconnected networks), adapting to the
energetic status and the different metabolic supplies (Otera
and Mihara, 2011). Indeed, increasing mitochondrial fusion
results in elongated mitochondria and the increase of network
interconnectivity while increasing mitochondrial fission results
in fragmented unconnected mitochondria (Dorn, 2015). The
most representative subtypes of mitochondrial morphology
include small spheres, swollen spheres, straight rods, twisted
rods, branched rods, and loops (McCarron et al., 2013; Leonard
et al., 2015). This classification is based on the analysis of specific
measures (branch count, circularity, form factor, branch length,
and mito-area) in images of mitochondria labeled with a specific
fluorescent probe, Mito-tracker. This analysis of mitochondrial
morphology is critical to identify defects in mitochondrial
dynamics. Indeed, alterations in the mitochondrial network
organization are classic features of many metabolic diseases,
especially in their early stages (Galloway and Yoon, 2013). The
molecular machinery that controls fusion and fission processes
is finely regulated. Fusion is required to maintain mitochondrial
DNA and cellular respiration (Chen et al., 2010; Sprenger and
Langer, 2019) and is essential for embryonic development (Chen
et al., 2003) and tissue homeostasis (Song et al., 2015b). This
process is regulated by the mitofusins (MFN1 and MFN2) on the
outer mitochondrial membranes and by OPA1 on the internal
mitochondrial membranes (Cerveny et al., 2007). A recent study
shows that MFNs change their conformations in response to
specific intramolecular interactions and the targeting of these
conformational changes can correct defects in mitochondrial
dynamics (Franco et al., 2016), suggesting the critical role of
MFNs. Mitochondrial fission is needed for inheritance and the
removal of damaged mitochondria and is regulated by DRP1,
a cytoplasmic GTPase that is recruited to mitochondria in
response to stress (Taguchi et al., 2007). The genetic deletion of
DRP1 in the heart blocks mitochondrial fission and upregulates
Parkin, leading to lethal cardiomyopathy (Song et al., 2015a).
Alterations in fission and fusion events mine mitochondrial
function and represent a common feature in several human
diseases (Archer, 2013).

Autophagy/Mitophagy
Autophagy is the “cleaner” of the cell to remove dysfunctional
proteins and organelles. In 2016 Prof. Yoshinori Ohsumi was
awarded to Nobel Prize in Medicine for the identification of
most proteins and pathways involved in the process (Tsukada
and Ohsumi, 1993), the metabolic state sensors that regulate
them (Eisner et al., 2018), and the fine mechanistic details
of autophagosome formation (Nakatogawa et al., 2012).
Three different autophagic mechanisms occur in mammals:
microautophagy, chaperone-mediated autophagy (CMA), and
macroautophagy (Wang and Klionsky, 2011; Shirakabe et al.,
2016). Microautophagy allows the elimination of small portions
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FIGURE 1 | Active MQC is essential for maintaining mitochondria integrity and function. The impairment of MQC leads to metabolic alterations and irreversible
mitochondria damage.

of cytoplasm that are directly trapped through membrane
invaginations of lysosomes. CMA determines a selective
degradation of cytosolic proteins with particular sequences
recognized by chaperones and transferred to lysosomes.
Macroautophagy determines the degradation or recycling of
proteins and organelles by trapping them in double-membrane
structures (autophagosomes) that fuse with lysosomes. The
degradation of the sequestered elements occurs through the
activity of specific lysosomal hydrolases (Wang and Klionsky,
2011). The selective macroautophagy aimed to remove damaged
mitochondria is called “mitophagy.” There are two central
regulators of the autophagic process, mTOR, and AMPK
(Kim et al., 2011). mTOR activity is inversely correlated with
autophagy: when mTOR increases, autophagy shuts down
(Dunlop and Tee, 2014). The mTOR complex 1 (mTORC1)
activity is sensitive to fluctuations in amino acid levels. In
amino acid-rich conditions, mTORC1 inactivates the autophagy
initiators ULK (Rabanal-Ruiz et al., 2017). On the opposite,
AMPK is a fine activator of autophagic processes (Dunlop and
Tee, 2014). It is a sensor of intracellular energy through the
detection of the AMP/ATP ratio. The increase of this latter
activates the AMPK-dependent autophagic process to allow
degradation or recycle of dysfunctional proteins and organelles
(Tong et al., 2020). Also, protein acetylation seems to be involved
in the regulation of autophagy in the heart, such as tubulin
acetylation. Indeed, inhibiting tubulin deacetylation by histone
deacetylase 6 reduced protein aggregates in cardiomyocytes and
led to substantial improvement in cardiac function (McLendon
et al., 2014). The analysis of autophagy is generally performed
through the evaluation of the specific molecules involved in
the autophagic machinery or evaluating the autophagic flux,

that represents the measure of the autophagic degradation
activity. The autophagic process includes the formation of
the phagophore, the initial sequestering compartment, the
completion of the autophagosome, the fusion with lysosomes
and degradation of the contents. Defects in autophagic flux are
evaluated through the detection of autophagosome turnover.
Its accumulation indicates a block in fusion with lysosomes
or disruption of lysosomal functions (Klionsky et al., 2012;
Loos et al., 2014). Mitophagy, in particular, is a critical step
in maintaining cardiac function at normal levels, and defects
in such a process could trigger the metabolic alterations in
cardiomyocytes. In the heart, it occurs through the activation
of two different intracellular pathways: parkin dependent
and independent mechanisms. The PINK1-Parkin axis is the
most widely studied mitophagy pathway that is activated in
response to mitochondrial membrane depolarization. In healthy
mitochondria, transmembrane potential allows the import of
PINK1 to the inner mitochondrial membrane where it is cleaved
and degraded by the proteasome (Ding and Yin, 2012); thus,
its levels are generally low. In damaged mitochondria, Pink
levels increase inducing the recruitment and activation of Parkin
(Kim et al., 2008; Ding and Yin, 2012), which in turn induces
the ubiquitination of several mitochondrial proteins (MFN2,
VDAC, and DRP1; Geisler et al., 2010). The adapter protein
p62/SQSTM1 can promote Parkin-dependent mitophagy by
interacting with both ubiquitin and LC3-II and favoring the
mature autophagosome (Geisler et al., 2010). Autophagosome
fusion with lysosomes allows the degradation of encapsulated
materials by proteolytic enzymes (Vainshtein et al., 2015b).
In this pathway, Parkin translocation to mitochondria and
detection levels of LC3-II are considered specific markers of
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mitophagy. Autophagosome formation depends on the serine-
threonine kinase ULK-1, which acts in complex with other
proteins (Zachari and Ganley, 2017). In some cases, Parkin’s
genetic deletion does not prevent mitophagy, which occurs
through the activation of an alternative pathway independent
of Parkin and protein ubiquitination. Indeed, in addition to
the PINK1-Parkin pathway, other LC3-interacting proteins
are also involved in mitophagy such as FUNDC1, BNIP3, or
BNIP3L/NIX. They directly recruit autophagic machinery by a
ubiquitin-independent mechanism to induce autophagosome
formation in specific cell types (Liu et al., 2014). Four selective
autophagy cargo receptors have been identified, p62 (SQSTM1),
NBR1, NDP52, and Optineurin, which serve as mitophagy
receptor in mammals. These receptors allow LC3-II binding
and to specifically select mitochondria to be degraded into
autophagosomes (Wang et al., 2019).

Mitochondrial Biogenesis
Mitochondrial biogenesis is the process that regulates the
synthesis of new mitochondria allowing the rescue of the
mitochondrial mass to support the cardiac energy supplies
(Scarpulla, 2011). This process is finely regulated by PGC1-
alpha (Austin and St-Pierre, 2012; Dorn et al., 2015) which
interacts with transcription factors (NRF1/2, ERR, and PPAR)
and regulates the replication of mtDNA and the transcription
of mitochondrial proteins genes (Dorn et al., 2015). The
cardiac-specific overexpression of PGC1-alpha in mice increases
mitochondrial biogenesis during the postnatal period (Lehman
et al., 2000) while its genetic deletion has no effect under basal
conditions but accelerates cardiac dysfunction in response to
pressure overload (Arany et al., 2006). The germline deletion
of PGC-1alpha induces a perinatal arrest of biogenesis and
reduction in mitochondrial content (Lai et al., 2008). AMPK
also regulates energy homeostasis directly, by phosphorylating
metabolic enzymes and nutrient transporters, and indirectly,
by promoting the transactivation of nuclear genes involved in
mitochondrial biogenesis and function (Bergeron et al., 2001;
Lai et al., 2008). Indeed, AMPK phosphorylates components
of signaling pathways that enhance mitochondrial biogenesis
such as PGC-1alpha (Bergeron et al., 2001). Also, it acts as an
epigenetic regulator by phosphorylating three proteins involved
in nucleosome remodeling, DNMT1, RBBP7, and HAT1 (Marin
et al., 2017). Such phosphorylative events increase histone
acetylation and decrease DNA methylation of PGC-1α, NRF1,
NRF2, Tfam, UCP2, and UCP3 promoters (Marin et al., 2017)
inducing mitochondrial biogenesis.

PHYSICAL TRAINING:
NON-PHARMACOLOGICAL THERAPY
TO IMPROVE HUMAN HEALTH

Most people, mostly young, perform physical activity (PA) to lose
weight and ameliorate their physical appearance. Besides these
esthetic effects, PA emerged as a critical promoter of human
health, especially in the presence of chronic pathologies. The
American College of Sports Medicine generated guidelines and

recommendations to direct toward a correct PA practice and
the presence of complications (No authors listed, 1997; Kraemer
et al., 2009; Schmitz et al., 2010; Garber et al., 2011). Therefore,
a structured exercise training plan is now considered an integral
part of the medical prescription for preventive and therapeutic
purposes. Based on patients’ state of health and physical ability,
a structured, personalized plan of exercise training can be
prescribed, including the type and intensity of the exercises,
duration, frequency, progression, and execution methods. The
prescription of a good fitness program is fundamental to avoid
injuries, and, in extreme cases, sudden death in athletes.

In healthy people, physical exercise induces several
physiological changes to augment the cardiopulmonary system’s
activity to deliver oxygen to all organs and tissues, including the
heart. This action implicates several beneficial effects, especially
in frail and non-frail older persons (Svantesson et al., 2015; Silva
et al., 2017), favoring neuroplasticity and cognitive functions
(Hotting and Roder, 2013), reducing stress (Bischoff et al.,
2019), ameliorating physical performances and daily activities.
Overall, PA is associated with a better quality of life and health
outcomes, especially in elders. In part, physical performance
depends on the composition of skeletal muscle since it includes
different fiber types that are responsible for muscle plasticity
in response to functional demands: slow oxidative fibers (type
I) and fast glycolytic fibers (type II). Several stimuli can affect
fiber-type switch, and PGC-1α seems to be the critical regulator
of this phenomenon (Lin et al., 2002). This is not surprising,
considering that PGC1-alpha induces mitochondrial biogenesis
in different tissues and organs, contributing to mitochondrial
energetics. Gene deletion of this protein in mice causes a shift
from slow type I toward fast type II muscle fibers associated with
exercise intolerance (reduced endurance capacity, fiber damage,
and inflammation). In response to gene deletion, physical
training increases total mitochondrial protein content within
fibers (Lundby and Jacobs, 2016) and favors fiber type switch,
by activating AMPK, the upstream regulator of PGC-1alpha
(Rockl et al., 2007).

Physical activity also exerts beneficial effects in pathological
conditions, such as childhood and adult obesity (Jakicic and
Davis, 2011; Diaz Martinez et al., 2015), cancer (Jones et al., 2011,
2012), rheumatoid arthritis (Cooney et al., 2011), type 2 diabetes
(Wilkerson et al., 2011), anthracyclines-induced cardiotoxicity
(Scott et al., 2011), and cardiovascular diseases (Myers, 2003).
In this context, the link between PA and cardiovascular diseases
is becoming increasingly tight for the prevention and treatment
of these conditions. Indeed, PA exerts beneficial effects on both
cardiovascular risk and pathologies, as described below.

EXERCISE REGULATES
MITOCHONDRIAL PHENOTYPES

Exercise triggers several changes in the mitochondrial dynamics
and function that may be dependent upon exercise intensity.
However, the precise mechanisms remain to be better elucidated
and warrant future investigations. Below, we discuss the available
findings on this issue (Figure 2).

Frontiers in Physiology | www.frontiersin.org 4 April 2021 | Volume 12 | Article 660068

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-660068 April 21, 2021 Time: 16:30 # 5

Sorriento et al. Mitochondrial Quality Check and Exercise

FIGURE 2 | Exercise activates several intracellular pathways to regulate mitochondrial function.

Exercise and Mitochondrial Biogenesis
Acute exercise activates several mechanisms that converge on
PGC-1α, the master regulator of mitochondrial biogenesis, such
as CaMK, p38 MAPK, AMPK, and p53 signaling. In L6 myotubes,
an increase of cytosolic calcium induces PGC-1alpha, NRF-1,
NRF-2, and mtTFA. This effect is prevented by both dantrolene,
which blocks Ca2+ release from the SR, and a low concentration
of the CAMK inhibitor, KN93 (Islam et al., 2020). These findings
point to CaMK as a trigger of this signaling cascade (Islam et al.,
2020). The activation of the p38-MAPK pathway also affects
mitochondrial biogenesis by inducing PGC-1alpha promoter
activity. Accordingly, through specific inhibitors or a dominant-
negative form of p38, its inhibition exerts the opposite effect
(Memme et al., 2019). The upstream activation of p38 MAPK
signaling seems to be due to the increase of reactive oxygen
species (Oliveira and Hood, 2019). AMPK activity also increases
in response to exercise. This increase occurs in rats’ muscles
running on a treadmill and in response to electrical stimulation
(Belardinelli et al., 2012; Kachur et al., 2019). However, not all
muscular adaptations to training are mediated by the activation
of AMPK since this latter occurs in the superficial, white region
of the quadriceps and soleus muscles of rats but not in the deep,
red region of the quadriceps muscle (Belardinelli et al., 2012).
Also, the tumor suppressor p53 is involved in the regulation
of mitochondrial biogenesis (Ferreira et al., 2014). Indeed,
preclinical studies show that its deletion reduces mitochondrial
respiration and content, and endurance performance (Ferreira
et al., 2014; Carter et al., 2015; Roh et al., 2016). In particular,
p53 regulates both the mitochondrial transcription machinery, by
translocating to mitochondria and activating TFAM (Lopez-Otin
et al., 2013), and mitochondrial respiration, by interfering in the

balance between glycolytic and oxidative pathways (Carter et al.,
2015). The increase of intracellular calcium, ROS production,
AMP/ATP ratio, circulating catecholamines are the upstream
exercise signals that activate the above-described pathways
(Fiorenza et al., 2018). The activation of these mechanisms also
seems to be dependent on training intensity. Indeed, healthy
men were asked to perform either sprint interval training
(SIT), high−intensity interval training, or sub-lactate threshold
continuous training for 4 weeks, and mitochondrial function
was measured in muscle biopsy. The maximal mitochondrial
respiration in muscle fibers increased significantly only after
SIT and associates with a specific raised content of PGC-1alpha
and p53 (Kim et al., 2017). Overall, these findings suggest that
PA, based on training intensity, activates different intracellular
pathways that favor new mitochondria synthesis.

Exercise and Mitochondria Turnover
Physical activity also triggers cleaner processes to regulate the
turnover of organelles: mitophagy and lysosomes biogenesis.
Recent studies show that exercise improves mitochondrial quality
and function by stimulating their turnover (Safdar et al., 2011;
Cartee et al., 2016; Joseph et al., 2016). Acute exercise induces
autophagy in skeletal and cardiac muscle of fed mice that is
protective against metabolic disorders. Indeed, mice with knock-
in mutations in BCL2 gene that prevent autophagy activation
show decreased endurance and altered glucose metabolism
during acute exercise (He et al., 2012). Exercise training promotes
the degradation of abnormal mitochondria by autophagy, known
as mitophagy (Vainshtein et al., 2015a; Laker et al., 2017;
Yoshioka et al., 2019). Since AMPK is a known activator of
autophagic flux and given the ability of exercise to induce its
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levels, PA likely induces mitochondrial turnover by activating
AMPK dependent mechanisms.

Exercise and Mitochondrial Morphology
Mitochondria morphology is severely affected in failing muscles,
including the heart, and is a hallmark of mitochondrial
dysfunction. This feature is finely regulated by fusion and
fission processes (Cartoni et al., 2005; Ding et al., 2010).
In this context, exercise affects mitochondrial morphology by
activating specific molecular mechanisms. The muscle-specific
gene Zmynd17 is known to control mitochondrial quality in
muscle, especially in fast glycolytic muscles. Its deletion leads
to abnormal mitochondria accumulation, whose number is
significantly reduced after 10 weeks of voluntary exercise (Fujita
et al., 2018). These findings underline that exercise’s beneficial
effect occurs independently from Zmynd17 activity, suggesting
the specificity of PA effects (Yoshioka et al., 2019). It has been
shown that acute exercise increases mitofusins’ expression in
human skeletal muscle and stimulates mitochondrial fusion by
activating the PGC−1α/ERRα pathway (Cartoni et al., 2005).
PGC1a overexpression in muscle leads to dense mitochondria
with typical cristae structure and increases the endurance
exercise capacity (Casuso and Huertas, 2020). This effect is also
reproduced in humans. In highly trained swimmers subjected
to two high-intensity swimming bouts, both SIT and HIT
protocols induced mitochondrial fusion and increase MFN2
protein content (Huertas et al., 2019). Accordingly, DRP1 and
MFN2 gene expression levels increase immediately following
exercise (SIT and MICT) in healthy active subjects (Granata et al.,
2017) and moderately trained subjects (Fiorenza et al., 2018). In
response to high-intensity exercise, this effect also occurs and
depends on β-adrenergic stimulation (Cribbs and Strack, 2007).
Accordingly, preclinical studies show that acute exercise inhibits
mitochondrial fission in a β-adrenergic-dependent manner and
is mainly due to DRP1 inactivation through phosphorylation at
Ser637 (Cribbs and Strack, 2007; Casuso and Huertas, 2020).
PA regulates fission and fusion processes also affecting calcium
handling. Indeed, HIT acutely induces ryanodine receptor 1
fragmentation, thus altering calcium uptake by the SR and
increasing calcium release in the cytosol (Place et al., 2015).
Altogether, these findings underline that exercise activates
specific intracellular pathways to counteract the defects in
mitochondrial dynamics.

Exercise and Mitochondrial Respiration
Mitochondria are the primary source of ATP synthesis within
the cell through the electron transport chain, and several factors
could affect this activity, such as oxidative stress, nitric oxide,
and substrate availability. Exercise can regulate mitochondrial
respiration, thus affecting ATP production and mitochondrial
function. Indeed, both acute and endurance exercise augments
state four respiration and the respiratory control index (Han and
Kim, 2013; Yoo et al., 2019).

Exercise and Oxidative Stress
ROS are not necessarily detrimental but exert different effects
depending on their levels. Physiological levels of ROS are

essential to perform different cellular functions, such as
the regulation of vascular tone by regulating nitric oxide
synthase, the regulation of immune responses and apoptosis by
activating specific transcription factors (AP-1 and NFkappaB),
the regulation of insulin receptor kinase activity by activating
protein tyrosine phosphatases (Fisher-Wellman and Bloomer,
2009). On the contrary, excessive amounts of ROS are pathologic
and activate several molecular mechanisms leading to cell damage
and death. ROS levels depends on the balance between its
production and scavenging (Aon et al., 2010; Aon et al., 2012).
Exercise can affect the oxidative state of the cell by increasing
ROS production. It is not surprising given its ability to augment
mitochondrial respiration, one of the primary sources of free
radicals (Fisher-Wellman and Bloomer, 2009; Cooper et al.,
2012). The heart has a high oxidative metabolic rate with scarce
antioxidant activity and is, therefore, most sensitive to oxidative
changes. Endurance training protects the heart from oxidative
stress by upregulating both ROS, which themselves stimulate the
redox system, and several antioxidant systems (Ascensao et al.,
2003). However, depending on the mode, intensity, and duration
of exercise, the amount of ROS could switch from a physiological
to a pathological level determining the type of response from
oxidative stress to adaptative responses.

CARDIAC ADAPTATIVE RESPONSES TO
EXERCISE: THE PHYSIOLOGICAL
CARDIAC HYPERTROPHY

In response to exercise-dependent hemodynamic stress of
pressure and volume overload, the heart activates adaptative
responses: metabolic remodeling and physiological hypertrophy.
Physiological hypertrophy induced by exercise is characterized
by a 10–20% increase of cardiac mass and normal or enhanced
contractile function, at a non-pathologic level (Maillet et al.,
2013). This effect is due to exercise dependent modulation of
myocardial metabolism (fatty acid metabolism, carbohydrate
metabolism, and mitochondrial adaptation). Indeed, exercise
promotes fatty acid utilization through the up-regulation of
carnitine acyltransferase shuttles (CPT-1 and CPT-2; Abel
and Doenst, 2011). It dynamically regulates cardiac glucose
utilization: in the acute phase, it reduces glycolysis by modulating
phosphofructokinase activity favoring physiological cardiac
remodeling; in the recovered phase, it increases myocardial
phosphofructokinase activity and glycolysis (Gibb et al., 2017).
This dynamic regulation of phosphofructokinase activity affects
the glucose-fatty acid cycle and heart growth (Gibb et al.,
2017). Exercise also promotes e-NOS dependent mitochondrial
biogenesis (Vettor et al., 2014) and physiological ROS production
(Alleman et al., 2014).

Furthermore, exercise-dependent physiological hypertrophy
activates cardiac progenitor cells. Indeed, C-kit and Sca-1
positive cardiac stem cells, the main types of cardiac stem cells
in the heart, are activated by swimming exercise training in
mice (Xiao et al., 2014), which protects the heart in response
to myocardial infarction and ischemia-reperfusion (IR) injury
(Farah et al., 2013; Nicholson et al., 2013). Exercise also induces
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functional adaptation of the heart by improving cardiac function
and cardiomyocyte contractile function by activating ryanodine
receptors and sarcoendoplasmic reticulum Ca2+ ATPase SERCA
(Wisloff et al., 2001; Esch et al., 2007; Kemi et al., 2008;
Nystoriak and Bhatnagar, 2018).

EXERCISE REDUCES
CARDIOVASCULAR RISK

A sedentary lifestyle is considered a significant risk factor for
cardiovascular disease while performing a regular PA could
positively affect health. To date, exercise is considered a
non-pharmacological intervention for improving cardiovascular
fitness in healthy and diseased individuals increasing exercise
tolerance and ameliorating the quality of life (Figure 3; Adams
and Schuler, 2012). Indeed, exercise favors the reduction in body
weight and LDL cholesterol (Lee et al., 2013), the increase in HDL
cholesterol (Lee et al., 2013), and insulin sensitivity (Borghouts
and Keizer, 2000) thus preventing pathologic conditions such as
obesity, atherosclerosis, and diabetes (Ruderman and Schneider,
1992). Regular physical exercise decreases blood pressure both at
rest and during exercising, thus preventing a hypertensive state
(Cornelissen and Smart, 2013). Overall, these findings suggest the
effectiveness of PA to reduce cardiovascular risk.

Also, inflammation and endothelial function, which are
involved in cardiac diseases, are two important targets of PA. Both
preclinical and clinical studies suggest acute and long-term anti-
inflammatory effects of exercise by increasing anti-inflammatory
cytokines and reducing pro-inflammatory mediators (IL-6 and
TNFalpha) in different tissues (Metsios et al., 2020). The anti-
inflammatory action is due to increased transcription factor
PPAR alpha and the reduction of NFkappaB levels (Santos et al.,
2016). Moreover, PA improves endothelial function by reducing
reactive oxygen species production and increasing nitric oxide

bioavailability (Di Francescomarino et al., 2009; Skrypnik et al.,
2014). In particular, in response to myocardial IR injury, PA is
protective by activating adrenergic receptors type 3 (β3AR) and
increasing the cardiac storage of nitric oxide metabolites (Calvert
et al., 2011). Angiogenesis is also induced by repeated exercise
through VEGF gene expression and EPCs release (Strehlow et al.,
2003; Di Francescomarino et al., 2009). Research in the field is
still ongoing to identify other PA targets, which could explain
its effects. In this context, mitochondrial function is critical for
heart health. Indeed, physical exercise benefits are associated
with increased energy expenditure with a high impact on
mitochondrial metabolism. In response to exercise, mitochondria
increase ATP synthesis rates to address the cell’s metabolic
requests (Sato et al., 2019). To this aim, several nuclear and
cytoplasmic proteins are activated to induce MQC and recover
mitochondrial function. These findings support the proof of
concept that exercise could represent a “mitochondrial medicine
for muscle,” including the heart, by counteracting mitochondrial
dysfunction (Memme et al., 2019; Oliveira and Hood, 2019;
Islam et al., 2020).

EXERCISE AND CARDIAC DISEASES

In combination with traditional therapies, exercise training is
considered a therapeutic tool in coronary heart disease being
a critical component in the rehabilitation program of patients
after a cardiac event (Kachur et al., 2019). Long-term exercise
training improves life quality and reduces hospitalization for
cardiovascular diseases and cardiac death in patients with heart
failure (Belardinelli et al., 2012).

The molecular mechanisms underlying these effects remain
to be defined. Several findings point to mitochondria as the
target of the adaptative responses of the heart to PA. Indeed,
mass spectrometry analysis in healthy hearts from animal

FIGURE 3 | Exercise reduces cardiovascular risk by regulating several phenotypes, thus preventing pathologic conditions that contribute to cardiac dysfunction.
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models after 54 weeks of moderate treadmill exercise show
an increase in mitochondrial protein content with specific
reprogramming of the phosphoproteome (Ferreira et al., 2014).
However, an adequate exercise training plan also affects
mitochondrial function and ameliorates cardiac function in
pathologic conditions, such as aging, IR, myocardial infarction,
heart failure, diabetic cardiomyopathy (DCM), and doxorubicin-
dependent cardiotoxicity.

Exercise and Aging
Structural and functional changes in the heart occur in
aging leading to cardiac dysfunction and a progressive loss
of muscle mass and strength, known as sarcopenia (Carter
et al., 2015). These changes are due to alterations of different
molecular mechanisms (decrease of PI3K/AKT and β-adrenergic
receptor signaling, impaired calcium handling, mitochondrial
dysfunction,n and increased ROS production) and can be
mitigated by regular exercise (Lopez-Otin et al., 2013; Roh
et al., 2016). Aging is per se associated with alterations in
MQC at different steps. A reduction of mitochondrial biogenesis
in aging is due to alterations in AMPK, SIRT1, and PGC-
1α activation (Kim et al., 2017). Autophagy and autophagic
flux are generally decreased in aging hearts, leading to the
accumulation of misfolded proteins and dysfunctional organelles.
Accordingly, at the morphological level, aging skeletal muscle
mitochondria mainly undergo fission, resulting in smaller, and
fragmented mitochondrial structures (Joseph et al., 2012). Also,
ROS progressively accumulate during aging, due to impairment
of mitochondrial oxidative phosphorylation (Shirakabe et al.,
2016). Indeed, the aged heartis characterized by a decreased
oxidative capacity due to defects in the complexes III and
IV of the electron transport chain leading to increased ROS
levels. Preclinical studies in aged rats show that regular exercise
is cardioprotective by reversing mitochondrial function and
quality, oxidative stress, and apoptosis (Carter et al., 2015; Chen
et al., 2018; No et al., 2020; Zhang et al., 2020). In particular,
exercise increases beta-adrenergic and IGF1 signaling, calcium
handling by regulating SERCA activity, and mitochondrial
dynamics, by inducing PGC-1alpha (Roh et al., 2016). All these
findings suggest the potentiality of exercise to revert cardiac
aging in humans.

Ischemia-Reperfusion Injury
Myocardial ischemia/reperfusion leads to significant cardiac
metabolic changes that strongly affect the contractile function
(Rosano et al., 2008). These metabolic changes are initially
beneficial, allowing the adaptative responses of the heart to
the ischemic condition. However, they become chronically
detrimental, contributing to the ischemic injury (cardiomyocyte
death and contractile dysfunction) perpetuated in the first
reperfusion phase (Rosano et al., 2008). During the ischemic
period, damage to the mitochondrial electron transport
chain leads to oxidative and mitochondrial damage. In
the following reperfusion phase, damaged mitochondria
worsen cardiomyocyte injury, leading to excessive ROS
production, alterations of calcium handling, depolarization,
and mitochondrial membrane (Lesnefsky et al., 2017). In this

context, the activation of mitophagy is essential to counteract
the progression of mitochondrial damage. A novel alternative
mitophagy pathway has been recently described and protects
the heart against ischemia (Saito et al., 2019). This pathway
is based on the action of a multiprotein complex consisting
of Ulk1, Rab9, Rip1, and Drp1 (Saito et al., 2019). Ulk1-
dependent phosphorylation of Rab9 favors the interaction
between Rab9 and Rip1 and the consequent phosphorylation
of Drp1, leading to the activation of mitophagy. Thus,
manipulations of mitochondrial dynamics are encouraged
to increase therapeutic intervention opportunities in response to
ischemia/reperfusion.

The analysis of mitochondria isolated from hearts of sedentary
and exercise-trained rats suggests that exercise can counteract
mitochondrial damage: increases antioxidant enzymes and the
expression of anti-apoptotic proteins, reduces ROS production,
and release of cytochrome c from mitochondria (Kavazis et al.,
2008). These effects favor the development of a protective
cardiac mitochondrial phenotype that resists apoptotic stimuli.
This protective role of mitochondria also occurs in the heart
against IR (Lee et al., 2012). Indeed, exercise training protects
mitochondria from IR-induced uncoupling and oxidative
damage by increasing the levels of cardiac mitochondrial
4-hydroxynonenal-conjugated proteins and mitochondrial
antioxidant enzymes. Also, PA prevented the IR-induced release
of cytochrome c from the mitochondria (Lee et al., 2012).

Myocardial Infarction and Heart Failure
Defects in mitochondrial function play a central role in the
pathogenesis of myocardial remodeling and heart failure
progression, affecting clinical features of heart failure, including
skeletal muscle dysfunction, and renal pathologies. The
severity of these alterations is strongly associated with the
progression of cardiac damage transitioning from physiological
hypertrophy to heart failure (Chaanine et al., 2020). In acute
myocardial infarction, autophagic flux is impaired and leads
to the accumulation of damaged mitochondria, reduced
oxygen consumption, and an increase of calcium-induced
mitochondrial permeability. However, 8 weeks of exercise
training after myocardial infarction counteract such effects.
Autophagic flux, mitochondrial bioenergetics, and oxidative
capacity are improved in trained mice, and overall cardiac
function is ameliorated (Campos et al., 2017). Mitochondrial
dysfunction and metabolic alterations worsen progressing
to severe systolic dysfunction. In this late stage of cardiac
dysfunction (advanced heart failure) mitochondrial morphology
and dynamics are severely impaired, as well as fatty acid and
glucose metabolism, with an increase of mitochondrial fission
proteins (DRP1), a reduction of fusion proteins (OPA1 and
MFN) and a downregulation of PGC-1alpha activity (Figure 4;
Sabbah, 2020). Exercise reduces such defects by increasing
energetic metabolism and autophagy and reducing calcium
uptake and ROS production (Campos et al., 2017). This
evidence underlines an association between mitochondrial
damage and severity of cardiac dysfunction, which allows us
to hypothesize that mitochondria could be an early trigger
of cardiac damage.
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FIGURE 4 | Mitochondrial alterations in heart failure.

FIGURE 5 | Exercise affects several phenotypes within the cell by activating different molecular mechanisms that orchestrate the adaptative responses of organ and
tissues.
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Diabetic Cardiomyopathy
Diabetic cardiomyopathy involves alterations of energy
metabolism (Lorenzo et al., 2013; Nirengi, 2020). The diabetic
heart almost exclusively depends on fatty acid degradation to
maintain ATP production, which reduces cardiac efficiency
(Nirengi, 2020). This causes mitochondrial dysfunction,
accumulation of ROS, reduced autophagy, enhanced cell death,
and the development of a progressive pro-inflammatory and
profibrotic phenotype (Tan et al., 2020). Indeed, pre-clinical
studies show a reduction of AMPK activity and an increased
expression of mTOR in diabetic hearts from db/db mice,
which are associated with the inhibition of autophagy in the
heart (Kanamori et al., 2015). mTOR is a key mediator of
the insulin signaling pathway and its chronic activation in
diabetic hearts suppresses insulin receptor substrate blocking
PI3K/Akt signaling and resulting in insulin insensitivity (Suhara
et al., 2017). All these conditions lead to cardiac dysfunction
and heart failure.

Exercise protects the heart against ROS accumulation during
the development of DCM. In a diabetic mouse model,
exercise ameliorates blood pressure and systolic dysfunction and
improves mitochondrial function by shifting energy metabolism
from fatty acid to glucose oxidation (Wang et al., 2020).
Accordingly, in a rat model of diabetes, resistance exercise
reduces reactive oxygen species production and improves
mitochondrial function. In particular, it increases mitochondria
numbers, mitochondrial membrane potential, mitochondrial
biogenesis, and its regulators (Ko et al., 2018).

Anthracyclines Dependent Heart Failure
It is well known that cardiac dysfunction could also be induced
by the cardiotoxic effect of anticancer drugs like anthracyclines
(Gambardella et al., 2017; Tufano et al., 2018; Tocchetti
et al., 2020). Several studies suggest mitochondrial dysfunction
in doxorubicin-dependent cardiac damage, with alterations
of mitochondrial dynamics (Green and Leeuwenburgh, 2002;
Ichikawa et al., 2014; Buondonno et al., 2016). Regular
exercise can counteract this effect by preventing doxorubicin
dependent activation of the apoptotic signaling and alterations
in mitochondrial dynamics, including mitophagy (Marques-
Aleixo et al., 2018). Based on these findings, PA is now
considered a therapeutic tool to address some adverse effects
of cancer treatment (Ingram et al., 2010; Furmaniak et al.,
2016) and prevent cardiotoxicity (Gilchrist et al., 2019). In
this context, a statement from the American Heart Association
provides an overview of the existing knowledge in the use
of cardiac rehabilitation to cancer patients and survivors and
introduces the novel concept of “cardio-oncology rehabilitation”
(Gilchrist et al., 2019).

CONCLUSION

Mitochondria are critical players for human health, and
their functional integrity is essential for maintaining a
well-functioning heart. Metabolic alterations strongly affect
cardiovascular diseases, not only as a secondary effect of cardiac
damage but also as a trigger of dysfunction. To date, several
critical molecules of mitochondria quality control have been
identified that could be targeted to ameliorate mitochondrial
function, even if a drug that targets explicitly mitochondria
has not been generated yet. In this context, exercise represents
a non-pharmacologic tool that can ameliorate human health
and the quality of life of healthy and ill patients by affecting
several cardiac phenotypes and inducing adaptative responses to
insults (Figure 5).

Exercise protects endothelium by reducing ROS production
and increasing VEGF expression and NO bioavailability, favoring
calcium handling and contractility. It also exerts an anti-
inflammatory action by inhibiting NFkappaB and activating
PPARalpha, thus regulating pro and anti-inflammatory cytokine
production. Also, exercise regulates the metabolic state by
increasing PGC-1alpha both directly or through the activation
of AMPK. This induces the utilization of fatty acids and
dynamic regulation of glucose utilization, as well as an
increase of mitochondrial function and oxidative capacity. In
muscles, including the heart, exercise induces physiological
hypertrophy and regulates the switch of fiber types. Also,
exercise reduces cardiovascular risk and regulates critical
mechanisms of the cardiac mitochondrial machine that allow
the recovery of mitochondrial damage and the restoration of the
energetic metabolism.

Thus, PA is essential to preserve heart health and reduce
the clinical signs associated with energetic cardiac alterations.
Therefore, a structured and personalized exercise training plan
should be prescribed to everyone, especially older and ill patients.
Nevertheless, people’s general trend is toward a sedentary lifestyle
increases the prevalence of obesity and associated cardiovascular
diseases. To date, the numerous interventions aimed to promote
PA are not producing great success since adults, especially older,
are reluctant to change their daily routine. More effort from
institutions and medical doctors is needed to promote PA,
especially to middle-aged adults.
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