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Abstract 

Sparse feature tables, in which many features are present in very few samples, are common in big biological data ( e.g. metagenomics ) . Ignoring 
issues of zero-laden datasets can result in biased statistical estimates and decreased po w er in do wnstream analy ses. Zeros are also a particular 
issue for compositional data analysis using log-ratios since the log of zero is undefined. Researchers typically deal with this issue by removing 
low frequency features, but the thresholds f or remo v al differ mark edly betw een studies with little or no justification. Here, we present CurvCut, 
an unsupervised data-driven approach with human confirmation for rare-feature removal. CurvCut implements two distinct approaches for deter- 
mining natural breaks in the feature distributions: a method based on curvature analysis borrowed from thermodynamics and the Fisher-Jenks 
statistical method. Our results show that CurvCut rapidly identifies data-specific breaks in these distributions that can be used as cutoff points 
f or lo w -frequency f eature remo v al that maximiz es f eature retention. W e sho w that CurvCut w orks across different biological dat a t ypes and 
rapidly generates clear visual results that allow researchers to confirm and apply feature removal cutoffs to individual datasets. 
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dvancement in next-generation sequencing ( NGS ) technol-
gy has made it possible to detect thousands of species, genes,
ranscripts, or polymorphisms in samples ( 1 ) . This results in
parse feature tables dominated by zeros because many of
he features are detected in only a few samples. These zero-
aden datasets can cause overdispersion and decrease power
n downstream analyses ( 2 ,3 ) or result in biased statistical es-
imates ( 4 ) . 

Zero-laden datasets can be problematic for many types of
tatistical data analysis ( 4 ) including compositional data anal-
sis ( CoDA ) methods ( 5 ,6 ) . CoDA methods, originally de-
eloped for the geological sciences, have been increasingly
pplied to multiomics analyses ( e.g., marker-gene libraries,
etagenomics, and metatranscriptomics ) due to their un-

voidable compositionality ( 6–8 ) . CoDA approaches involve
 log-ratio transformation ( e.g., centered log-ratio, isometric
og-ratio ) and require replacement of all zeros in feature tables
ince the log of zero is undefined. Zero-replacement methods
ave been developed for this purpose ( 5 ,6 ) , but these methods
o not work well with highly sparse data. To overcome this
imitation, researchers typically remove low-frequency fea-
ures prior to zero-replacement. However, the process of fea-
ure removal is usually accomplished by setting an arbitrary
hreshold of percent presence among samples ( i.e., only re-
ain features present in at least 10% of samples ) , and there
ppears to be no rule or consistent approach across studies
or identifying that threshold. Thresholds for feature removal
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have been set at 10% ( 9 ) , ≥1% in at least one sample ( 10 ) ,
85% ( 11 ,12 ) or not reported or ignored ( 13–16 ) . While set-
ting a percentage threshold for feature retention seems appeal-
ing, such a process does not consider the sparsity of individual
datasets. 

Here, we present mathematical approaches for selecting
dataset-specific feature removal cutoffs that maximize feature
retention by detecting natural breaks in histogram distribu-
tions of dataset feature sparsity. The first method ( CurvCut )
uses curvature analysis from thermodynamics to detect dis-
continuities on the histogram with a sharp change in the
characteristics of the distribution, while the second method
uses the Fisher-Jenks statistical approach for detecting nat-
ural breaks in distributions. We tested our approach using
four different NGS feature tables generated from small sub-
unit ribosomal RNA ( 16S rRNA ) amplicon datasets, a shot-
gun metagenomics dataset, and a single nucleotide polymor-
phism dataset. Our results show both the curvature approach
and the Fisher-Jenks methods provide data-driven feature re-
moval recommendations that consider the unique feature dis-
tribution of a given dataset. 

Materials and methods 

The first approach we describe in detail is a curvature analysis
method for identifying regime change that is used in thermo-
dynamics to identify the point where a fluid changes behavior.
We are translating this approach to allow determination of
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where the histogram curve changes behavior. In essence, we
are identifying where the histogram becomes more uniform.
The second method, known as Fisher-Jenks, is a statistical ap-
proach for identifying ‘natural breaks’ in distributions based
on variance minimization. 

Model derivation 

To create a mathematical model based on curvature analysis
to detect the regime change in the zero-count distribution, we
visualized the problem as a ball rolling down a hill of the fea-
ture distribution. In our model, the radius of the ball decreases
proportionally to the height of the features ( as it rolls down
the hill ) until it reaches a minimum at the point of ‘regime
change’ when it shifts between characteristics of distributions
( Figure 1 A ) . The radius of the ball is inversely proportional to
the change of the tangents to the line from one point to the
next. This means that when the line is smooth, the change in
the tangents is small and the radius is large ( big circle ) . When
the line becomes less smooth, i.e. more curved, the change in
the tangents is greater and the radius is small ( small circle ) .
The point when the ball is the smallest is when the line is the
most curved, aka. the point of regime change. 

The first step in our approach is to create an accumulated
zero count from a feature histogram. This is done because
accumulation is characteristically monotonically increasing,
so it is easier to look for a maximal change in the curvature
across the log-transformed zero count cumulative mass func-
tion. First, the zero-count cumulative mass is calculated as 

M = [ H 1 , 

2 ∑ 

i 

H i , 

3 ∑ 

i 

H i , ..., 

n ∑ 

i 

H i ] , ( 1 )

where H is the histogram array, and n is the number of fea-
tures. Next, the data are log-transformed to maximize changes
more than an order of magnitude and minimize changes less
than an order of magnitude across the cumulative mass func-
tion. The log transform equation is 

F = log(M + k ) , ( 2 )

where F is the log-transformed array of M and k is a con-
stant ( default k : 100 ) used to minimize small changes across
M . To perform the final curvature analysis, we used Cubic-
Splines from SciPy ( 17 ) to create a continuous piecewise poly-
nomial function from the discontinuous histogram array 

F cs = Cub icSp lines (F ) , ( 3 )

where F [cs] is the continuous piecewise function. To find the
curvature across the cubic spline, we implemented the curva-
ture equation 

κ = 

| F ′′ cs | 
(1 + F ′ 2 cs ) 

3 
2 

, ( 4 )

where K is the curvature and F ”cs is the second derivative, and
F’ is the first derivative of the cubic spline Fcs. This has many
local maxima so we identify the last maxima where 

κ ′ = 0 , ( 5 )

and we plot for the histogram C with the diagnosed cut-off
for the user discernment ( 4 ) . 

We also implemented the Fisher-Jenks statistical approach
for identifying natural breaks in distributions ( Figure 1 B ) .
Fisher-Jenks is an unordered grouping of the magnitude of
each position of the histogram that operates effectively as a
one-dimensional k -means method that uses an iterative ap- 
proach to find the best grouping of numbers that minimizes 
in-group variance while maximizing between-group variance 
between a pre-selected number of groups ( k ) . We set k equal 
to 2 to detect and separate potential abundant zero-laden fea- 
tures for removal. While the Fisher-Jenks algorithm has been 

around for many years, this is the first time it has been applied 

to zero-laden feature removal. 

Implementation and datasets 

We implemented our curvature analysis method,
called CurvCut, as a command line Python program 

( https: // github.com / aortizsax / curvcut ) and tested it on 

five datasets: three 16S datasets, one metagenomic count 
table dataset, and one HIV site frequency spectrum ( SFS ) 
dataset. The program was implemented in Python 3.7 using 
Python packages Pandas 1.3.3 ( 18 ) , Numpy 1.19.2 ( 19 ) , Mat- 
plotlib 3.3.4 ( 20 ) , SciPy 1.7.1 ( 17 ) and jenkspy 0.3.3 ( 21 ) .
Scripts and the test datasets analyzed in this paper can be 
found at github.com / aortizsax / curvcut. Two datasets, a 16S 
and metagenomic count tables, come from a periodontal 
study ( 22 ) . The raw reads for the periodontal 16S rRNA 

sequences, and metagenomic OTUs classified by Kraken ( 23 ) ,
were published previously ( 22 , 24 , 25 ) . The second 16S 
dataset comes from an unpublished study. The third 16S 
SV dataset comes from a built environment ( BE ) study ( 26 ) .
The HIV histogram was created by making an SFS graph 

of a multiple sequence alignment of Pol genetic sequence 
data with 100 sequences and 4339 bases long collected from 

NCBI BLASTN ( 27–36 ) . In this histogram, the heights of 
the bars represent the number of polymorphisms detected in 

one sequence ( singletons ) , two sequences ( doubletons ) , etc 
( polytons ) . 

Results and discussion 

Our results show that our data-driven modeling approaches 
identify points of regime change across various dataset types.
CurvCut rapidly suggests a cutoff based on the distribution of 
features present rather than on an arbitrary cutoff that does 
not consider the characteristics of the data. Both the curvature 
analysis and the Fisher-Jenks method rapidly identify cutoff 
values, and for most datasets tested the results were very simi- 
lar ( Figure 2 ) . After curvature analysis, the recommended cut- 
off removes those features that could contribute to overdisper- 
sion in downstream analyses. The cutoff value is data-driven 

in the sense that the cutoff is entirely dependent on the feature 
distribution. The recommended cutoff value differs by dataset,
as expected by the clear differences in feature distributions be- 
tween datasets ( Figure 2 ) . While most of the cutoffs suggested 

by our analysis were features that were in very few samples 
( 5 or fewer ) , there was one dataset in which the curvature ap- 
proach determined a very high feature cutoff recommendation 

( features in 46 samples or less; Figure 2 B ) . However, for this 
same dataset, the Fisher-Jenks method recommended a cutoff 
of 3 or fewer samples, which seems more reasonable for this 
dataset. The importance of the cutoff being data-driven is very 
apparent when considering what would happen if the same 
cutoff was used for all the data sets in Figure 2 . For example,
a cutoff of features present in 3 or fewer samples would be 
appropriate for the allelic dataset ( Figure 2 D ) but would leave 
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Figure 1. Artistic representation of the mathematical models. The histogram represents a hypothetical plot of features present per sample. The heights 
of the bars indicate the number of features ( e.g., sequence variants, genes, single nucleotide polymorphisms ) present in X samples. For example, the 
leftmost bar on the histogram represents features present in only one sample. The red arrows indicate the minimum feature cutoff recommendation ( A ) 
To detect the regime change, we visualized the problem as a ball rolling down the hill of features. The radius of the ball decreases proportionally to the 
change in the height of the features until it reaches a minimum at the point of regime change when the path of the ball reaches the maximum curvature 
( i.e. when the ball is the smallest ) . Then, after the regime change, the ball increases again proportional to the lack of change in the featur heights as they 
reach steady values. ( B ) We also implemented the Fisher-Jenks method, which uses an iterative k -means approach to find number groupings that 
maximiz e betw een group v ariance. T he v ertical red line indicates the feature trimming cutoff based on our curv ature analy sis, while the v ertical black line 
indicates the feature trimming cutoff based on the Fisher-Jenks method. The vertical red and blue curves on the right indicate the feature groupings 
determined via Fisher-Jenks. 

m  

a
 

t  

a  

T  

s  

w  

t  

l  

w  

r  

a  

g  

p  

s  

t  

i  

r  

e  

t  

p  

a  

s  

t  

w  

w  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

any zeros in the 16S and metagenomics datasets ( Figure 2 A
nd B ) . 

A closer look at the trimmed sequence found many of
hem to be spurious. For example, the periodontal 16S dataset
nalyzed in Figure 2 A trimmed two unidentified species of
reponema , most of which were missing in many or all the
amples, while an identified species, Treponema socranskii ,
as identified in all samples. While most of the distribu-

ions were right-skewed, our approach also worked on a
eft-skewed metagenomics dataset ( Supplementary Figure S1 ),
hich shows that the curvature method can detect these

egime changes at either end of the distribution. A closer look
t this metagenomic dataset found that the k-mer-based al-
orithm used to determine the number of species per sam-
le, Kraken, identified certain species very readily in all the
amples but also made many seemingly spurious identifica-
ions of closely related species or strains. For example, Kraken
dentified Campylobacter gracilis in every sample, with counts
anging between 900 and 330 000 (Avg. = 64 000). How-
ver, Kraken also identified 15 other species of Campylobac-
er , most of which were missing in many or all the sam-
les. This helps explain the leftward skew of this distribution
nd suggests that a cutoff of features present in 45 or fewer
amples would remove many spurious results. While most of
he datasets were sequence count tables, our approach also
orked on an SFS histogram from an HIV dataset (Figure 2 D),
hich shows that our method can detect these regime changes
in many types of datasets and is not exclusive to count ta-
bles. A closer look at the SFS dataset analyzed in Figure 2 D
found our analysis trimmed 661 and 266 of singletons and
doubletons, removing possible noise and limiting overdisper-
sion in downstream analyses. 

Comparisons of the curvature method to the Fisher-Jenks
approach found them to be very similar for most of these
datasets. The one exception was the 16S dataset in Figure 2 B,
where the curvature analysis suggested a cutoff of 46, while
Fisher-Jenks indicated a cutoff of three samples or fewer,
which seems more in keeping with the other results. How-
ever, the curvature analysis appeared to find a clearer distri-
bution break with the periodontal 16S dataset (Figure 2 A).
Having two methods allows users an additional unsupervised
option for choosing cutoffs that remove zero-laden features
while maximally retaining features. 

In general, we suspect both methods work best with right-
or left-skewed features distributions, i.e. in datasets in which
many features are present in only a few samples, or the oppo-
site where many features are in many samples. This is usually
the case with metagenomics, metatranscriptomics, and allelic
datasets. However, some datasets might have a bimodal distri-
bution of features that does not conform to this clear regime
pattern. We have also observed histograms that are both right-
and left-skewed (data not shown), with many features present
in very few samples and many others present in the major-
ity or all of the samples. Thus, the graphical output produced

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqad110#supplementary-data
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Figure 2. Curvature analysis of four datasets. The vertical red lines indicate the feature trimming cutoff based on our curvature analysis, and the vertical 
black lines indicate the feature trimming cutoff based on the Fisher-Jenk analysis. The pink background shows the range of current heuristic cutoffs 
10-40%. The orange shows the minimum number of features that would be lost with current heuristics ( 10% ) . ( A ) 16S periodontal data contained 76 
samples of 247 OTU features, ( B ) 16S unpublished data containing 118 samples of 5650 OTU features, ( C ) 16S built environment data containing 338 
samples of 6467 SV features, and ( D ) HIV SFS data generated from an MSA of 100 Pol protein sequences, 4339 bases long. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

by CurvCut also allows the user to visualize the cutoff value
on the feature distribution to make an informed choice for
an appropriate cutoff. Indeed, the graphical visualization of
the feature histogram can point out methodological artifacts
(e.g. the Kraken approach) that a blind reliance on a percent-
age cutoff would ignore. Our method can be easily integrated
into common pipelines (e.g. QIIME2 ( 37 ) or mothur ( 38 ))
or run separately on datasets before further analysis. In ad-
dition to Fisher-Jenks, there are other more recently devel-
oped methods for one-dimensional clustering of data, such as
Jiang’s head / tail breaks method ( 39 ) and several algorithms
implemented in the R package classInt ( 40 ) that could be im-
plemented in a future version of CurvCut. 

Data availability 

The CurvCut Programming code, installation instructions,
datasets used in this paper are available at https:// doi.org/ 10.
5281/zenodo.10366078 . 

Supplementary data 

Supplementary Data are available at NARGAB Online. 
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