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Abstract

Emergency department triage is the first point in time when a patient’s acuity level is deter-

mined. The time to assign a priority at triage is short and it is vital to accurately stratify

patients at this stage, since under-triage can lead to increased morbidity, mortality and

costs. Our aim was to present a model that can assist healthcare professionals in triage

decision making, namely in the stratification of patients through the risk prediction of a com-

posite critical outcome—mortality and cardiopulmonary arrest. Our study cohort consisted

of 235826 adult patients triaged at a Portuguese Emergency Department from 2012 to

2016. Patients were assigned to emergent, very urgent or urgent priorities of the Manches-

ter Triage System (MTS). Demographics, clinical variables routinely collected at triage and

the patients’ chief complaint were used. Logistic regression, random forests and extreme

gradient boosting were developed using all available variables. The term frequency–inverse

document frequency (TF-IDF) natural language processing weighting factor was applied to

vectorize the chief complaint. Stratified random sampling was used to split the data into train

(70%) and test (30%) data sets. Ten-fold cross validation was performed in train to optimize

model hyper-parameters. The performance obtained with the best model was compared

against the reference model—a regularized logistic regression trained using only triage pri-

orities. Extreme gradient boosting exhibited good calibration properties and yielded areas

under the receiver operating characteristic and precision-recall curves of 0.96 (95% CI 0.95-

0.97) and 0.31 (95% CI 0.26-0.36), respectively. The predictors ranked with higher impor-

tance by this model were the Glasgow coma score, the patients’ age, pulse oximetry and

arrival mode. Compared to the reference, the extreme gradient boosting model using clinical
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variables and the chief complaint presented higher recall for patients assigned MTS-3 and

can identify those who are at risk of the composite outcome.

1 Introduction

1.1 Emergency department triage

Emergency Department (ED) triage is the first evaluation of a patient when the patient condi-

tion and acuity level are defined. The main purpose of triage is to identify patients who need

immediate care. ED triage systems ensure that patients are assigned a certain level of priority

that is appropriate to their clinical condition and urgency of treatment. Thus, an accurate tri-

age decision support system to assist the health professional becomes of vital importance.

1.2 Existing clinical triage systems

So far, several triage systems have been implemented worldwide to assist health professionals

classifying patients according to the severity of their medical condition. The Manchester Tri-

age System (MTS) is a 5-level triage system widely used in Europe [1]. MTS priorities range

from level 1 (emergent patients that should have immediate medical observation) to level 5

(non urgent patients that should wait a maximum time of 4 hours for medical observation).

Although this triage system is well established, over-triage and under-triage still occur, which

indicates room for improvement. According to studies [2–5], under-triage contributes to

delays in time-sensitive interventions, morbidity, and mortality. Over-triage, may have indi-

rect but equally harmful effects [6], resulting in diversion of limited time and resources from

more urgent patients and inappropriate allocation to less severe patients. In a study [2], the

clinical severity of under-triage in the MTS was assessed for a cohort of pediatric patients. It

was found that 0.9% (119/13408) patients were under-triaged and that in 53% (63/119) of

these patients, experts considered under-triage as clinically severe. It was concluded that

although infrequent, under-triage could have serious clinical consequences. In another study

[6], the frequency of under- and over-triaged patients was measured by nurses using the Emer-

gency Severity Index (ESI). Initial ESI-determined triage priority was classified as inaccurate

for 16426 of 96071 patients. It was found that under-triage was associated with significantly

higher admission rates and critical outcomes, while over-triage was associated with a lower

rate of both.

1.3 Prior work in machine learning for risk stratification

There is a richness of information contained in electronic health records (EHR) stored in large

databases that can be explored using machine learning to provide insights to assist providers

in making informed decisions based on objective criteria [7]. In the literature machine learn-

ing models have been developed to assist in the stratification of patients for prioritization,

according to their acuity level at the triage [8–23], and according to their risk of mortality [24–

37], cardiac arrest [32–34], Intensive Care Unit (ICU) admission [27–30], hospital admission

[9, 27, 38–53], need for critical care [9], ED revisits [45, 54], abnormal medical condition [17],

acute morbidity and infectious diseases [31] and expected number of resources [55].

A few studies used MTS priority as modeling predictor along with other variables collected

at triage, namely for prediction of hospital admissions [39–41] and mortality [26, 53]. In [39],

a logistic regression and an artificial neural network model both yielded an AUROC of 0.86
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(95% confidence intervals (CI) 0.85-0.86) for prediction of hospital admission. The authors

developed a nomogram using the logistic regression and an automated software decision sup-

port system with a web interface based on the artificial neural network model. In [40], a logistic

regression model was developed yielding an AUROC of 0.88 (95% CI 0.87-0.88) and in [41], a

logistic regression, a decision tree and a gradient boosted machine model presented an

AUROC of 0.85, 0.82 and 0.86, respectively, for prediction of hospital admissions. In [26], a

logistic regression was developed to predict mortality within 30 days from information of gen-

der, major disease by priority, Charlson’s comorbidity index, ICU admission, blood transfu-

sion, troponin elevation, door-to-team and team-to-ward time. The MTS priority was found

to be highly predictive of subsequent 30-day mortality ranging from 4.8% (MTS-5) to 46.1%

(MTS-1). The results for both independent predictors of death within 30 days were: door-to-

team times OR of 1.13 (95% CI 1.07-1.18) and team-to-ward times OR of 1.07 (95% CI 1.02-

1.13). In [53] a logistic regression model yielded an AUROC of 0.91 (95% CI 0.89-0.93) from

information of MTS priority at presentation, age, gender, comorbidities, functional status at

presentation, mode of arrival, time of ED visit, type of specialty, physiological parameters at

different times, level of consciousness, need for supplement oxygen, need for ventilation assis-

tance, use of vasoactive and inotropic agents and initial laboratory markers in the ED. Other

studies were performed for mortality prediction, where MTS priority was not used as model-

ing predictor. In [25] an area under the receiver-operating characteristic curve (AUROC) of

0.92 (95% CI 0.92-0.93) was obtained using logistic regression. The mortality predictors of the

final model were age, prolonged capillary refill time, blood pressure, mechanical ventilation,

oxygen saturation, Glasgow coma score and the diagnostic category of the Acute Physiology

and Chronic Health Evaluation II (APACHE II)—a classification system for severity of disease.

In [24], the authors used logistic regression as well and the AUROC for the internal validation

set was 0.85 (95% CI 0.84-0.86) and for the external validation set was 0.84 (95% CI 0.82-0.85).

The predictors of the model were age, gender, year, mode of arrival, triage priority and nine

triage complaint codes (cardiac arrest, syncope/collapse, other cardiac, sepsis, other neurologi-

cal, stroke/transient ischaemic attack, other respiratory, malignancy and malaise). In [27], for

the combined prediction of mortality and ICU admission, the authors used four machine

learning models: Lasso regression, random forest, gradient boosted decision tree, and deep

neural networks. As the reference model, the authors created a logistic regression model using

the five-level ESI. The machine learning models outperformed the reference model, AUROC

of 0.86 (95%CI 0.85-0.87) in the deep neural network vs 0.74 (95%CI 0.72-0.75) in the refer-

ence model, with less under-triaged patients in ESI triage levels 3 to 5 (urgent to non-urgent).

Predictors included demographics, mode of arrival, triage vital signs, chief complaints and

comorbidities.

A more comprehensive systematic review of machine learning applied for ED triage deci-

sion support can be found in [56].

1.4 Goals of this investigation

In this work, we employed machine learning and natural language processing to identify ED

patients with high risk of mortality and cardiopulmonary arrest using data routinely collected

at triage from a Portuguese public Hospital Beatriz Ângelo (HBA). The case study of Portugal

is relevant, given that it represents high demand for emergency services, compared to other

Organisation for Economic Co-operation and Development (OECD) countries [57]. We

developed models for prediction of a composite outcome combining mortality and cardiopul-

monary arrest, in the first 24 hours after triage. The models were developed for the cohort of

emergent, very urgent and urgent patients, where early intervention is more critical, compared
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to the cohort of standard, less urgent and non-urgent patients. The performance obtained with

these models was compared against the reference model trained using only the MTS priority.

The impact in the models performance was assessed when including the chief complaint text

feature. The calibration of the models was also assessed, since inadequate model calibration

can limit the use of the models for clinical decision support [58–62]. The uncertainty and reli-

ability of risk predictions were finally assessed for the best model.

2 Materials and methods

2.1 Study overview

Data acquired from the Emergency Department Information Systems (EDIS) of HBA ran-

ged from 2011 to 2016, with a total of 599276 ED visits in the adult population (� 18 years

old). This study was approved by HBA Ethics Committee that waived the requirement for

informed consent. At HBA, re-triage is performed for reassessment of parameters or change

of priority, activation of clinical pathway or introduction/correction of other information in

the system. re-triages were excluded from the study given that not all patients are re-triaged.

Referrals from HBA ED to other hospital ED were excluded as well, since there was no infor-

mation regarding the patients’ outcome. Patients who died before ED admission were also

excluded. Finally, the cohorts of non-urgent or standard priority patients were excluded, as

well as patients assigned a white priority (in HBA this priority is assigned for patients with

less urgency for care). Less urgent patients usually are admitted to the ED for minor prob-

lems, and although there were no patients in this cohort with a critical outcome, it is a rare

event in this cohort. The exclusion of these patients also reduced class imbalance, allowing

for the development of more reliable models. For detailed exclusion criteria refer to S1

Appendix in supplementary materials.

2.2 Data collection and processing

We included as predictors variables routinely collected at triage (temperature, heart and respi-

ratory rate, systolic, diastolic and mean arterial blood pressure, pulse oximetry SpO2 and pain

scale), the chief complaint, glycemia levels, Glasgow coma scale (GCS), the priority assigned

to the patient, the patient age and gender, mode of arrival (ambulance, walk-in), disabilities

(stretcher, wheelchair or none), time of triage (weekday, hour and month), ED visit (first triage

registered on the system or not), number and type of exams prescribed at triage (ophthalmol-

ogy, otolaryngology, electrocardiogram, X-ray and orthopedic). For each physiological vari-

able, two dummy indicator variables were created indicating abnormal/not abnormal (1/0)

and missing/not missing (1/0) values. Detailed preprocessing can be depicted in S2 Appendix.

2.2.1 Text pre-processing. Term frequency–inverse document frequency (TF-idf) was

used for vectorization of the chief complaint. The number of words (unigrams/bigrams/tri-

grams) to select from each patient chief complaint as well as the total number of words to use

from the training vocabulary are indicated in S2 Table. The chief complaint for HBA dataset

consists of unstructured free text and it was subjected to lowercasing, a process of temporal

normalization, tokenization, expansion of abbreviations and correction using Jaro-Winkler

and stemming. Detailed preprocessing can be depicted in S2 Appendix.

2.3 Outcome measure

The primary outcome measure is defined as the composite of in-hospital death or cardiopul-

monary arrest within 24 hours after triage, with triage as reference (0 min).
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2.4 Model development

For model design and evaluation, we performed stratified random sampling, splitting 70% of

data for train and 30% for test. The data preprocessing methodology is depicted in supplemen-

tary materials. We performed a stratified 10-fold cross validation (CV) in the training set using

a randomized search for hyperparameter optimization. The models were trained and tested

with the same dataset partitions, to allow for reproducibility. The configuration of the model

with highest AUROC was selected as well as the corresponding threshold. This model was

evaluated in the held-out test dataset. We performed 100 iterations of bootstrapping random

sampling in 95% confidence intervals (CI) to measure variance in performance.

We compared results from logistic regression (LR), random forests regression bootstrap

aggregation of decision trees (RFR) and extreme gradient boosting classifier (XGBoost). These

algorithms were selected so we could compare a boosting classification technique—XGBoost,

and a bagging regression technique—random forests with a more traditional technique—LR.

LR is suitable for predicting a binary outcome variable, such as deceased/not deceased when

there are no non-linear relationships. Random forests perform a randomized sampling process

to train a set of individual decision trees where each aggregates the output to produce a single

probabilistic prediction for each outcome. At the end, the majority vote is implemented for all

of the tree outcomes [63]. XGBoost algorithm is an efficient supervised learning algorithm

which is a variant of the original Gradient boosting method [64], having been very recently

developed in [65]. XGBoost iteratively applies greedy search to find the optimal model struc-

ture by adding a split to the existing tree structure at each iteration. We performed a random-

ized search of hyperparameters using 10-fold cross validation in the training set. The

hyperparameters search settings can be depicted in S2 Table.

Besides AUROC, we also assessed the area under the precision recall curve (AUPRC), the

average precision (AP), which summarizes a precision-recall curve as the weighted mean of

precisions achieved at each threshold, the sensitivity, also referred to as recall or the true posi-

tive rate (TPR), specificity or true negative rate (TNR) and precision or positive predictive

value (PPV), which were used in previous studies [41, 47, 49]. We calculated the F1 score,

which is suited for dealing with imbalanced datasets [66] and Cohen’s Kappa (κ) [67] to ana-

lyse interrater reliability [68]. Finally, we presented the standardized mortality ratio (SMR)

which in this case represents the ratio between the observed number of composite outcomes

(death or cardiopulmonary arrest) predicted by the model and the number of composite out-

comes which would be expected.

We also evaluated the quality of the predictions using the Brier Skill Score (BSS). The BSS is

based on the Brier Score (BS), a statistical index which can be used to validate predicted proba-

bilities. BSS = 1 − BS/BSref, thus if the reference score (BSref) is evaluated, it results in a BSS of

0.0, which represents a no skill prediction. Negative values represent worse than no skill and

values above 0.0 represent skillful predictions, with a perfect prediction value being 1.0 [69].

3 Results

3.1 Summary of patient population

Initially the dataset had a population of 599276 adult ED visits, from where we excluded tri-

aged patients with unknown age (n = 51), unknown priority (n = 473) and unknown time of

ED admission (n = 222). Standard (n = 287280), non-urgent (n = 7100) and white (n = 2095)

priorities were excluded since the study focused on the first three most urgent priorities.

Transfers to other hospital ED (n = 5524), obstetric patients (n = 64130), activation of proto-

cols at triage (n = 20982), re-triages (n = 8515) and death before ED admission (n = 448) were
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also excluded leaving a final cohort of 235826 triaged patients, as presented in Fig 1. In this

cohort, there were 1121 (0.48%) patients with a composite outcome: 1100 (98.13%) deceased,

21 (1.87%) with a cardiopulmonary arrest and 796 (71%) with both outcomes, in the first 24

hours after triage.

Demographics and a subset of variables are presented in Table 1. The descriptive statistics

of the remaining variables used for modeling, namely number of missing and abnormal vitals,

Glasgow coma scale and types of exams are presented in S3 Table, time variables in S4 Table,

variables indicators of missing or abnormal values in vitals in S5 Table and pain scale statistics

in S6 Table.

We observed that gender was balanced and that the triaged population with a composite

outcome—the positive class—was older compared with the negative class (80 vs 58 years old).

The majority of the patients in the positive class arrived in ambulance (64%) while those in the

negative class walked-in (53%). Most of the patients in both classes had no disability at arrival,

however in the positive class 22% arrived in a stretcher vs. 5.3% in the negative class.

Approximately half (48%) of the patients in the positive class was assigned a very urgent pri-

ority (MTS-2), while the majority (82%) of patients in the negative class was assigned an urgent

priority (MTS-3). The top 5 MTS discriminators assigned to the positive class were “very low

pulse oximetry”, “abnormal heart rate”, “compromised airway” and “ineffective breathing” as

well as “change in conscious status”. For the negative class, three discriminators were related

with pain (“moderate”, “severe” and “pleuritic”), the other two were “low pulse oximetry” and

“sudden onset”. Regarding vital signs, the main discrepancy between positive vs negative

Fig 1. Inclusion and exclusion criteria. “n” corresponds to the number of triages.

https://doi.org/10.1371/journal.pone.0230876.g001
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classes was blood pressure (systolic—130 vs 143, diastolic 71 vs 77), pulse oximetry (91 vs 96)

and glycaemia (162 vs 147).

3.2 Main results

The modeling training set for negative and positive classes consisted of 164297 and 785

patients, respectively, and for the test set 70414 and 336 patients, respectively. We developed

models using all available predictors except triage priority, since the priority assignment is sub-

jective and can vary across providers. The difference in performance of the models including

Table 1. Demographic variables and a subset of features are summarized for emergency department patients with and without the composite outcome.

Composite outcome

Yes (N = 1121) No (N = 234711)

Gender

Female 610 (54) 130292 (56)

Male 511 (46) 104419 (44)

Age (years old) 80 (12.3), 83 58 (21.0), 59

Arrival mode

Walk-in 102 (9) 124888 (53)

Ambulance 718 (64) 57016 (24)

Other 301 (27) 52807 (23)

Disability

Stretcher 252 (22) 12500 (5.3)

Wheelchair 9 (1) 10325 (4.4)

None 860 (77) 211886 (90.3)

Heart rate (beats/min) 89 (23.5), 86 86(13.2), 86

Diastolic blood pressure (mmHg) 71 (14.1), 77 77 (8.5), 77

Systolic blood pressure (mmHg) 130 (25.6), 143 143 (16.4), 143

Pulse oximetry (%) 91 (7.7), 96 96 (2.4), 96

Glycaemia (mg/dL) 162 (68.4), 147 147 (42.4), 147

Temperature (˚C) 36 (1.4), 37 37 (0.7), 37

Respiratory rate (breaths/min) 18 (4.8), 17 17 (1.7), 17

Number of exams

0 1109 (98.9) 213073 (91)

1 10 (0.9) 14783 (6)

2 2 (0.2) 4651 (2)

3 or more 0 (0) 2204 (1)

Priorities

Emergent (MTS-1) 385 (34) 978 (0.4)

Very urgent (MTS-2) 539 (48) 40677 (17.3)

Urgent (MTS-3) 197 (18) 193056 (82.3)

MTS discriminators (top 5) Very low pulse oximetry—287 (26) Moderate pain—82831 (35)

Airway compromised—213 (19) Pleuritic pain—14176 (6)

Ineffective breathing—156 (14) Sudden onset—12330 (5.3)

Change of conscious status—102 (9) Low pulse oximetry—11034 (4.7)

Abnormal pulse—60 (5) Severe pain—10867 (4.6)

The table shows number of patients. The figures in parentheses are the column percentages within each categorical variable for the respective outcome of admission. For

continuous variables mean is presented with respective range in parentheses, followed by median: mean (range), median. MTS—Manchester Triage System.

https://doi.org/10.1371/journal.pone.0230876.t001
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vs not including the chief complaint as predictor can be visualized in Fig 2. We observe that

both AUROC and AUPRC yielded better results for LR and XGBoost models when this pre-

dictor was included. The increase in AUROC was 2% for LR and there was no change for

XGBoost, however the AP increased in 8% and 4% for each model, respectively. Although RF

presented better performance than LR when not using the chief complaint as predictor, when

adding this predictor, LR presented higher performance. In terms of specificity and recall

there was a 6% increase in recall and 3% decrease in specificity for LR, while for RF, on the

contrary, recall decreased 1% and specificity increased 1%. For XGBoost, only the specificity

increased 1%. Although LR presented a 0.86 recall vs 0.84 in XGBoost (a 2% difference), speci-

ficity for LR was 0.88 and for XGBoost 0.94 (a 6% difference). Despite this difference in sensi-

tivity, we selected XGBoost as the best model since it presented higher overall performance

compared to the other two models. The performance results for all models can be depicted in

S7 Table.

We assessed the models calibration to understand the reliability of the predictions, as

depicted in Fig 3. When the chief complaint was added, the calibration improved. RF did not

exhibit a good calibration curve and under-predicted the risk probabilities while LR had the

tendency to over-predict. The XGBoost model was better calibrated in patients on the lower

end of the risk spectrum, but it became less well calibrated above the mean risk of 50% and as

the risk increased. We applied isotonic calibration to the XGBoost model as depicted in Fig 4.

Among the models, the best was selected based on AUROC and AUPRC values and the cal-

ibration curves. XGBoost presented overall higher performance when compared to the other

Fig 2. Models performance using only clinical variables (on the left) and including the chief complaint (on the right). For plots on the left, each model

performance (AUROC, AUPRC) is: logistic regression (0.93, 0.17), random forests (0.95, 0.21) and extreme gradient boosting (0.96, 0.25). For plots on the right,

each model performance (AUROC, AUPRC) is: logistic regression (0.95, 0.25), random forests (0.94, 0.20) and extreme gradient boosting (0.96, 0.30). AUROC—

Area under the ROC curve. AUPRC—Area under the precision recall curve.

https://doi.org/10.1371/journal.pone.0230876.g002
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models. The results for this model with isotonic calibration can be depicted in Table 2, as well

as the hyperparameters tuned in 10-fold CV during model training. The BSS, depicted in

Table 3, also indicated a better quality of predictions given by XGBoost when compared to the

other models. Analyzing the XGBoost hyperparameters, we observed that each tree was built

upon the selection of 90% of the patients information and less than half (40%) of their features.

A combination of unigrams and bigrams yielded the best performance using 1000 words from

the training vocabulary. Comparing the XGBoost performance against the reference model

using only triage priority as predictor, we observe a significant overall increase in all perfor-

mance measures. There was an increase of 11% in average AUROC, 3% in AUPRC, 20% in

AP, 12% in specificity and inter-rater agreement was also significantly higher. Sensitivity pre-

sented the lower increase (2%) among all measures. The threshold obtained for XGBoost was

Fig 3. Calibration curves for the models using only clinical variables (on the left) and including the chief complaint (on the right).

https://doi.org/10.1371/journal.pone.0230876.g003

Fig 4. Calibration curve for the XGBoost model using clinical variables and the chief complaint with isotonic calibration.

https://doi.org/10.1371/journal.pone.0230876.g004
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approximately a half of the one for the reference, which indicates the importance of finding

the best threshold using a performance metric. Although the SMR was still high for the

XGBoost model, when comparing to the reference, we observed a reduction to almost a third.

We also compared the true and false predictions, given by the models against the real classifi-

cations for both XGBoost and the reference, which can be depicted in S3 Fig. Comparing to

the reference, the XGBoost model presented lower number of false positive predictions and

could better identify the risk of a composite outcome in urgent patients, correspondent to

MTS-3.

We assessed importance estimates of predictors in the train set given by each model. For

LR, we used the absolute values of the regression coefficients, for RF and XGBoost we used the

importance estimates given by the ensemble of trees. The XGBoost relative importance esti-

mates is presented in Fig 5, and for LR and RF it can be depicted in S1 and S2 Figs. The most

important predictor in the XGBoost was the Glasgow coma score. The patients’ arrival mode

was ranked a relative importance of approximately 80% and the patients’ age and pulse

Table 2. Performance results for the XGBoost calibrated model using clinical variables and chief complaint

against the reference model (triage priority) and respective hyperparameters. AUROC was the performance mea-

sure for hyperparameter tuning and best model selection in train. The hyperparameters not mentioned in the table

were the default in XGBClassifier from Python version 3.7.

Parameter XGBoost Reference

AUROC 0.96 [0.95-0.97] 0.85 [0.82-0.87]

AUPRC 0.31 [0.26-0.36] 0.28 [0.24-0.32]

AP 0.30 [0.25-0.34] 0.10 [0.07-0.12]

Specificity 0.94 [0.94-0.94] 0.82 [0.82-0.82]

Recall 0.84 [0.80-0.88] 0.82 [0.77-0.85]

Precision 0.06 [0.06-0.07] 0.02 [0.02-0.02]

F1 0.12 [0.11-0.13] 0.04 [0.04-0.05]

Cohen’s k 0.11 [0.10-0.13] 0.03 [0.03-0.04]

SMR 12.87 [11.69-14.20] 38.21 [34.77-42.29]

Threshold 0.008 0.015

Warm start Yes No

Regularization constant γ = 5 C = 0.01

N-gram range Combination of unigrams and bigrams -

Words from vocabulary 1000 -

Number of trees 150 -

Maximum depth 4 -

Learning rate 0.09 -

Subsample (% of rows to build a tree) 90 -

Colsample (% of columns to build a tree) 40 -

In brackets is the result for 100 bootstrapping iterations in 95% confidence intervals. AUROC—area under the ROC

curve. AUPRC—area under the precision recall curve. AP—Average precision. SMR—Standardized Mortality Ratio.

https://doi.org/10.1371/journal.pone.0230876.t002

Table 3. Brier Skill Score (BSS) for the models using clinical variables and chief complaint against a unskilled ref-

erence model using triage priority. Reference Brier Score = 0.005.

XGBoost RF LR Reference

BSS 0.19 0.05 0.15 0.00

https://doi.org/10.1371/journal.pone.0230876.t003
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oximetry were ranked an importance of 60%. The remaining predictors were ranked an impor-

tance inferior to 50%. From the information of exams ordered, only the orthopedic exam was

ranked a relative importance of 18%, the remaining exams or number of exams were not con-

sidered important by the model. Regarding the time predictors, these were ranked with a lower

importance (10-20%). For RF, the most important predictor was also the Glasgow coma score.

Fig 5. Relative importance of predictors obtained with XGBoost using all available variables. Exams are prescribed at the time of triage.

https://doi.org/10.1371/journal.pone.0230876.g005
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Pulse oximetry was ranked an importance of approximately 55% and the remaining predictors

were ranked an importance inferior to 50%. The most important predictor in the LR was the

patients’ age. Pulse oximetry and systolic blood pressure were ranked an importance of approx-

imately 50%, followed by temperature, number of exams and orthopedic exam. These were fol-

lowed by diastolic blood pressure, which was also ranked as important by the XGBoost model.

The models also ranked specific missing measured variables as important predictors of the

composite outcome. Missing value of pain scale was ranked by XGBoost, LR and RF with an

importance estimate of 80%, 70% and 20%, respectively. XGBoost model also ranked the miss-

ing values of heart rate and Glasgow coma score an importance of 80% and 70%, respectively.

We finally evaluated the uncertainty in risk prediction given by the XGBoost model built

with clinical variables and the chief complaint, through visualization of the predicted probabil-

ity as presented in Fig 6. The threshold with the value of 0.00824 was selected using the train-

ing data, for the best model obtained in train based on the maximum value of AUROC. The

higher the distance of the predicted probability to the threshold, the less uncertainty of the

model prediction. For the false negative predictions (on top of Fig 6) this distance does not

reach 1%. For the false positive predictions, the majority is located bellow 20% of distance to

the threshold. For the true positives (on bottom of Fig 6) we observed that there was higher

certainty in prediction, since the distances of the probabilities to the threshold were higher.

For the true negative predictions, the maximum distance to threshold was bellow 1%. We also

Fig 6. Risk probability for incorrect (on the top) and correct (on the bottom) classifications obtained with extreme gradient boosting model using clinical

variables and chief complaint. A zoom-in is presented for the predicted risk probability for the plots on the right. The classification threshold is 0.00824.

https://doi.org/10.1371/journal.pone.0230876.g006
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analyzed these results in a perspective of triage prioritization, for false negative and false posi-

tive classifications, as presented in Figs 7 and 8, respectively. For the case of false positive pre-

dictions, we observe that the highest distances to the threshold correspond to patients assigned

an emergent priority (MTS-1 color red), while for the urgent priorities (MTS-3 color yellow)

the uncertainty is higher since the probabilities are very close to the threshold and all bellow a

distance of 20%. From this group of false positive patients, we found that 8% (n = 364) had a

critical outcome in an interval of 48 hours after triage, either death, cardiopulmonary arrest,

ICU or intermediate care unit admission, sepsis or stroke. In terms of uncertainty, for these

8% patients the absolute minimum, average and maximum distance to the threshold were

0.005%, 6% and 75%. Moreover, those with a distance superior to 20% corresponded to

approximately 23% of the group of false positives. In terms of priorities, 14% corresponded to

Fig 7. Predicted risk probability for false negative classifications discriminated by triage priority obtained with

XGBoost model using clinical variables and chief complaint.

https://doi.org/10.1371/journal.pone.0230876.g007

Fig 8. Predicted risk probability for false positive classifications discriminated by triage priority obtained with XGBoost model using clinical variables and

chief complaint.

https://doi.org/10.1371/journal.pone.0230876.g008
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emergent patients with an average distance of 16%, 73% to very urgent patients with an aver-

age distance of 5% and 13% to urgent patients with an average distance of 2%.

4 Discussion

In this study we built a model to predict the risk of a composite critical outcome—mortality

and cardiopulmonary arrest—in a cohort of emergent, very urgent and urgent patients who

presented to the emergency department of a Portuguese hospital from 2011 to 2016. We

observed that patients in the positive class were older and presented lower blood pressure,

lower pulse oximetry and higher glycaemia levels. We developed models for prediction of the

composite outcome in the first 24 hours after emergency department triage using regularized

logistic regression, random forests regression and extreme gradient boosting. We assessed the

models performance when adding the chief complaint—unstructured text feature—to the

clinical and demographic variables. Including chief complaint as predictor increased the

model predictive power for logistic regression and extreme gradient boosting. We concluded

that although logistic regression presented 2% higher recall compared to extreme gradient

boosting, the specificity was 6% higher for the latter model. Since we have a class imbalance

this difference is significant, which is reflected in the other measures such as average precision,

F1-score and Cohen’s k. When visualizing the models calibration curves, we observed that the

calibration improved when adding the chief complaint. In both scenarios, random forests per-

formed poorly, being under confident and focusing on the hard samples close to the classifica-

tion threshold. An isotonic or sigmoid re-calibration could solve this issue, however it was not

pursued since the other two models exhibited better calibration curves and overall perfor-

mance. Logistic regression and extreme gradient boosting were better calibrated in patients on

the lower end of the predicted risk spectrum, but became less well calibrated as the predicted

risk increased, over-estimating the risk. We decided that it is preferable to over-estimate rather

than under-estimate probabilities of a composite outcome for the high-risk group of patients.

The extreme gradient boosting model presented the best calibration and overall performance

results, therefore we proceeded the study using this model. We then compared its performance

against the one obtained using only the priority assigned to the patients, with the Manchester

Triage System. We concluded that the extreme gradient boosting model had a better predictive

performance, exhibiting higher performance across all measures. Recall presented the lowest

increase (2%), which indicates that the Manchester Triage System might lead to over-triage of

patients. This is reflected in the higher value of standardized mortality ratio –- approximately

three times higher than the gradient boosting model ratio. Compared to the reference, this

model had the ability to identify patients with higher risk of a composite outcome in MTS-3

and presented lower number of false negative classifications for MTS-1 and MTS-2.

The important predictors of a composite outcome were identified for the models built

using clinical variables and the chief complaint. We observed that for all models, the patients’

age, pulse oximetry and Glasgow coma score were ranked with relative high importance. The

most important predictor for both extreme gradient boosting and random forests was Glasgow

coma score. The most important predictor in the logistic regression was the patients’ age,

which was also ranked with high importance by the other models. The arrival mode was also

ranked a high importance by the extreme gradient boosting model. Since a significant amount

of patients in critical conditions may arrive by ambulance, this can explain the ranking of

importance given by the model to this predictor. The information regarding time for triage

was not ranked a high importance by the this model, neither the number or type of exams,

except for orthopedic exam which was ranked a relative low importance. Missing values of

pain scale and Glasgow coma score were ranked a high importance. These variables might
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have been selected by the models as important predictors of the composite outcome due to the

fact that the patients in severe conditions may be unresponsive, comatosed or unable to verbal-

ize their symptoms and score their level of pain. The extreme gradient boosting model also

ranked missing value of heart rate a relative high importance. The patient might have pre-

sented evident conditions of criticality or the intervention might have been immediate, and in

these cases there was either no need or time to measure heart rate.

We finally assessed the uncertainty in risk prediction for the best model. A high uncertainty

in the prediction of false positive classifications was observed, where the majority had a predic-

tion very close to the threshold (bellow 5%). We observed that the predictions more far apart

from the threshold corresponded to patients assigned an emergent priority. We hypothesize

that these patients might have similar characteristics to those with a composite outcome, since

they were assigned an emergent priority. However, the intervention might have been success-

ful or on the other hand these patients might have had a composite outcome later than the 24

hours and therefore it was not accounted for our 24-hour outcome. We analyzed for these

false positives if they had a composite outcome in the following 24 hours (48 hours after triage)

and we concluded that 8% had an outcome of either death, cardiopulmonary arrest, ICU or

intermediate care unit admission, sepsis or stroke. Furthermore, from this group of patients,

the emergent presented the highest average distance to the threshold, which indicates less

uncertainty in the prediction for this priority. When analyzing the correct model classifica-

tions, we observed that there was high certainty in the predictions of patients who had a com-

posite outcome and for the majority of those who did not have the outcome, the frequency of

predictions was higher for values far apart from the threshold, which corresponded to higher

certainty.

We concluded that the measures of average precision and F1-score were relatively low com-

pared to the other performance measures due to class imbalance present in the data. A signifi-

cant proportion of patients did not have a composite outcome of death or cardiopulmonary

arrest and may have had other complications, which the model does not take into account. To

handle class imbalance we propose to use novelty detection methods as future work. Nonethe-

less, the extreme gradient boosting model presented good calibration and reliability in predic-

tions. While the reference model presented higher recall for MTS-1 and MTS-2, the extreme

gradient boosting model proved to have a higher sensitivity in identifying patients assigned

MTS-3. This demonstrates the potential to complement the already existing triage system with

a machine learning model and avoid under-triaging.
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Investigation: Marta Fernandes, Rúben Mendes, Susana M. Vieira, Alistair Johnson, Steven

Horng.
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