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Scalable distributed gate‑model 
quantum computers
Laszlo Gyongyosi1,2* & Sandor Imre1

A scalable model for a distributed quantum computation is a challenging problem due to the 
complexity of the problem space provided by the diversity of possible quantum systems, from 
small-scale quantum devices to large-scale quantum computers. Here, we define a model of scalable 
distributed gate-model quantum computation in near-term quantum systems of the NISQ (noisy 
intermediate scale quantum) technology era. We prove that the proposed architecture can maximize 
an objective function of a computational problem in a distributed manner. We study the impacts of 
decoherence on distributed objective function evaluation.

As the development of quantum computers evolve extensively1–29, the power of quantum computations has 
become more interpretable for efficient problem-solving. However, while experimental quantum computers 
are currently under development, smaller quantum devices and quantum terminals are currently available in 
practice. As an adequate answer to the quantum supremacy of quantum computers, the development of the 
quantum Internet30–43 has already started both in theory and experiment32,34,36,39,44–46, with a primary aim to 
provide unconditional security with advanced network services31–34,36,38,41,44–64. A common attribute of quan-
tum computer architectures and the quantum Internet30,31,52,65–119, from an abstract theoretical point of view, 
are scalable distributed quantum systems120–137. Performing quantum computation in a distributed quantum 
system can also be approached as a maximization problem since a computational problem fed into the quantum 
system defines an objective function. The optimization of a distributed problem solving is therefore equivalent 
to a maximization of the objective function of a computational problem fed into the distributed quantum sys-
tem (Objective function examples can be found in5,8,9.). A primary aim of these distributed quantum systems is 
therefore the maximization of an objective function in a distributed manner, via quantum CPUs in a quantum 
computer1–4,14,138–141), or by quantum terminals39,40,45,64,125,126,128,131,133 in a quantum Internet setting.

The problem of scalable quantum computation in a distributed quantum system is a challenge because of the 
complexity of the problem space provided by the diversity of possible quantum systems. The distributed quan-
tum computational model has to include arbitrarily scaled quantum systems, from smaller quantum devices to 
large-scale quantum computers and the quantum Internet. As a corollary, the definition and parameterization 
of a scalable model for a distributed gate-model quantum computation is a hard problem, and no general solu-
tion is currently available.

Here, we study the problem of scalable quantum processing in distributed near-term quantum systems. We 
define a scalable distributed model of gate-model quantum computation and conceive the scaling attributes and 
unitaries of a distributed quantum information processing for problem-solving. The proposed scalable distributed 
quantum network integrates distributed quantum processing in arbitrarily scaled quantum systems.

In our context, an arbitrarily scaled quantum system can identify small, medium, or large-scale distributed 
quantum systems. The system model consists of an arbitrary number of quantum nodes connected by different 
levels of entangled connections (level of entanglement refers to the number of spanned nodes between a source 
and target node). The quantum system can refer to a quantum device, a quantum computer, or an arbitrary 
quantum Internet setting in which several quantum computers (quantum nodes) share entanglement to perform 
distributed quantum computations. The quantum nodes have to achieve the objective function maximization 
in a distributed way such that each node is allowed to apply local unitaries and connected via an arbitrary level 
of entanglement. In a small-scale system, the quantum nodes are connected by one-level entanglement while 
for a medium- or large-scale system, the level of entanglement between quantum nodes can be arbitrarily large. 
The local unitaries of the nodes are defined in a way that allows the distributed quantum system to implement 
a gate-model quantum computation in a distributed way.

We characterize a system model of a scalable distributed quantum system that allows for the performance 
of distributed gate-model quantum computation in a scalable manner. We define the scalable attributes of the 
system model and the gate parameters of the local unitaries of the quantum nodes for the objective function 
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maximization, assuming that multipartite entanglement is utilized in the local nodes, and evaluate a cost func-
tion. The system model also assumes that the distributed quantum network evolves with time; thus, we utilize 
the impacts of decoherence in the distributed objective function evaluation and maximization.

Since the proposed system model is parameterizable for different physical systems, the results are applicable 
for distributed quantum computations in quantum computers, quantum devices, quantum networking, and 
the quantum Internet. Derivations focus on near-term quantum systems such as qubit-based implementations, 
qubit-based quantum computer architectures, and entangled network structures connected by multipartite qubit 
entanglement; however, the results are extendable for arbitrary dimensional quantum systems.

The novel contributions of our manuscript are as follows:

•	 We define a distributed quantum system to implement a scalable distributed gate-model quantum computa-
tion.

•	 We conceive the unitary operations of the distributed system and prove that the distributed quantum system 
can maximize the objective function of an arbitrary computational problem.

•	 We reveal the impacts of decoherence on the distributed objective function evaluation and define a suitable 
cost function for scalable distributed quantum computation.

This paper is organized as follows. In Sect. 2, the problem statement and system model are given. Section 3 defines 
the distributed quantum computational model. In Sect. 4, the scaling methods are concealed. Finally, Sect. 5 
concludes the results. Supplemental information is included in the Appendix.

Scalable distributed quantum system
Problem statement.  The issues that need to be addressed are given in Problems 1–4.

Problem 1  Define the scaling attributes of an arbitrary distributed quantum system to resolve an arbitrary com-
putational problem in a distributed manner.

Problem 2  Define the unitary operations of the distributed system that allows for the implementation of a distrib-
uted gate-model quantum computation.

Problem 3  Prove that the distributed quantum system can maximize the objective function of an arbitrary com-
putational problem fed into the distributed quantum system.

Problem 4  Determine the impacts of decoherence on the distributed objective function evaluation, and define a 
suitable cost function for the distributed quantum computation.

The resolutions to Problems 1–4 are proposed in the Theorems and Lemmas of the manuscript.

System model.  The system model of the N scalable distributed physical system is as follows. In N = (V , S) , 
the |V | quantum nodes are connected via |S| , l-level entangled connections (An entangled connection between 
the quantum nodes refers to a shared multipartite entanglement. Between two nodes, x and y, the entangled 
connection identifies a bipartite quantum entanglement. For a qubit setting, the d = 2 dimensional twopartite 
maximally entangled states are the so-called Bell states; here one can assume the use of the |β00� state, 
|β00� = 1√

2
(|00� + |11�) in the system model.), where V is a set of quantum nodes and S is a set of entangled 

connections. For an l-level entangled connection, the d
(

x, y
)

Ll
 hop distance in N is

with d
(

x, y
)

Ll
− 1 intermediate nodes (The level l of an entangled connection assumes that each entanglement 

level doubles the hop-distance between x and y, which is a general model in quantum networking. It is also 
used in the so-called doubling architecture of entanglement distribution, in which the entanglement levels are 
increased via entanglement swapping39,41. Note, that l can model any hop-distance between the nodes.) between 
the nodes x and y. Thus, l = 1 refers to a direct connection between two quantum nodes x and y without inter-
mediate quantum nodes in the distributed system N.

Proposition 1  (Distributed quantum system for a scalable distributed gate-model quantum computation). An 
arbitrary distributed quantum system N is scalable via the entanglement level of entangled connections, by the gate 
parameters of the local unitaries of the quantum nodes, and by local measurements in the nodes. The N distributed 
quantum system can implement a scalable gate-model quantum computation in a distributed manner.

Proof  The level l of the entangled connections between the nodes depends on the physical size and topology 
of N. Without loss of generality, for an s small-scale distributed quantum system (quantum device, quantum 
terminal, smaller quantum computer),

(1)d
(

x, y
)

Ll
= 2l−1,
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while for an m medium, or l large-scale distributed quantum system (medium or large-scale quantum computer, 
quantum repeater network, arbitrary quantum communication network, quantum Internet),

A P(A → B) computational path of N is modeled as a set V = {V1, . . . ,VL} of L quantum nodes, with a set 
S = {E1, . . . ,EL−1} of L− 1 entangled connections between the nodes, where Ej identifies an entangled con-
nection between d-dimensional quantum states j and k in nodes Vx and Vy . Focusing on near-term distributed 
quantum systems, we use d = 2 ; thus, j and k refer to qubits throughout the manuscript. The aim of the P(A → B) 
computational path is to maximize a particular objective function CP(A→B) of an arbitrary computational prob-
lem in a distributed manner using the nodes and entangled connections of the path.

The allowed operations for a node pair Vxy =
{

Vx ,Vy

}

 with a shared l-level entangled connection Ej , 
j = 1, . . . , L− 1 are defined as follows.

A scalable gate-model quantum computation can be set up in N by allowing the local nodes to perform local 
unitaries using the Pauli σx and σz operators. The local unitaries scaled by the gate parameters, in the following 
manner.

A node pair 
{

Vx ,Vy

}

 is allowed perform a local single-qubit unitaries12,14

where βj ∈ [0,π] is the gate parameter of the unitary, while X is the Pauli σx operator, and

on qubits j and k in nodes Vx and Vy , βk ∈ [0,π].
The node pair is also allowed to realize a distributed unitary

on qubits j and k using the l-level entangled connection Ej =
〈

jk
〉

 , where γjk ∈ [0, 2π] is the gate parameter of 
the distributed unitary12,14, defined as

where γj , γk ∈ [0,π] are the local gate parameters applied on qubits j and k, Z is the Pauli σz operator, while

Thus, setting

the result in (8) can be evaluated as

A node Vx can also apply an UC
x  local coupling unitary to connect qubits i and j from entangled connections 

�(i − 1)(i)� and 
〈

jk
〉

 in Vx , as

where H(i,j) is a Hamiltonian, and also in Vy on the qubits k and k + 1 of entangled connections 
〈

jk
〉

 and 
�(k + 1)(k + 2)� , as

(2)l = 1,

(3)l ≥ 1.

(4)U
(

Xj ,βj
)

= exp
(

−iβjXj

)

,

(5)U(Xk ,βk) = exp (−iβkXk),

(6)U
(

ZjZk , γjk
)

= U
(

ZjZk , γj
)

U
(

ZjZk , γk
)

= exp
(

−i
(

γj
)

ZjZk
)

exp
(

−i(γk)ZjZk
)

(7)γjk = γj + γk ,

(8)

U
(

ZjZk , γjk
)

= U
(

ZjZk , γj
)

U
(

ZjZk , γk
)

= exp
(

−i
(

γj
)

ZjZk
)

exp
(

−i(γk)ZjZk
)

=
(

cos
(

γj
)

I − i sin
(

γj
)

ZjZk
)(

cos (γk)I − i sin (γk)ZjZk
)

= cos
(

γj
)

cos (γk)I − i cos
(

γj
)

sin (γk)ZjZk − i cos (γk) sin
(

γj
)

ZjZk − sin
(

γj
)

sin (γk)ZjZkZjZk

= 1
2

(

cos
(

γj − γk
)

+ cos
(

γj + γk
))

I − i
(

1
2

(

sin
(

γj + γk
)

− sin
(

γj − γk
)))

ZjZk

− i
(

1
2

(

sin
(

γj + γk
)

− sin
(

γk − γj
)))

ZjZk − 1
2

(

cos
(

γj − γk
)

− cos
(

γj + γk
))

I

= cos
(

γj + γk
)

I − 2i
(

1
2

(

sin
(

γj + γk
)

− sin
(
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ZjZk .

(9)γj = γk = 1
2γjk ,

(10)

U
(

ZjZk , γjk
)

= U
(

ZjZk , γj
)

U
(

ZjZk , γk
)

= cos
(

γjk
)

I − i sin
(

γ ′
jk

)
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= exp
(

−i
(

γjk
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.

(11)UC
x = exp

(

−itH(i,j)
)

(12)UC
y = exp

(

−itH(k,k+1)
)
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where H(k,k+1) is a Hamiltonian, to connect qubits k and k + 1 , and remote entangled connections.
Therefore, the Uxy unitary associated to a given node pair 

{

Vx ,Vy

}

 connected by an l-level entanglement Ej 
in the distributed quantum system N is defined as

where Ux is the unitary of a node Vx , x = 1, . . . , L , defined as

while Uy is the unitary of its neighbor node Vy , as

Since unitaries (14) and (15) allows us to realize a gate-model quantum computation14,29, it follows that the 
{

Vx ,Vy

}

 node pairs of the distributed quantum system N can implement quantum computation using their 
entangled connections in a distributed manner. 	�  �

Methods.  Proposition 2  To model multipartite entanglement in a particular node Vx , qubit j has entangled 
connection with k to formulate 

〈

jk
〉

 , and also with Ŵj remote qubits, n1, . . . , nŴj , which are not neighbors of qubit 
k (These Ŵj qubits have no connections with qubit k.). The total number of qubits that are neighbor of j but not 
neighbor of k is Ŵj + 1.

Proof  Each entangled connection Ej has a contribution ζEj to an FP(A→B) target function of a computational 
path P(A → B) (will be proven in Sect. 3)

where |ϕ∗� is the output state of P(A → B) , defined as

where |+� = 1√
2
(|0� + |1�) , while UP(A→B) is defined as a unitary sequence associated to P(A → B) , as

where 
〈

jk
〉

∈ P(A → B) refers to an Ej entangled connection between qubits j and k on the computational path 
P(A → B).

The n-qubit length input system |s� of the distributed system N, is defined as a product of σx eigenstates12,14, as

where |z� is a computational basis state, z is an n-length string,

where zi identifies an i-th bit, zi ∈ {−1, 1} , and |+�i is the input system of an i-th computational path (As N is a 
quantum computer system or a quantum device with quantum registers, then |s� refers to a quantum register in 
the superposition of n qubits, while a given node Ai identifies the i-th source qubit, |+�i , of the n-length quantum 
register. In the current system model, the input system fed into the distributed system can also refer to a quantum 
register, physically not distributed between distant parties.) P(Ai → Bi).

The nodes of the distributed system also can perform M[mb] local measurements in a base mb ∈ {m0,m1} 
(see (35), (36)) to realize an LU upload76,142 and an LD download76,143 procedure. The LU upload procedure is 
an information delocalization method76,142, in which a source system is uploaded by a source node onto the 
network state formulated by the entangled connections of the intermediate nodes of the distributed system. The 
LD download procedure is an information localization procedure76,143, in which the uploaded and transformed 
information (transformed by the local unitaries of the quantum nodes in our setting) is localized into a particular 
target node from the network state of intermediate nodes. Since the distributed quantum system evolves with 

(13)

Uxy = UxUy

= U
(

Bj ,βj
)

U
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(
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(
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x U
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,

(14)Ux = U
(

Xj ,βj
)

U
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ZjZk , γj
)

,

(15)Uy = U(Xk ,βk)U
(

ZjZk , γk
)

.

(16)
FP(A→B) = max

∀θ
〈

ϕ∗|CP(A→B)

∣

∣ϕ∗〉

= 1
2

∑L−1

j=1
ζEj ,

(17)
∣

∣ϕ∗〉 = UP(A→B)|+�,

(18)

UP(A→B) =ULUL−1 . . .U1

=U(XL,βL)U(XL−1,βL−1)U
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ZL−1ZL, γL−1,L

)

U
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U
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Xj ,βj
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U
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ZjZk , γjk
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,

(19)|s� = |+�1|+�2 . . . |+�n = |+�⊗n = 1√
2n

∑

z

|z�,

(20)z = z1z2 . . . zn,
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time, the timing of a local measurement also represents a scalable attribute in the distributed system (see (27) 
and (37)). 	�  �

Proposition 3  In a source node Ai , the LU (|+�i) uploading is realized by a MB Bell measurement76 applied on 
input system |+�i and the first particle of chain |��i that identifies the |��i network state of computational path 
P(Ai → Bi).

Proof  The |��i network state is defined as

where sub-index 1 identifies the first particle of |��i of P(Ai → Bi) maximally entangled with the remaining 
2(L− 1) qubits of the chain of P(Ai → Bi).

The LU (|+�i) uploading process results in

where αi|0� + βi|1� = 1√
2
(|0� + |1�) = |+�i.

Applying LU (|+�i) for i = 1, . . . , n , uploads the input system |s� in a distributed manner, as

to the |��n1 distributed network state formulated via n computational paths P(A1 → B1), . . . ,P(An → Bn) , as

while indices 1, . . . , n identify the auxiliary systems used for the uploading procedure in the n source nodes76,142, 
while U(N) the unitary of N is defined as,

where U(�θi) refer to the unitary associated to an i-th path P(Ai → Bi) , i = 1, . . . , n , defined as a unitary sequence 
of L unitaries,

where Ui,x identifies the unitary of a given node Vx of P(Ai → Bi) , as

and U(�θi) is a unitary sequence of 2L unitaries implemented via L nodes Vx , x = 1, . . . , L , in P(Ai → Bi).
The LU (|s�) operation therefore results in

that yields the output system of N

distributed between the n receiver nodes B1, . . . ,Bn . Thus. the outputs of the n paths, U(N)|s� can be localized 
onto the n receivers in the downloading procedure76,143.

To verify (22) and (27), we recall the formalisms of144,145. The input system |+�i of a given node Ai can be 
rewritten as

and let |��i be as given in (21), then

where indices 0 and 1 identify the input system |+�i and the first qubit of the first EPR pair of chain |��i that 
serves as an |aux� auxiliary qubit system, Haux = C

2 , maximally entangled with the 2(L− 1)-qubit length system 

(21)|��i = U(�θi) 1√
2

(

|0�aux(|0�)2(L−1)
2 + |1�aux(|1�)2(L−1)

2

)

,

(22)
LU (αi|0� + βi|1�) = U

(

�θi
)(

αi(|0�)2(L−1)
2 + βi(|1�)2(L−1)

2

)

= U
(

�θi
)

1√
2

(

(|0�)2(L−1)
2 + (|1�)2(L−1)

2

)

,

(23)LU (|s�) = LU (|+�1|+�2 . . . |+�n),

(24)
|��n1 = U(N) 1√

2

(

(|00�)n2(L−1)
1 + (|11�)n2(L−1)

1

)

= U(N) 1√
2

(

|0�n1(|0�)n2(L−1)
n+1 + |1�n1(|1�)n2(L−1)

n+1

)

,

U(N) =
∏

j∈N
U
(

Xj ,βj
)

∏

�jk�∈N
U
(

ZjZk , γjk
)

= U
(

�θn
)

U
(

�θn−1

)

. . .U
(

�θ1
)

,

(25)U
(

�θi
)

= Ui,LUi,L−1 . . .Ui,1,

(26)Ui,1 = U
(

βi,1,Xi,1

)

U
(

γi,1,Zi,1
)

,

(27)LU (|s�) = U(N) 1√
2n

(

(|0�)n2(L−1)
n+1 + (|1�)n2(L−1)

n+1

)

,

(28)
∣

∣φ∗〉 = U(N)|s�

(29)|+�i = �0|0� + �1|1�,

(30)|��i|+�i =
∑

k,s=0,1

�kU(�θi) 1√
2

(

(M[ms]|L�)2(L−1)
2

)

|ms�1|k�0,
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(|L�)2(L−1)
2  , HL = C2⊗2(L−1) , formulating orthogonal states as (|L�)2(L−1)

2 =
{

|0�2(L−1)
2 , |1�2(L−1)

2

}

 , while {|ms�} is 
an orthogonal basis76,144,145.

Then, in node Ai an MB Bell measurement is applied on subsystems 0 and 1, that yields a projection onto

while the 
∣

∣�′〉
i
 post-measurement network state is evaluated as

which coincidences with (22).
Extending the derivations to n computational paths such that the paths realize the n-qubit unitary U(N) , each 

Ai apply a Bell measurement MB(Ai) , thus the post-measurement network state 
∣

∣�′〉n
1
 is as

where (|L�)n2(L−1)
n+1 =

{

|0�n2(L−1)
n+1 , |1�n2(L−1)

n+1

}

 defined on HL = C2⊗n2(L−1) since the entangled network structure 
of the distributed system is formulated via n2(L− 1) entangled states over the n computational paths, while n 
auxiliary qubit systems, |aux�1|aux�2 . . . |aux�n , are measured via the Bell measurements in the n source nodes, 
Haux1...n = C2⊗n , that confirms the result in (27).

The LD downloading process76,143 for receiver node Bi results in

To obtain (34) in Bi , M[mb] local measurements in a mb suitable basis are applied on the remaining 2(L− 1)− 1 
qubits in the L− 1 nodes of P(Ai → Bi) between Ai and Bi . Recalling the formalisms of144,145, for an i-th node, 
the M[mb] local measurement is set in bases mb ∈ {m0,m1} , as

and

where |ψ0� = cos ς
2 |0� + eiα sin ς

2 |1� , |ψ1� = sin ς
2 |0� − eiα cos ς

2 |1� , with ς ∈ [0,π] . (Assuming that the entan-
gled connections between the nodes are maximally entangled, ς = π , and ς < π otherwise. This parameter is 
also referred to as entanglement factor, see also76). Then, it can be verified76,143 that by applying M[mb] local 
measurements in the L− 2 intermediate nodes between Ai and Bi as defined by (35) and (36), Bob Bi obtains the 
result U(�θi)|+�i with probability Pr

(

U(�θi)|+�i
)

= 1− cos ς
2.

Therefore, applying the measurement procedure in the intermediate nodes of the n computational paths, 
results in (28) at the receiver side in a distributed manner, as

with probability

over the n paths. Thus, if the network is maximally entangled it yields a deterministic download at the receiver 
with Pr (|φ∗�) = 1.
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2n

(

(|0�)n2(L−1)
n+1 + (|1�)n2(L−1)

n+1

)

= LU (|+�1|+�2 . . . |+�n),

(34)LD

(

U(�θi) 1√
2

(

(|0�)2(L−1)
2 + (|1�)2(L−1)

2

))

= U(�θi)|+�i .

(35)M[m0] = |ψ0��0|,

(36)M[m1] = |ψ1��1|,

(37)
∣

∣φ∗〉 = LD

(

U(N) 1√
2n

(

(|0�)n2(L−1)
n+1 + (|1�)n2(L−1)

n+1

))

,

(38)Pr
(∣

∣φ∗〉) =
n
∏

i=1

(

1− cos ςi
2

)
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The proof is concluded here. 	�  �

The system model of the scalable distributed physical system N is depicted in Fig. 1.
The schematic model of a computational path P(A → B) in a distributed physical system N is depicted in 

Fig. 2. (Local measurements of downloading procedure are not shown.)
Ethics statement.  This work did not involve any active collection of human data.

Quantum processing in a distributed quantum system

Theorem 1  An objective function C can be maximized in the distributed quantum system N via a target function 
F = ∑

�jk�∈N F�jk� = max
∀θ

�φ∗|C|φ∗� , where 
〈

jk
〉

 is an l-level, l ≥ 1 , entangled connection between qubits j and k.

Proof  Let N be the physical distributed quantum system, with a particular objective function C of a computa-
tional problem subject of a maximization. To simplify the discussion in the following section, allow us to focus 
on a single computational path P(A → B) , thus we set n = 1 , and N = P(A → B) with |s� = |+� ; however, the 
derivations and results are not restricted to this case.

Let U(�θ) be the unitary realized via the computational path P(A → B) , as

where i = 1, . . . , 2L , L is the number of nodes of N (number of distributed subsystems), 2L is the total number 
of unitaries in the L nodes (each node is defined via 2 unitaries) θi is a gate parameter associated with Ui , i.e., 
θi = βi or θi = γi , and �θ  is the gate parameter vector defined as

(39)U
(

�θ
)

= U2L(θ2L)U2L−1(θ2L−1) · · ·U1(θ1),

Figure 1.   The schematic model of the distributed physical system N that realizes a scalable distributed quantum 
computation with arbitrary-level entangled connections. The |s� = |+�1 . . . |+�n input system is distributed via 
n source nodes A1, . . . ,An through a chain of intermediate nodes via l-level entangled connections to the n 
receiver nodes B1, . . . ,Bn , where |+� = 1√

2
(|0� + |1�) , |s� = 1√

2n

∑

z |z� , while |z� is an n-qubit length 
computational basis state. The aim of the distributed network system N is to maximize a C objective function of 
a computational problem in a distributed manner. The distributed system realizes the distributed unitary U(N) 
and outputs a distributed system |φ∗� = U(N)|s� . The M distributed measurements are performed in the n 
receiver nodes B1, . . . ,Bn to produce the string z that allows the nodes to evaluate C(z) in a distributed way. The 
|s� input system is uploaded via the LU (|s�) = LU (|+�1 . . . |+�n) distributed uploading process to the 
distributed network state 
|��n1 = U(N) 1√

2

(

(|00�)n2(L−1)
1 + (|11�)n2(L−1)

1

)

= U(N) 1√
2

(

|0�n1(|0�)n2(L−1)
n+1 + |1�n1(|1�)n2(L−1)

n+1

)

 , where 

|��i = U
(

�θi
)

1√
2

(

|0�1(|0�)2(L−1)
2 + |1�1(|1�)2(L−1)

2

)

 , where index 1 identifies the first particle of computational 
path P(Ai → Bi) , formulated via the results of the unitaries of the n computational paths, where an i-th path 
P(Ai → Bi) , i = 1, . . . , n , realizes an U

(

�θi
)

= Ui,LUi,L−1 . . .Ui,1 unitary sequence of 2L unitaries in L nodes 
Vx , x = 1, . . . , L , where Ui,1 = U

(

βi,1,Xi,1

)

U
(

γi,1,Zi,1
)

 . The LU (|s�) = LU (|+�1) . . .LU (|+�n) uploading 
process is distributed among the n nodes, where LU (|+�i) is realized in an i-th source node Ai as 
LU (αi|0� + βi|1�) = U

(

�θi
)(

αi(|0�)2(L−1)
2 + βi(|1�)2(L−1)

2

)

= U
(

�θi
)

1√
2

(

(|0�)2(L−1)
2 + (|1�)2(L−1)

2

)

 . The LD 

downloading process results in LD

(

U
(

�θi
)

1√
2

(

(|0�)2(L−1)
2 + (|1�)2(L−1)

2

))

= U
(

�θi
)

|+�i for receiver node Bi . 
Applying LU and LD for all source and receiver nodes, results in LD(LU (|+�1 . . . |+�n)) = U(N)|s� at the 
receiver in a distributed manner.
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Assuming that N consist of g single-qubit unitaries and m two-qubit unitaries for the entangled qubit pairs (m 
qubit pair connection in N), such that

unitary U(�θ) from (39) can be rewritten as

where

where �β is the gate parameter vector,

and

where Bj = Xj = σ
j
x

12,14, and

and U(C, �γ ) is defined as14

(40)�θ = (θ1, . . . , θ2L−1, θ2L)
T .

(41)L = g +m,

(42)U
(

�θ
)

= U
(

B, �β
)

U(C, �γ ),

(43)U
(

B, �β
)

=
g
∏

j=1

U
(

Bj ,βj
)

,

(44)�β =
(

β1, . . . ,βg
)T

,

(45)B =
∑

j

Bj

(46)U
(

Bj ,βj
)

= exp
(

−iβjXj

)

,

Figure 2.   Evaluation of target function value F of a computational problem via a distributed computational 
path P(A → B) between a distant source node A and receiver node B in a distributed system N with L− 2 
intermediate nodes Vx , x = 2, . . . , L− 1 , with multipartite entanglement in the local nodes. Alice applies an 
MB Bell measurement on the input system |+� and on the first particle of the chain to achieve the LU (|+�) 
uploading procedure. A node pair Vxy =

{

Vx ,Vy

}

 with a shared l-level entangled connection Ej , 
j = 1, . . . , L− 1 ( l = 1 for a small-scale system while l ≥ 1 for a medium- and large-scale system by a 
convention) is allowed to (1) apply a local coupling unitary UC

x = exp
(

−itH(i,j)
)

 and UC
y = exp

(

−itH(k,k+1)
)

 
to connect qubits i (connected to Vx−1 ) to and j in Vx , and qubits k and k + 1 (connected to Vx+1 ), (2) to 
perform a local single-qubit unitaries U

(

Xj ,βj
)

 and U(Xk ,βk) on qubits j and k in Vx and Vy , (3) to realize a 
distributed two-qubit unitary U

(

ZjZk , γjk
)

 on qubits j and k using the l-level entangled connection Ej , and (4) to 
apply an M[mb] in basis mb ∈ {m0,m1} , local measurement to realize the LD download into B. In a given Vx , 
qubit j formulates a multipartite entanglement: j has an entangled connection with qubit k in Vy , and j is also 
entangled with Ŵj other neighbor qubits, n1, . . . , nŴj , called remote entangled connections of j (not neighbors of 
qubit k), and the total number of qubits that are neighbors of j but not neighbors of k is Ŵj + 1 . Each entangled 
connection Ej has a contribution ζEj to the expected target function value FP(A→B) = 1

2

∑L−1
j=1 ζEj . (Operations 

associated with a particular qubit in a given node are depicted by dashed circles.)
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where 
〈

jk
〉

∈ N is an l-level, l ≥ 1 , entangled connection between qubits j and k, with gate parameter vector

and

where ZjZk = σ
j
zσ

k
z .

At a particular physical entangled connection topology in N, the objective function C can be written as

where Cjk(z) is the objective function component12,14 evaluated for entangled connection 
〈

jk
〉

∈ N , as

where z is an n-length input bitstring,

and zi identifies an i-th bit, zi ∈ {−1, 1}.
For a given z, a |z� computational basis state is defined as

and |ϕ� output system of N at a single path at input (52) is defined as (For a level-p circuit, a set of p �β and �γ gate 
parameter vectors are used as �β(1), . . . , �β(p) , and �γ (1), . . . , �γ (p) . For simplicity, here we assume p = 1 , however 
the results can be extended for arbitrary p14. For further details, see14.)

Then, let |s� be an n-qubit length input system of N, defined as in (19), thus for n = 1,

and the output system |ϕ∗� is evaluated as given in (17).
The maximization of objective function C is identified via a target function F, as

and for a particular entangled connection 
〈

jk
〉

 of N, the aim is the maximization of target function F〈jk〉 , as

where 
∣

∣

∣
ϕ∗
N ,jk

〉

 is a target state defined as

For the total system N, the objective function values of all entangled connections are summed, thus C(z) is as 
given in (49).

For all connected qubits, the target function is set as

(47)
U(C, �γ ) =

∏

�jk�∈N
U
(

Cjk , γjk
)

,

�γ = (γ1, . . . , γm)
T ,

(48)U
(

Cjk , γjk
)

= U
(

ZjZk , γjkCjk

)

= exp
(

−iγjkCjkZjZk
)

,

(49)
C(z) =

∑

�jk�∈N
Cjk(z),

(50)Cjk(z) = 1
2

(

1− zjzk
)

,

(51)z = z1z2 . . . zn,

(52)|z� = |z1z2 . . . zn�

(53)

|ϕ� = U
(

�θ
)

|z�

= U
(

B, �β
)

U(C, �γ )|z�

= U
(

B, �β
)

∏

�jk�∈N
U
(

Cjk(z), γjk
)

|z�

=
∏

j

exp
(

−iβjXj

)

∏

�jk�∈N
exp

(

−iγjkCjk(z)ZjZk
)

|z�.

(54)|s� = |+�,

(55)
F = max

∀θ

〈

�γ , �β , C|C| �γ , �β ,C
〉

= max
∀θ

〈

ϕ∗|C|ϕ∗〉,

(56)F�jk� = max
∀θ

(

(

− 1
2

)

〈

ϕ∗
N ,jk

∣

∣ZjZk
∣

∣ϕ∗
N ,jk

〉)

,

(57)

∣

∣

∣
ϕ∗
N ,jk

〉

=
∣

∣γjk ,βk ,βj ,Cjk

〉

= U
(

B,βj
)

U(B,βk)U
(

Cjk(z), γjk
)

|s�.
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where 
∣

∣

∣
ϕ∗
N ,jk

〉

 is given in (57).
Then, assuming that N consists of n computational paths, and |s� is an n-qubit length input as defined in (19), 

the result in (58) can be extended as

that concludes the proof. 	�  �

Distributed computational system as an extended correlation space.  Lemma 1  (The distributed 
computational space is an extended correlation space). The D(N) distributed computational space of N is an 
extended correlation space with n entangled computational paths, P(Ai → Bi) , i = 1, . . . , n between n source and 
receiver nodes.

Proof  Using the correlation space (The correlation space is an abstract mathematical model of a physical system 
defined via a matrix product state (MPS) representation and open-boundary conditions76,144,145.) formalism144,145, 
we first rewrite |ϕ∗� from (17), as

where xi ∈ {0, 1} , i = 1, . . . , L , M[xi] is a 2× 2 matrix, |xi� is a local state vector associated to node Vi , as

and M[xi] is defined as

with relation76,144,145

where |+� = 1√
2
(|0� + |1�) , while |A� and |B� are d = 2 dimensional vectors that represent the input and output 

systems (boundary conditions in the extended correlation space).
The system state of (60) can be rewritten as

By recalling Observation 2 from145, allows us to the define δi via the ς ∈ [0,π] measurement coefficient used in 
the definition of measurement operators (35) and (36), as

where ωi identifies computational bases 
∣

∣bωi

〉

∈
{∣

∣0ωi

〉

,
∣

∣1ωi

〉}

 , as

Using ωi along with ς , a diagonal matrix D(ωi , ς) can be defined as

(58)

F =
�

�jk�∈N
F�jk�

= max
∀θ

�

ϕ∗|C|ϕ∗�

= max
∀�jk�∈N





�

− 1
2

�

�

�jk�∈N

�

ϕ∗
N ,jk|Cjk

�

�ϕ∗
N ,jk

�





=
�

− 1
2

�

max
∀�jk�∈N





�

�jk�∈N

�

ϕ∗
N ,jk|ZjZk

�

�ϕ∗
N ,jk

�



,

(59)

F =
∑

�jk�∈N
F�jk�

= max
∀θ

〈

φ∗|C|φ∗〉,

(60)
∣

∣ϕ∗〉 =
∑

x1,...,xL

�B|M[xL]M[xL−1] . . .M[x]|A�|x1, . . . , xL�,

(61)|xi� = c
(i)
0 |0� + c

(i)
1 |1�,

(62)M[xi] = c̄
(i)
0 M[0]+ c̄

(i)
1 M[1],

(63)(�x1| ⊗ . . .⊗ �xL|)|ψL� = �xL|M[xL−1] . . .M[x1]|+�,

(64)
∣

∣ϕ∗〉 =
∑

x1,...,xL

�xL|M[xL−1] . . .M[x1]|+�|x1, . . . , xL�.

(65)δi = arg
(

sin (ωi)+ cos (ωi) exp
(

i ς2
))

,

(66)
∣

∣bωi

〉

=
{∣

∣0ωi

〉

= sin (ωi)|0� + cos (ωi)|1�
∣

∣1ωi

〉

= cos (ωi)|0� − sin (ωi)|1� .

(67)D(ωi , ς) =
√
piS(−2δi),
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where

while pi is evaluated via (65) as

Finally, by exploiting Observation 3 of145, leads to

where W is a matrix set as

where ℧ is a coefficient, such that

where δj is as given in (65) (with an index update).
Thus, the D(P(A → B)) computational path is the map of the physical computational path

formulated via the L nodes V1, . . . ,VL of N onto the correlation space, as

Then using the system characterization of N of Section 2, reveals that D(N) is an extended correlation space 
with n computational paths, where an i-th computational path is evaluated as (74), thus the D(N) computational 
model of N is evaluated as

where 
(

i, j
)

 identifies a j-th unitary of an i-th computational path P(Ai → Bi) , that concludes the proof. � �

Objective function evaluation at multipartite entanglement.  Proposition 4  Let FP(A→B) be the 
target function at a given objective function CP(A→B) evaluated for the computational path P(A → B) via (58), as

where CP(A→B) is defined as

Theorem 2  (Scaling via gate parameters of unitaries). The FP(A→B) target function of a computational path 
P(A → B) with objective function CP(A→B) =

∑

�jk�∈P(A→B) Cjk is maximized at gate parameters βj = π
8  and 

γjk = 1
2 cos

−1
(

Ŵj−1

Ŵj+1

)

 in the L nodes, where Ŵj is the number of remote entangled connections of j.

Proof  The proof utilizes the system model of Section 2, and focuses on a particular computational path 
P(A → B) with an CP(A→B) objective function of a computational problem.

At L− 1 entangled connections, FP(A→B) from (76) can be written as

(68)S(x) = diag

(

e
−ix
2 , e

ix
2

)

,

(69)pi = |δi|2.

(70)U
(

�θ
)

= WS(δL)WS(δL−1) . . .WS(δ1),

(71)W = exp
(

iπ X
℧

)

,

(72)WS
(

δj
)

= Uj = U
(

Xj ,βj
)

U
(

ZjZk , γj
)

,

(73)P(A → B) = ULUL−1 . . .U1

(74)D(P(A → B)) = WS(δL)WS(δL−1) . . .WS(δ1).

(75)
D(N) =

(

W1S
(

δ1,L
)

W1S
(

δ1,L−1

)

. . .W1S
(

δ1,1
))

. . .

. . .
(

WnS
(

δn,L
)

WnS
(

δn,L−1

)

. . .WnS
(

δn,1
))

,

(76)

FP(A→B) =
�

�jk�∈P(A→B)

F�jk�

= max
∀θ

�

ϕ∗|CP(A→B)

�

�ϕ∗�

=
�

− 1
2

�

max
∀�jk�∈P(A→B)





�

�jk�∈P(A→B)

�

ϕ∗
N ,jk|ZjZk

�

�ϕ∗
N ,jk

�



,

(77)
CP(A→B) =

∑

�jk�∈P(A→B)

Cjk .

(78)FP(A→B) = 1
2

L−1
∑

j=1

ζEj ,
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where ζEj is the contribution of an l-level Ej entangled connection between qubits j and k in target function 
FP(A→B) , defined as

where Ŵj is the number of remote neighbor entangled qubits of j such that not neighbors of qubit k, while βj , 
βk and γjk are the gate parameters of unitaries of Uxy in (13) (The evaluation of (79) utilizes an abstraction. The 
structure of the distributed system is mapped onto a grid such that the vertices of the grid represent the qubits 
in the nodes, while an edge between the qubits identifies an l-level Ej entangled connection in the distributed 
system. Since all connections between the qubits are entangled, the vertices on the grid are separated only by 
the particular edge that directly connects the qubits, thus the distance between the qubits on the grid is set to 
unit for all connections14.)

Assuming that γjk is set to the same value for all k, k = 1, . . . ,Ŵj + 1 , at βj = βk the result in (79) can be 
simplified as

To verify (79), we first rewrite (56) for a particular entangled connection Ej , as

where 
∣

∣

∣
ϕ∗
N ,jk

〉

 is the target state from (57), and

and

where N is a product of pairs of Z operators12,14.
Then,

where

and

(79)ζEj =
(

sin
(

2βj + 2βk
))

sin γjk

Ŵj+1
∏

k=1

cos γjk ,

(80)ζEj =
(

sin 4βj
)

sin γjk cos
(Ŵj+1) γjk .

(81)
F�jk� =

(

− 1
2

)

〈

ϕ∗
N ,jk|ZjZk

∣

∣ϕ∗
N ,jk

〉

=
(

− 1
2

)

�s|U†
(

N , γjk
)(

U†
(

βj ,Xj

)

ZjU
(

βj ,Xj

))(

U†(βk ,Xk)ZkU(βk ,Xk)
)

U
(

N , γjk
)

|+�,

(82)U
(

βj ,Xj

)

= exp
(

−iβjXj

)

= cos
(

βj
)

I − i sin
(

βj
)

Xj

(83)U
(

N , γjk
)

= exp
(

−iγjkZjZk
)

= cos
(

γjk
)

I − i sin
(

γjk
)

ZjZk ,

(84)
U†

(

βj ,Xj

)

ZjU
(

βj ,Xj

)(

U†(βk ,Xk)ZkU(βk ,Xk)
)

= exp
(

iβjXj

)

Zj exp
(

−iβjXj

)

exp (iβkXk)Zk exp (−iβkXk),

(85)

exp
(

iβjXj

)

Zj exp
(

−iβjXj

)

=
(

cos
(

βj
)

I + i sin
(

βj
)

Xj

)

Zj
(

cos
(

βj
)

I − i sin
(

βj
)

Xj

)

=
(

cos
(

βj
)

Zj + i sin
(

βj
)

ZjXj

)(

cos
(

βj
)

I − i sin
(

βj
)

Xj

)

=
(

cos
(

βj
)

Zj + i sin
(

βj
)

Yj

)(

cos
(

βj
)

I − i sin
(

βj
)

Xj

)

= cos2
(

βj
)

Zj − i cos
(

βj
)

sin
(

βj
)

ZjXj + i cos
(

βj
)

sin
(

βj
)

Yj − i2sin2
(

βj
)

YjXj

= cos2
(

βj
)

Zj + i cos
(

βj
)

sin
(

βj
)

XjZj + i cos
(

βj
)

sin
(

βj
)

Yj − i2sin2
(

βj
)

YjXj

= cos2
(

βj
)

Zj + i cos
(

βj
)

sin
(

βj
)

Yj + i cos
(

βj
)

sin
(

βj
)

Yj + i2sin2
(

βj
)

Zj

=
(

cos2
(

βj
)

Zj + i2sin2
(

βj
)

Zj
)

+ 2i cos
(

βj
)

sin
(

βj
)

Yj

=
(

1
2

(

1+ cos
(

2βj
))

Zj − 1
2

(

1− cos
(

2βj
))

Zj
)

+ 2i
(

1
2

(

sin
(

2βj
)

− sin (0)
))

Yj

=
(

1
2Zj + 1

2 cos
(

2βj
)

Zj − 1
2Zj + 1

2 cos
(

2βj
)

Zj
)

+ i sin
(

2βj
)

Yj

= Zj cos
(

2βj
)
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thus

Assuming, that βj = βk = β , (87) can be written in a simplified form as

The related terms U
(

N , γjk
)

ZjU
†
(

N , γjk
)

 and U
(

N , γjk
)

YjU
†
(

N , γjk
)

 of (81) are evaluated as

and

(86)

exp (iβkXk)Zk exp (−iβkXk)

= (cos (βk)I + i sin (βk)Xk)Zk(cos (βk)I − i sin (βk)Xk)
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(

cos (βk)Zj + i sin (βk)ZkXk

)

(cos (βk)I − i sin (βk)Xk)

= (cos (βk)Zk + i sin (βk)Yk)(cos (βk)I − i sin (βk)Xk)
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= cos2(βk)Zk + i cos (βk) sin (βk)XjZj + i cos (βk) sin (βk)Yk − i2sin2(βk)YkXk
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)
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(
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(
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(
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(
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(
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(
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(
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(
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Then, using (81), let χjk be defined as

thus (81) can be rewritten as

with

and

It can be verified14, that χjk can be decomposed as

where

and

Thus, χjk can be evaluated as

(91)χjk = U†
(

N , γjk
)(

U†
(

βj ,Xj

)

ZjU
(

βj ,Xj

))(

U†(βk ,Xk)ZkU(βk ,Xk)
)

U
(

N , γjk
)

(92)F�jk� =
(

− 1
2

)

�+|χjk|+�,

(93)�+|X|+� = 1,

(94)�+|Z|+� = �+|Y |+� = 0.

(95)χjk = ηjηk ,

(96)

ηj = Zj cos 2βj +
�

Yj cos γjk − XjZk sin γjk
�

sin 2βj

Ŵj+1
�

k=1

cos γjk
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Yj sin 2βj

Ŵj
�

k=1

cos γjk − XjZk sin γjk sin 2βj

Ŵj+1
�

k=1

cos γjk





(97)

ηk = Zk cos 2βk +
�

Yk cos γjk − XkZj sin γjk
�

sin 2βk

Ŵj+1
�

k=1

cos γjk

= Zk cos 2βk +



Yk sin 2βk

Ŵj
�
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cos γjk − XkZj sin γjk sin 2βk
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Then, by utilizing the fact that input system |+� , and therefore also |s� , is an eigenstate of each X with eigenvalue 
114 (see also (93) and (94)), the terms containing Y and Z vanish from (98), while X can be replaced as X = 1 . 
As follows, (98) can be rewritten as

Further assuming that βj = βk = β holds, (99) can be simplified as

(98)

χjk =


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�
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
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Ŵj
�

k=1

cos γjk

− Xk cos 2βj sin γjk sin 2βk
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Therefore, (92) is as

which at condition βj = βk = β (which is the case for a maximization) simplifies as

Then, using (79), the CP(A→B) objective function of the P(A → B) computational path is evaluated as

where φP(A→B) identifies the total number of entangled connections of P(A → B) , as

where the term + 1
2 = 1

2 (+1) indicates the coupling unitary UC
B = exp

(

−itH(k,B)
)

 in node B in the evaluation 
CP(A→B) , by a convention.

Assuming that (80) holds, (103) is simplified as

If for each node the same βj , γjk and Ŵj values are set, (105) can be rewritten as

After some calculations, the gate-parameter values βj and γjk that maximize ζEj (and therefore CP(A→B) ) are at

and

that yields gate parameter values

and
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
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
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
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∑
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Thus, (102) is maximized as

The maximized CP(A→B) objective function value of (105) for a given computational path is therefore

and the maximized value of (106) is as

(111)F�jk� = 1
2 sin
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π
2
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1
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Ŵj+1

��



.
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1
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))

,

Figure 3.   The values of ζEj in function of gate parameters βj and γj = 1
2γjk , for different Ŵj values ( γjk is set for 

the same value for all k, k = 1, . . . ,Ŵj + 1 ). (a) Ŵj = 0 (b) Ŵj = 1 (c) Ŵj = 2 (d) Ŵj = 3 (e) Ŵj = 4 (f) Ŵj = 5 (g) 
Ŵj = 6 (h) Ŵj = 7 (i) Ŵj = 8.
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The proof is concluded here. 	�  �

The values of ζEj in function of gate parameters βj and γj = 1
2γjk , for different Ŵj values ( γjk is set for the same 

value for all k, k = 1, . . . ,Ŵj + 1 ) are depicted in Fig. 3.
The objective function values (106) for a computational path P(A → B) in function of gate parameters βj 

and γj = 1
2γjk , at different L node number and Ŵj values ( βj and γj are set as the same for all j, j = 1, . . . , L− 1 

and k, k = 1, . . . ,Ŵj + 1 ) are depicted in Fig. 4.
The gate parameter values βj and γjk for the maximization of ζEj are depicted in Fig. 5.

(113)
CP(A→B) = 1

4 + 1
2 (L− 1)

(

1
2

(

Ŵj + 2
)

+ sin
(

π
4 − 1

2 sin
−1

(

Ŵj−1

Ŵj+1

))

cos(Ŵj+1)
(

π
4 − 1

2 sin
−1

(

Ŵj−1

Ŵj+1

)))

.

Figure 4.   The CP(A→B) objective function values for a computational path P(A → B) in function of gate 
parameters βj and γj = 1

2γjk , for different L and Ŵj ( βj and γj are set for the same values for all j, j = 1, . . . , L− 1 
and k, k = 1, . . . ,Ŵj + 1 ). (a) L = 2,Ŵj = 0 (b) L = 10,Ŵj = 0 (c) L = 100,Ŵj = 0 (d) L = 2,Ŵj = 3 (e) 
L = 10,Ŵj = 3 (f) L = 100,Ŵj = 3 (g) L = 2,Ŵj = 6 (h) L = 10,Ŵj = 6 (i) L = 100,Ŵj = 6.
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Scaling of a distributed quantum processing
Target function scaling at a decoherence.  Let Sϕ∗N ,jk

(t) be the time evolution146 of target state 
∣

∣

∣
ϕ∗
N ,jk(t)

〉

 
defined at a particular t, as

where 
∣

∣

∣
ϕ∗
N ,jk(t)

〉

 is defined via (57), as a target state at t, as

where βj(t) , βk(t) and γjk(t) are values of the gate parameters at a given time t associated to 
〈

ij
〉

 , while 
∣

∣

∣
ϕ∗
N ,jk(t0)

〉

 
is an initial state at some t0 ∈ [0,T] , while A(t) is the survival amplitude146,147, defined as

where Û(t, t0) is the time evolution operator generated by a Hamiltonian Ĥ , as

From the exponential decay law147, (116) can be written as

where � is the decay rate146.

Proposition 5  The F〈jk〉(t) is the target function F〈jk〉 from (56) at a given t, defined as

Theorem 3  (Target function scaling at decoherence). At an systemal decoherence, for any non-zero quantum decay 
� on 

〈

ij
〉

 , the F
(〈

ij
〉)

 target function is scalable via the local M[mb] measurement operator of the LD download 
procedure.

Proof  Let assume that the total number of entangled connections of N is D = n(L− 1) . Then, let t〈ij〉(N) be a 
vector of initialization time parameters of the target states of the entangled connections, defined as

(114)
Sϕ∗N ,jk

(t) =
∣

∣

∣

〈

ϕ∗
N ,jk(t0)

∣

∣

∣
ϕ∗
N ,jk(t)

〉∣

∣

∣

2

= |A(t)|2,

(115)

∣

∣

∣
ϕ∗
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〉

=
∣

∣γjk(t),βk(t),βj(t),N
〉

= U
(
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)

U(B,βk(t))U
(
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)

|s�,

(116)A(t) =
〈
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N ,jk(t0)

∣

∣

∣
Û(t, t0)

∣

∣

∣
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〉

,

(117)Û(t, t0) = T exp



−i

t
�
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dxĤ(x)

�

�



.

(118)A(t) = e−�t ,
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.

Figure 5.   Gate parameter values βj and γjk in function of Ŵj for the maximization of ζEj in the distributed system N.
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where t(j)0 ∈ [0,T] is the initialization time (an initial time value when the target state is prepared) of target state 
∣

∣

∣
ϕ∗
N ,jk(t0)

〉

 , j = 1, . . . ,D.
For the survival amplitudes of the system states associated to the entangled connections at a given t, we also 

define a AN (t) vector of survival amplitudes associated to the D target states, as

where A(j)(t) is the survival amplitude of 
∣

∣

∣
ϕ∗
N ,jk(t)

〉

 , while �j is the decay rate belongs to A(j)(t) defined via 

Û
(

t, t
(j)
0

)

 that evolves 
∣

∣

∣
ϕ∗
N ,jk

(

t
(j)
0

)〉

 to 
∣

∣

∣
ϕ∗
N ,jk(t)

〉

.
Then, let LD be a downloading procedure that requires the utilization of M[mb] local measurements for the 

localization onto the target nodes with a measurement vector M(N) , as

where M
(

τ(j)
)

[mb] identifies a measurement M[mb] on qubit j of 
〈

jk
〉

 at time τ (i) ∈ [0,T] in N, i = 1, . . . , 2D , 
as

Using (118), for a given qubit j, we define the µj(t) cumulated target state intensity which is dynamic term to 
model the interaction within the entangled network structure, as follows. Term µj(t) is defined as the sum of 
weighted target state decoherence terms (weighted target state intensities) of existing neighboring entangled con-
nections and the actual weighted target state intensity at a local decoherence (local target function intensity), as

where term �〈jk〉
(

t, t
(j)
0

)

 is defined as the intensity of a target state 
∣

∣

∣
ϕ∗
N ,jk(t)

〉

,

where Aj

(

t, t
(j)
0

)

= e
−�j

(

t−t
(j)
0

)

 is the survival amplitude of 
∣

∣

∣
ϕ∗
N ,jk(t)

〉

 such that the target state is initialized at 

t
(j)
0  , F〈jk〉

(

t
(j)
0

)

 is the initial target function value at t(j)0  , while 
〈

jl
〉

 refer to the neighboring entangled connections 

of j, l = 1, . . . ,
(

Ŵj + 2
)

− 1, l �= k , while Gl(s) is a control parameter148, defined as

where s ≤ T.
Using (124), the µN (t) = (µ1(t), . . . ,µD(t))

T cumulated target state intensity of N can be defined as

(120)t�ij�(N) =
(

t
(1)
0 , . . . , t

(D)
0

)T
,

(121)AN (t) =
(

A
(1)(t), . . . ,A(D)(t)

)T
=

(

e−�1t , . . . , e−�Dt
)T

,

(122)M(N) =
(

M
(

τ (1)
)

[mb], . . . ,M
(

τ (2D)
)

[mb]
)T

,

(123)M
(

τ(j)
)

[mb] =
{

1, if j is measured at τ(j)

0, otherwise.

(124)
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(
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(j)
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)

+
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��jl�
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(l)
0 < t

)
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(

t
(j)
0

)
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(

t, t
(j)
0

)

+
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t
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+
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(125)
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(
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(j)
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)

= F�jk�
(

t
(j)
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)
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(
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(j)
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)

= F�jk�
(

t
(j)
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)

e
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(
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(j)
0

)

,

(126)Gl(s) =
{

0, if s < t
(l)
0

1, if s ≥ t
(l)
0

,

(127)µN (t) = �N (t)+
t

∫

0

FN (t0)AN (t, s)dGN (s),
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where �N (t) is the vector of target state intensities of N

and

while GN (s) is a vector of control parameters

At that point, our aim is to reveal the impacts of a M[mb] local measurement (performed in the LD download 
phase) on the µN (t) cumulated target function intensity (127), i.e., to describe the impact of a local measurement 
and the localization process on the global entangled network structure.

Let us assume that a M[mb] measurement is performed on a qubit j of 
〈

jk
〉

 at τ(j) ∈ [0,T] , denoted by 
M
(

τ(j)
)

[mb] . Then, let µN

(

t, τ(j)
)

 refer to the resulting cumulated target state intensity of N, evaluated as

where ◦ denotes element-wise product, hN
(

j
)

 is a vector with indicators h〈xy〉 to identify the localized entangled 
connections of N that are entangled with qubit j, as

where h〈xy〉 is an indicator associated to 
〈

xy
〉

 . Let GN (s, h(N)) be defined as148–150

while Gt≤τ(j)

N (s, h(N)) is an indicator for t ≤ τ(j) (i.e., Gt≤τ(j)

N (s, h(N)) indicates the target state intensity before 
the localization in the intermediate node where the measurement is performed), while Gt>τ(j)

N (s, h(N)) is set for 
t > τ(j) (i.e., Gt>τ(j)

N (s, h(N)) indicates the target state intensity after the localization onto the receiver node), 
and D(B) = (B1, . . . ,Bn)

T is a vector of n receivers for the localization procedure of target state intensity in the 
LD downloading procedure, as

thus, if j belongs to the computational path P(Ai → Bi) then Bi is a target node in LD.
As follows, the µN

(

t, τ(j)
)

 cumulated target state intensity of the global entangled structure can be decom-
posed into a sum of target state intensities before measurement M

(

τ(j)
)

[mb] in the intermediate nodes, and 

after measurement in the target node. As a corollary of the M
(

τ(j)
)

[mb] measurement on j, for any t ≤ τ(j) , the 
target state intensities of connections entangled with j vanish from the cumulated target state intensity in the 
intermediate nodes.

As the measurement on j is performed in the intermediate node, we focus to Bob Bi , to evaluate the target state 
intensity on his localized system state. As follows, at Bob Bi , the target state intensity of the localized system is as
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,
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where index Bi refers to the localized terms at Bob Bi.
The remaining, non-localized target function intensity belongs to the entangled connections in the interme-

diate network is evaluated as

therefore the target state intensities evolves further in the intermediate network, where the term hN
(

j
)

 indicates 
that the entangled connections that affected by the measurement are vanished out from the cumulated intensity 
value.

Utilizing the framework of148–150, (131) can be rewritten in a closed-form as

where

where �N is a vector of decay rates of the entangled connections of N, y
(

τ(j)
)

 is

while νBi (t) is a matrix function148,149 associated to Bob’s localized system, as

where �Bi is a vector of decay rates of the localized entangled connections.
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,
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,
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Figure 6.   Scaling of the Aj

(

t, t
(j)
0

)

 survival amplitude of the �Bi (t) target function intensity, �j ∈
[

10−3, 10−2
]

 , 

τ(j) ∈ [0, 25] , t(j)0 = 0.
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Since the target function values F〈jk〉(t) are determined by 
∣

∣

∣
ϕ∗
N ,jk(t)

〉

 , it follows that at a target state decoher-
ence the F〈jk〉(t) target function values are therefore scalable via the M[mb] measurement associated to the 
localization procedure of the LD downloading in the intermediate nodes.

The proof is concluded here. 	�  �

The scaled Aj

(

t, t
(j)
0

)

 survival amplitude of the �Bi (t) target function intensity of a given 
〈

jk
〉

 at different τ(j) 
measurement delays and �j decay rates are depicted in Fig. 6.

Scaled computational cost.  Lemma 2  (Cost of target function evaluation). The fC
(

F〈jk〉
)

 computational 
cost associated to a given F〈jk〉 is the total application time of the local unitaries. The cost function is scalable via Ŵj 
in a multipartite entanglement system.

Proof  Let P(A → B) be a computational path in N with L nodes and (L− 1) entangled connections. Then, for 
a given 

〈

jk
〉

∈ N , let β∗
j  , β∗

k  and γ ∗
jk refer to the gate parameters set to maximize the target function F〈jk〉 , set via 

(109) and (110).
The fC

(

FP(A→B)

)

 computational cost of the maximization of target function FP(A→B) is defined as

where fC
(

F〈jk〉
)

 is the computational cost associated to a given F〈jk〉 of an entangled connection 
〈

jk
〉

 , as

that measures the computational cost as the total application time of the local unitaries.
As follows, (141) depends only on Ŵj , thus the scaling coefficient of the computational cost is Ŵj.

The SR
(
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(
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))

 series representation of (142) for 
∣

∣

∣
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∣

∣

< 1 , is

while the SE
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(

F〈jk〉
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 series expansion of (142) at Ŵj = ∞ is as

The fC(N) total computational cost of N at n computational paths, is therefore
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Figure 7.   The cost function of F〈jk〉 scaled by (a) Ŵj ∈ [0, 5] , and (b) Ŵj ∈ [0, 1000].
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	�  �

In Fig. 7, the scaled fC
(

F〈jk〉
)

 cost function of F〈jk〉 is depicted.

Conclusions
Here, we defined a scalable model of distributed gate-model quantum computation in near-term quantum 
systems. We evaluated the scaling attributes and the unitaries of a distributed system for solving optimization 
problems. We showed that the computational model is an extended correlation space. We studied how decoher-
ence affects the distributed computational model and characterized a cost function. The proposed results are 
applicable in different scenarios of experimental gate-model quantum computations.
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