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Predicting the emergence of infectious diseases has been touted

as one of the most important goals of biomedical science, with an

array of funding schemes and research projects. However,

evolutionary biology generally has a dim view of prediction, and

there is a danger that erroneous predictions will mean a misuse of

resources and undermine public confidence. Herein, I outline

what can be realistically predicted about viral evolution and

emergence, argue that any success in predicting what may

emerge is likely to be limited, but that forecasting how viruses

might evolve and spread following emergence is more tractable. I

also emphasize that a properly grounded research program in

disease prediction must involve a synthesis of ecological and

genetic perspectives.
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Introduction
The SARS epidemic of 2003, the global spread of swine-

origin H1N1 influenza in 2009, the recent appearance of

new hemorrhagic fevers [1,2�] and pneumonias [3], and the

continuing threat posed by H5N1 avian influenza highlight

the pressing need to understand the mechanisms that

underpin viral emergence. Not surprisingly, the potential

health consequences of a new pandemic have stimulated

attempts to predict what types of virus might emerge in the

future, as well as where and when such an emergence event

will occur [4,5�]. As the process of emergence is synon-

ymous with the cross-species transmission of viruses to new

hosts [6–8], predicting what might emerge is essentially

equivalent to predicting what viruses are better able to

jump species boundaries and spread in new hosts.

The evolution of viral emergence
There is a general, and justifiable, nervousness about

predictions in evolutionary biology. Mutations can be
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fixed in populations by genetic drift or natural selection.

Prediction in the case of genetic drift is necessarily

hindered by a large sampling error. Although natural

selection is a deterministic process, which ought to

engender it with some inherent predictability, this will

only be possible if the fitness of each relevant mutation is

known in each relevant environment. For example, early

attempts to predict the evolution of influenza virus as a

guide for vaccine strain selection using the differential

strength of positive selection among viral lineages gained

little traction [9]. Although predictions are more robust

when selection is extremely strong — it is trivial to pre-

dict that resistance (and often the causative mutations)

will arise to commonly used antivirals — predictions of

the evolution of more complex multifactorial traits such as

host adaptation and emergence are a very different matter

[10,11]. Even for traits where single mutations might

confer a major fitness advantage, such as antiviral resist-

ance, genome-scale interactions, including epistasis

[12��,13�] and permissive mutations [14��], greatly com-

plicate the exercise.

Fortunately, there are some evolutionary generalities that

enable very broad-scale predictions about viral emer-

gence, although none possess meaningful precision.

One of the best established is that viruses are more likely

to jump between closely related species [15,16��].
Although informative, numerous exceptions arise

because the probability of exposure does not match

phylogenetic relatedness. For example, although humans

are more closely related to other primates than to rodents,

we probably have greater exposure to the latter. It is

equally well known that RNA viruses jump species

boundaries more often than DNA viruses and that this

likely reflects their differing rates of evolutionary change

[8,17]. RNA viruses have mutation rates of between 0.1

and 1.0 mutations per genome replication, several logs

higher than those of double-strand DNA viruses, and

which will generate abundant genetic variation when

coupled with huge population sizes [17]. Although there

is some variation in evolutionary rate among RNA viruses,

this does not appear to be related to the propensity to

jump hosts. Interestingly, single-stranded DNA viruses

exhibit rates of evolutionary change similar to those of

RNA viruses [17] and may frequently cross species

boundaries [18]. Similarly, although rates of recombina-

tion (or reassortment) vary greatly among viruses, these

appear to be of little predictive power: as a case in point,

paramxyoviruses, such as measles and the emerging

henipaviruses, experience extremely low rates of recom-

bination (if they recombine at all) yet frequently jump

species [19].
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More useful predicators come from studies of the evol-

utionary correlates of past emergence. Both experimental

and comparative analyses reveal that vector-borne

viruses, which must simultaneously infect very different

types of host, experience stronger selective constraints

than those transmitted by other routes, and which likely

hinders their adaptability [20,21]. Indeed, although vec-

tor-borne viruses frequently spill-over from one host to

another, they are less likely to evolve sustained trans-

mission in new hosts [8]. In contrast, viruses that utilize

phylogenetically conserved cell receptors appear better

able to jump host species boundaries than those that use

more variable receptors [5]. However, receptor usage is

not the only factor that mediates successful infection, and

is difficult to assess until a virus has emerged.

The challenge of predicting viral evolution and emer-

gence is reflected in the on-going debate over whether

highly pathogenic avian H5N1 influenza virus will

emerge in humans. Although only a small number of

mutations may be necessary to make an avian influenza

virus aerosol transmissible by mammals [22–24], how this

relates to evolution in nature is less clear because some of

the key mutations were generated artificially (i.e. via

mutagenesis), and their fitness, both singularly and in

combination, is unknown although essential to predic-

tion. Indeed, it may be dangerous to use experimental

studies, involving highly idealized conditions, to make

strong predictions about evolution in nature.

Ecological aspects of viral emergence
As with evolution, there are a number of simple ecological

‘rules’ that in part explain the patterns and processes of

viral emergence [7,25]. Indeed, all instances of viral

emergence are likely to have their roots in an ecological

perturbation, such as a change in land-use or human

encroachment into a new locality [26]. Hence, it is easy

predict that human disturbance is likely to lead to future

cross-species transmission events. In addition, excellent

work has been done using epidemiological theory and

quantitative models to predict future disease risks [27],

including risk maps for the emergence of specific diseases

[28], and which should undoubtedly play a central role in

disease control.

At its most basic level ecology explains the relationship

between host population size and density and the pro-

pensity for emergence. Trivially, the larger and more

dense a host population, the greater the number of

pathogens that population can carry and the greater their

virulence can be [29]. This in part explains why bats are

being increasingly recognized as major hosts for a diverse

array of viruses, some of which may eventually make their

way into humans [30,31,32�]. Indeed, bats have been

found to be important reservoirs for coronaviruses

[33,34], filoviruses [35], lyssaviruses [36], paramyxo-

viruses [37–40], and have recently been observed to
www.sciencedirect.com 
harbor both hantaviruses [41] and influenza viruses

[42��]. Hence, future surveying will undoubtedly reveal

even more novel bat viruses, although determining which

of these might emerge in humans is more challenging.

One aspect of ecology with potentially far more predictive

power centers on the existence of so-called ‘hot spots’ for

emergence [43]. Although a useful advance, the delinea-

tion of any hot-spots will be adversely affected by ascer-

tainment bias, with the large number of emerging

pathogens documented in the developed world likely

reflecting more intensive surveillance and reporting.

For example, although the first AIDS cases were

described in the United States, the first major African

epidemic documented in the east of this continent (e.g.

Uganda), the current burden of HIV/AIDS is highest in

southern Africa, the virus clearly originated in central-

west Africa where the chimpanzee reservoir resides [44�].
In short, the place where an emergent event was first

documented is not necessarily the place where the initial

cross-species transmission event actually took place.

More generally, given the ever-changing impact of

humans on the natural world it is not obvious that hot

spots for past emergence have strong predictive power for

where emergence will occur next. Indeed, documenting

changing levels of animal biodiversity may be equally

informative [26].

Predicting the virulence of emerging viruses
It is equally important to determine how a new virus will

evolve after it has successfully emerged. Central to this is

understanding the evolution of virulence (disease sever-

ity). The appearance of any new infection is often accom-

panied by speculations on how virulence will evolve, with

the continual debate over whether HIV will evolve

reduced virulence serving as a case in point [45]. Although

conventional wisdom posits that evolution makes patho-

gens benign in the long run, theory tells us that there

should be an evolutionary trade-off between virulence

and transmissibility [46], such that the direction of viru-

lence evolution following successful emergence can be

predicted in principle.

Although it is tempting to think that next generation

sequencing will solve the ‘virulence problem’, genetic

studies of virulence evolution are only informative if it is

possible to associate viral strains with specific virulence

phenotypes. It is for this reason that the attenuation of

myxoma virus (MYXV) following its introduction as a

biological control into the European rabbit populations of

Australia and Europe, within which virulence grade was

carefully measured, has become the textbook example of

virulence evolution [47]. Critically, MYXV involves a

species jump, albeit one mediated by humans; the natural

host for this virus is the South American tapeti (Sylvilagus
brasiliensis) in which the virus causes only mild tumors,

whereas severe myxomatosis appears when the virus
Current Opinion in Virology 2013, 3:180–184
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infects nonresistant European rabbits (Oryctolagus cunicu-
lus), although intermediate levels of virulence (which

maximized transmission rate) ultimately dominated in

the field [47]. An analysis of the genome-scale evolution

of MYXV from the original releases in the 1950s in both

Australia and Europe to modern wild strains revealed that

changes in virulence involved multiple genes, with no

mutations common to specific virulence grades [48�].
Hence, despite the similarity in selection pressures in

both Australia and Europe, there are multiple genetic

routes to attain either highly virulent or attenuated phe-

notypes in MYXV. Such flexibility sits in stark contrast to

RNA viruses such as West Nile virus (WNV) in which a

single amino acid substitution increases virulence and has

evolved convergently multiple times during the history of

WNV [49]. The difference between MYXV and WNV

suggests a more profound relationship between virulence

evolution and genome size, in which there is greater scope

for virulence determining mutations in larger DNA-based

organisms, from which evolutionary trade-offs between

virulence and transmission rate can be optimized at the

ecological scale, while these trade-offs appear in RNA

viruses because of limited genomic flexibility such that

the same mutations affect both virulence and transmis-

sibility. Hence, it is possible that there will only ever be a

limited number of virulence determining mutations in

RNA viruses.

Conclusions
It is perhaps naı̈ve to think that emergence prediction will

be ever more than an inexact science, revealing broad-

scale generalities at best [8]. Despite this, our under-

standing of future epidemics can be improved. It is

obviously important to continue metagenomic surveys

of the pathogens that circulate in potential reservoir

species [50,51,52��,53], although these will be costly if

many animals need to be surveyed. As many metage-

nomic studies are opportunistic [54], they might be better

focused by collating the global species range of likely

reservoir species [55�] and dissecting their pathogen load

in those parts of their home range that most often overlap

with humans or which are most prone to human disturb-

ance. However, it is important to recall that identifying a

virus through its genome sequence is not the same as

isolating a virus, and that its exact biological properties

cannot easily be determined from sequence data alone.

More generally, it is critical to recall that cross-species

transmission and emergence represents an intricate bal-

ance between ‘genetics’ — defined here as the mechan-

isms and determinants by which a virus is able to

productively infect the cells of a new host species and

spread to multiple individuals within that species — and

‘ecology’, representing the likelihood that animals are

exposed to a specific pathogen and that there are suffi-

cient connections to enable the virus to maintain its
Current Opinion in Virology 2013, 3:180–184 
spread at the epidemiological scale. Only when all these

conditions are satisfied will an epidemic occur.

Finally, more attention should be devoted to revealing

the common evolutionary and epidemiological patterns

exhibited by those viruses that have successfully jumped

species boundaries. For example, a comprehensive sur-

vey of the phylodynamic patterns [56] exhibited by

currently circulating viruses will do much to help us

understand how a new virus will evolve and spread once

it has emerged. Specifically, it should be possible to

compile a cross virus data base of the parameters that

correlate most with successful emergence, such as how

rapidly each virus evolves, its mode of transmission, its

major host or vector species, its cell receptors of choice,

key aspects of phenotype such as virulence and antige-

nicity, its population growth rate, its phylogeography, and

whether it has jumped species boundaries in the past.

Although such data will not enable us to predict future

emergence with any certainty, they may allow broad-scale

conclusions as to which groups of viruses are most likely

to emerge in humans, which animal species in which

geographical locations need to be surveyed most inten-

sively, and how evolution will proceed following a host

jump.
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