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Abstract: Vascular endothelial growth factor receptor 3 (VEGFR3) has been known for its involvement
in tumor-associated lymphangiogenesis and lymphatic metastasis. The VEGFR3 signaling is
stimulated by its main cognate ligand, vascular endothelial growth factor C (VEGF-C), which in turn
promotes tumor progression. Activation of VEGF-C/VEGFR3 signaling in lymphatic endothelial
cells (LECs) was shown to enhance the proliferation of LECs and the formation of lymphatic vessels,
leading to increased lymphatic metastasis of tumor cells. In the past decade, the expression and
pathological roles of VEGFR3 in tumor cells have been described. Moreover, the VEGF-C/VEGFR3
axis has been implicated in regulating immune tolerance and suppression. Therefore, the inhibition
of the VEGF-C/VEGFR3 axis has emerged as an important therapeutic strategy for the treatment
of cancer. In this review, we discuss the current findings related to VEGF-C/VEGFR3 signaling
in cancer progression and recent advances in the development of therapeutic drugs targeting
VEGF-C/VEGFR3.

Keywords: VEGF-C; VEGFR3; lymphangiogenesis; lymphatic metastasis

1. Introduction

Vascular endothelial growth factor receptor (VEGFR) tyrosine kinases are critical regulators in the
development and maintenance of blood and lymphatic vascular systems. In mammals, VEGFRs
consist of three membrane proteins referred to as VEGFR1 (FLT1), VEGFR2 (KDR/FLK1), and
VEGFR3 (FLT4) [1–4]. The activity of VEGFRs is modulated by five secreted glycoproteins, the
vascular endothelial growth factors (VEGFs), which include VEGF-A, VEGF-B, VEGF-C, VEGF-D, and
PLGF. The VEGF ligands bind to and activate three different VEGFRs, resulting in the stimulation
of angiogenesis and lymphangiogenesis [5–7]. The VEGFR1 gene produces two major proteins,
a full-length receptor and a soluble VEGFR1 (sFlt-1). Full-length and soluble VEGFR1 are high-affinity
receptors for VEGF-A, VEGF-B, and PLGF, and have been shown to function as negative regulators
of VEGFR2 signaling [8–11]. In response to VEGF-A binding, VEGFR1 only exerts low activation
of intracellular signaling and serves as a decoy receptor for VEGF-A, preventing its binding to
VEGFR2 [12]. Although the kinase activity of VEGFR1 is relatively low compared with that
of VEGFR2, the binding of PLGF can induce survival signals in endothelial cells and enhance
angiogenesis [13]. In addition, several studies have shown that VEGFR1 signaling is critical for
tumor growth, metastasis, activation of monocyte/macrophages, and macrophage migration [14–18].
VEGFR2 is another signaling receptor for VEGF-A and has been shown to play an important role in
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mediating vasculogenesis and angiogenesis [19–21]. VEGFR3 preferentially binds to VEGF-C and
VEGF-D, and the ligand binding activates its downstream signaling pathways to regulate lymphatic
development and function [22–25] (Figure 1).
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the activation of VEGFR2, resulting in cell proliferation and angiogenesis. VEGF-C and VEGF-D bind 
to VEGFR3 and induce downstream signaling which mediates cell survival and lymphangiogenesis. 
Neuropilin 1 (NRP1) and neuropilin 2 (NRP2) can function as co-receptors for VEGFR2 and VEGFR3. 
The binding of VEGF-A isoforms and NRP1 can form a complex with VEGFR2, leading to the 
induction of downstream signaling which regulates the proliferation and migration of endothelial 
cells. VEGF-C/D bind to NRP2 and forms a complex with VEGFR3, activating the VEGFR3 signaling 
which enhances the proliferation of lymphatic endothelial cells (LECs) and lymphangiogenesis. 
MKK4, Mitogen-activated protein kinase kinase-4; JNK1/2, c-Jun N-terminal kinase-1/2; PI3K, 
phosphoinositide-3 kinase; AKT/PKB, AKT/protein kinase B; PKC, protein kinase C; ERK, 
extracellular signal–related kinase; SHC-GRB2, Src homology domain containing growth factor 
receptor–bound protein 2. 
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part, a single transmembrane domain, and a cytoplasmic tail which contains the split kinase domains 
for transducing growth factor signals. However, IG domains of VEGFR3 are different from that of 
other VEGFRs, where the fifth IG domain of VEGFR3 is cleaved and the two processed parts are held 
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Figure 1. The signaling pathways of vascular endothelial growth factors and vascular endothelial
growth factor receptors (VEGFs/VEGFRs) and their biological functions. The three tyrosine kinase
(TK) receptors have specific binding capabilities. VEGF-A, VEGF-B, and PLGF can bind to VEGFR1
and mediate its biological functions. The binding of VEGF-A, VEGFR-C, and VEGF-D can stimulate
the activation of VEGFR2, resulting in cell proliferation and angiogenesis. VEGF-C and VEGF-D bind
to VEGFR3 and induce downstream signaling which mediates cell survival and lymphangiogenesis.
Neuropilin 1 (NRP1) and neuropilin 2 (NRP2) can function as co-receptors for VEGFR2 and VEGFR3.
The binding of VEGF-A isoforms and NRP1 can form a complex with VEGFR2, leading to the
induction of downstream signaling which regulates the proliferation and migration of endothelial cells.
VEGF-C/D bind to NRP2 and forms a complex with VEGFR3, activating the VEGFR3 signaling
which enhances the proliferation of lymphatic endothelial cells (LECs) and lymphangiogenesis.
MKK4, Mitogen-activated protein kinase kinase-4; JNK1/2, c-Jun N-terminal kinase-1/2; PI3K,
phosphoinositide-3 kinase; AKT/PKB, AKT/protein kinase B; PKC, protein kinase C; ERK, extracellular
signal–related kinase; SHC-GRB2, Src homology domain containing growth factor receptor–bound
protein 2.

2. Regulation of VEGFR3 Signaling

VEGFRs consist of seven immunoglobulin-like (IG) domains that comprise the ligand-binding
part, a single transmembrane domain, and a cytoplasmic tail which contains the split kinase domains
for transducing growth factor signals. However, IG domains of VEGFR3 are different from that of
other VEGFRs, where the fifth IG domain of VEGFR3 is cleaved and the two processed parts are held
together through a disulfide bond [26] (Figure 1). The first and second IG domains of VEGFR3 are
responsible for ligand binding, whereas the fourth to seventh IG domains are important for receptor
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homodimerization, heterodimerization (VEGFR2/VEGFR3), and receptor activation [27,28]. It has
been known that VEGF-C and VEGF-D have a high affinity for VEGFR3. A previous study shows that
VEGF-C is essential for sprouting of the first lymphatic vessels from embryonic veins. In Vegfc−/−
mice, endothelial cells can commit to the lymphatic endothelial lineage but do not form lymphatic
vessel sprouts from the embryonic veins [25]. In contrast, no defects in formation of lymphatic
vessel sprouts from the embryonic veins were observed in Vegf-d-deficient mice [29]. However, one
study demonstrates that endogenous Vegf-d in mice is dispensable for lymphangiogenesis during
development, but its expression significantly contributes to lymphatic metastasis of tumors [30].

VEGF-C binding induces VEGFR3 dimerization and enhances the phosphorylation of tyrosine
kinases in the cytoplasmic tail, resulting in the increase of downstream signaling. These phosphotyrosine
residues then serve as docking sites for recruiting cytoplasmic signaling mediators that elicit diverse
cellular responses such as cell proliferation, migration, and survival. Phosphorylated Tyr1337 has been
proposed to be a binding site for the Src homology domain containing growth factor receptor–bound
protein 2 (SHC-GRB2) complex, which activates the KRAS signaling pathway and regulates the
transformation activity of VEGFR3 [31]. VEGF-C-induced phosphorylation of Tyr1230 and Tyr1231
stimulates the AKT/protein kinase B (AKT/PKB) and extracellular signal–related kinase (ERK)
signaling pathways, contributing to proliferation, migration, and survival of lymphatic endothelial
cells (LECs) [32,33]. Phosphorylation of Tyr1063 of VEGFR3 mediates cell survival by recruiting CRK
I/II and inducing c-Jun N-terminal kinase-1/2 (JNK1/2) signaling via mitogen-activated protein
kinase kinase-4 (MKK4) [33]. VEGFR3 phosphorylation also triggers phosphoinositide-3 kinase
(PI3K)-dependent activation of AKT and protein kinase C (PKC)-dependent activation of ERK1/2
pathways. Stimulation of both signaling pathways promotes the proliferation of lymphatic endothelial
cells [32] (Figure 1).

The signaling via VEGFRs is also modulated through interactions with their coreceptors, such as
neuropilin 1 (NRP1) and neuropilin 2 (NRP2). Originally, neuropilins were found to be expressed in
the nervous and vascular systems and were identified as axonal guidance factors implicated in nerve
development. NRP1 is mainly expressed in arteries, whereas NRP2 is expressed in veins and LECs [34,35].
It has been described that NRP1 specifically binds to VEGF-A isoforms such as VEGF-A165 and forms
a complex with VEGFR2. The formation of VEGF-A165/NRP1/VEGFR2 complex induces VEGFR2
phosphorylation and downstream signaling, which regulates the proliferation and migration of endothelial
cells [36,37]. In the vascular system, the expression of NRP2 and VEGFR3 is mainly in lymphatic
vessels [38,39]. Nrp2-deficient mice show small lymphatic vessels and capillaries, which implies that the
expression of NRP2 is critical for the development of lymphangiogenesis [38]. Although the mechanism
of NRP2-mediated lymphangiogenesis remains unclear, increasing evidence suggests that NRP2 binds
to VEGF-C/D and forms a complex with VEGFR3, thereby activating the VEGFR3 signaling which
enhances the proliferation of lymphatic endothelial cells and lymphangiogenesis [40–42].

VEGFR3 is initially expressed in all vascular endothelial cells during embryogenesis and early
postnatal development but later becomes restricted to LECs and certain fenestrated capillaries [43,44].
Since VEGFR3 expression is restricted to lymphatic vessels, it has been used as a marker for lymphatic
vessels [45]. However, increasing evidence suggests that VEGFR3 is upregulated in blood vessels
in some tumors and chronic wounds during active angiogenesis [46–49]. VEGFR3 has also been
shown to be expressed in neuronal progenitors, osteoblasts, and macrophages [50–52]. Furthermore,
recent studies have indicated that VEGFR3 expression is detected in different types of cancers and it
contributes to tumor progression and lymphatic metastasis (Table 1) [53–93].
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Table 1. Expression of VEGFR3 in tumor cells.

Tumor Type Detection Expression
Correlate to

Lymph
Angiogenesis

Correlate to
Lymph Node

Metastasis
Ref.

Urothelial cancer IHC Tumor cells − − [53]
Breast cancer IHC, RT-PCR, Western blot Tumor cells − + [54–56]
Lung cancer IHC, qRT-PCR, Western blot Tumor cells − + [57,58]

Ovarian cancer qRT-PCR, IHC, Western blot Tumor cells + + [59,60]
Renal cell cancer IHC Tumor cells − + [61–63]

Endometrial cancer IHC, qRT-PCR, Western blot Tumor cells − + [64,65]
Colorectal cancer IHC, qRT-PCR, Western blot Tumor cells + + [66–68]

Gastric cancer IHC, qRT-PCR Tumor cells + + [69,70]
Bladder cancer Western blot Tumor cells − − [71]

Oral cancer IHC Tumor cells + + [72]
Head and neck cancer qRT-PCR, qMSP-PCR Tumor cells − − [73]

Esophageal cancer IHC Tumor cells − − [74,75]

Cervical cancer IHC, in situ hybridization,
qRT-PCR, Western blot Tumor cells + + [76,77]

Prostate cancer IHC, in situ hybridization,
qRT-PCR Tumor cells + + [78,79]

Thyroid cancer IHC Tumor cells − − [80,81]
Pancreatic cancer Western blot Tumor cells + + [82,83]
Neuroblastoma RT-PCR, Western blot Tumor cells − − [84,85]

Melanoma Western blot, IHC Tumor cells + − [86,87]

Glioblastoma In situ hybridization,
qRT-PCR Tumor cells − − [88,89]

Osteosarcoma IHC Tumor cells − − [90]
Laryngeal cancer RT-PCR Tumor cells + − [91]

Basal cell carcinoma qRT-PCR, Western blot Tumor cells − + [92]

Acute myeloid leukemia RT-PCR, IHC

Acute myeloid
leukemia

(AML) natural
killer (NK) cells

− − [93]

+, the expression of VEGFR3 is correlated with angiogenesis or lymph node metastasis;−, the expression of VEGFR3
is not correlated with angiogenesis or lymph node metastasis.

3. Functional Roles of VEGFR3 in Lymphatic Endothelial Cells

Lymphatic vessels are an integral part of the cardiovascular system, and are important for tissue
fluid homeostasis, immune surveillance, and lipid absorption. The lymphatic vasculature collects
extracellular fluids, proteins, lipids, and immune cells through lymphatic capillaries and drains lymph
into pre-collector vessels that contain valves, ultimately transporting into the venous circulation [94,95].
Defective development of lymphatic vessels causes several disorders including vascular malformation,
lymphoedema, and lymphangiectasia [96], whereas enhanced lymphangiogenesis is associated with
tumor metastasis and tissue inflammation [97]. It has been shown that growth of lymphatic vessels
occurs upon the exposure of LECs to VEGF-C-induced VEGFR3 signaling [25]. Available data
support that VEGFR3 is critical for lymphatic vessel development. For example, VEGFR3 mutations
identified in human and mice are known to cause lymphoedema [24,98,99]. Moreover, mice with
Vegfr3 deletion die at around E10.5 due to failure of cardiovascular development [100]. Furthermore,
VEGF-C/VEGFR3 signaling is also implicated in modulating the remodeling and homeostasis of
lymphatic vessels. A study of Vegf-c-deficient mice suggested that VEGF-C signaling was required
for the migration of LECs and the formation of lymphatic vessel sprouts from embryonic veins [25].
A recent study shows that LECs of Vegf-c-deficient mouse embryos fail to detach from the cardinal vein
and are unable to form the dorsal peripheral longitudinal lymphatic vessel (PLLV) and the ventral
primordial thoracic duct (pTD), which results in lethality of mouse embryos [101]. Results obtained
from genetically engineered animals further support the essential role of VEGF-C in lymphangiogenesis
showing that depletion of the matrix-binding adapter protein CCBE1 reduces proteolytic processing of
VEGF-C by protease A disintegrin and ADAMTS3 metalloprotease, resulting in the attenuation of the
VEGFR3 signaling and lymphangiogenesis [102,103]. In addition, overexpression of VEGF-C induces
the proliferation of LECs and hyperplasia of the lymphatic vasculature through VEGFR3 [104].
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4. Clinical Significance of VEGF-C/VEGFR3 Expression in Tumors

Lymphangiogenesis is an important step in tumor progression. Dysregulation of lymphangiogenic
factors has been known to promote lymphangiogenesis, which induces the formation of new lymphatic
vessels that connect with the surrounding lymphatic vessels and provide routes for the transport
of tumor cells to distant sites. The potential roles of the VEGFR-C/VEGFR3 axis in regulating
tumor lymphangiogenesis and progression have been suggested. The expression of VEGF-C is
detected in a variety of human tumors [105–112] and the increased level of VEGF-C is significantly
correlated with lymph node metastasis, distant metastasis, and poor prognosis [97,113]. VEGF-C
overexpression in breast cancer cells activates the VEGF-C/VEGFR3 axis in LECs and induces the
formation of lymphatic vessels within and around tumors, resulting in enhanced tumor metastasis
through lymphatic vessels [114,115] (Figure 2). In addition, mice bearing VEGF-C-overexpressing
human breast carcinoma cells exhibited increased lymphangiogenesis and tumor metastasis via the
lymphatic vessels [116]. Moreover, a soluble form of VEGFR-3, a potent inhibitor of VEGF-C/VEGF-D
signaling, can inhibit lymphangiogenesis and suppress tumor metastasis [117].Cells 2019, 8, x FOR PEER REVIEW 7 of 20 
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Figure 2. The function roles of VEGF-C/VEGFR3 signaling in tumor progression. The VEGF-C/VEGFR3
axis promotes tumor growth in autocrine and paracrine manners. VEGF-C can enhance the proliferation
of LECs through VEGFR3, resulting in lymphangiogenesis and lymphatic metastasis of tumor cells.
VEGF-C/VEGFR3 signaling can also mediate the functions of immune cells, including dendritic cells
(DCs), macrophages, and natural killer (NK) cells.

VEGFR3 is primarily expressed in LECs, but is also expressed in non-endothelial cells, such as
tumor cells (Table 1). Recently, Batsi et al. reported that the expression of VEGFR3 was detected in
the nuclei of tumor cells and endothelial cells of tumor vessels in both primary urothelial bladder
carcinoma and their recurrent tumors. However, the expression of VEGFR3 was not correlated with
tumor grade and clinical stage [53]. Previous studies have also demonstrated that VEGFR3 protein was
detected in breast cancer specimens. High expression levels of several angiogenesis-related proteins,
including VEGFR3, are observed in patients with early-stage breast cancer and are associated with
clinicopathological parameters and survival outcome [54]. It has been shown in a mouse model
that the expression of VEGF-C and VEGFR3 promotes tumor growth and metastasis in an autocrine
manner, whereas treatment with a VEGFR3 antagonist significantly suppresses tumor growth and
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lung metastasis [55]. Eroglu et al. also found that, while VEGFR3 is expressed in breast cancer cells, its
expression is not associated with lymph node metastasis [56].

A recent study demonstrated that tumor-associated macrophages induced the expression of
VEGF-C and VEGFR3 in lung adenocarcinoma cells, resulting in enhanced migration and invasion
of cancer cells. Blockade of VEGFR3 signaling inhibits tumor growth and markedly suppresses the
migration and invasion of tumor cells by upregulating the expression of p53 and PTEN. Furthermore,
the study’s data revealed that the inhibition of VEGFR3 enhances chemosensitivity of doxorubicin in
lung adenocarcinoma cells [58].

VEGFR3 expression has also been found in ovarian cancer cells and activation of the VEGFR3
signaling is induced by VEGF-C, which is produced by tumor-associated myeloid cells. The inhibition
of VEGFR3 signaling results in the down-regulation of BRCA expression and cell cycle arrest. Moreover,
VEGFR3 blockade chemosensitizes ovarian cancer to cisplatin chemotherapy in vitro and in vivo [59].
Decio et al. confirmed that VEGF-C and VEGFR3 were expressed in ovarian tumor tissues. VEGF-C
released by tumor cells stimulates the VEGFR3 signaling in a paracrine and autocrine manner, leading
to an increase in tumor growth and metastasis. Targeting the VEGF-C/VEGFR3 pathway decreases
tumor burden and dissemination of ovarian tumors [60]. In renal cell cancer (RCC), the expression
of VEGFR3 has been demonstrated in several studies [61,62]. Furthermore, Zhang et al. showed that
VEGFR3 expression is correlated with histological grade, the status of lymph node, and metastasis in
papillary renal cell carcinoma. Moreover, the expression of VEGFR3 can serve as a prognostic marker
for papillary renal cell carcinoma and is also a predictor of lymph node metastasis as well [63].

Immunohistochemical analysis and qRT-PCR studies have demonstrated that the expression
of VEGFR3 was increased in endometrial carcinomas compared with normal endometrium [64,65].
Additionally, VEGFR3 expression was significantly associated with tumor stage and poor disease-free
survival in endometrial carcinomas [64]. Zhu et al. found that VEGFR3 was highly expressed in tissue
samples of colorectal cancer. High expression of VEGFR3 was associated with the TNM (tumor, node,
metastasis) stage and lymph node metastasis of colorectal cancer. The authors further illustrated that
lipopolysaccharide (LPS) could upregulate VEGFR3 expression through increasing the binding of
NF-κB to the promoter of VEGFR3, thereby promoting the migration and invasion of colorectal cancer
cells [66]. Another study also showed that VEGFR3 expression was found in colorectal cancer and its
expression was associated with lung metastasis [67].

A previous study showed that VEGFR3 expression was also found in gastric cancer and correlated
with poorer prognosis, TNM stage, and lymphatic metastasis [69]. Recently, Dai et al. showed
in an orthotopic mouse model that treatment with VEGFR3 antibody-conjugated ginsenoside Rg3
nano-emulsion might inhibit the expression of VEGF-C, VEGF-D, and VEGFR3, resulting in the
suppression of tumor growth and lymphatic metastasis of human gastric cancer [70]. The expression
of VEGFR3 mRNA and protein were also detected in multiple cancers, including bladder, oral, head
and neck, esophageal, and cervical cancers [71–77].

In prostate cancer, Yang et al. demonstrated that VEGF-C mRNA and VEGFR3 were highly
expressed in tumorous prostate tissue. The expression of VEGFR3 is higher in VEGF-C mRNA-positive
tumors compared to VEGF-C mRNA-negative tumor tissues. Thus, VEGFR3 expression is associated
with poor prognosis and metastasis in human prostate cancer [79]. High expression levels of VEGFR2
and VEGFR3 were also detected in several medullary thyroid carcinoma (MTC) samples [80]. Another
study investigated the influence of RAS mutation on the expression of TKI target proteins in MTC
tumors. The results showed that VEGFR3 protein is expressed in few RAS-positive tumors and VEGF is
frequently expressed in wild-type tumors. These findings could improve the selection of MTC patients
for targeted therapy [81]. Kurenova et al. demonstrated that focal adhesion kinase (FAK) and VEGFR3
form a complex to promote cell proliferation in pancreatic ductal adenocarcinoma (PDA). They further
showed that a small molecule inhibitor C4 could disrupt the interaction of FAK and VEGFR3 and
inactivate FAK/VEGFR3 signaling to suppress cancer cell growth. Moreover, the combination of C4
and gemcitabine showed a significant synergistic effect on tumor suppression in PDA [82]. Another
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small molecule inhibitor C10 was also found to target the FAK/VEGFR3 complex and inhibit the
growth of pancreatic tumor in vivo [83].

The expression of VEGFR3 has been detected in neuroblastoma cell lines, and the blockade of
FAK-VEGFR3 interaction by C4 has also reduced cellular migration and proliferation. In addition,
the combination of C4 and doxorubicin significantly suppressed tumor growth in a xenograft animal
model [84,85]. VEGFR3 expression has been found in melanoma. Targeting FAK-VEGFR3 interaction
by the small molecule C4 significantly inhibits melanoma tumor growth in vivo [87]. Recently, VEGF-C
and VEGFR3 were found to be expressed in basal cell carcinoma (BCC). Yeh et al. demonstrated that
the VEGF-C/VEGFR3 axis enhances the migration, invasion, and stemness of skin cancer cells via
the KRAS/YAP1/Slug pathway. Targeting the VEGF-C/VEGFR3 axis by VEGFR3 blocking peptide
significantly suppressed skin cancer progression [92].

5. Expression and Function of VEGFR3 in Immune Cells

Lymphatic vessels transport fluid, soluble antigens, and immune cells from peripheral tissues
to draining lymph nodes (dLNs), where adaptive immunity and tolerance are modulated [118,119].
In addition to providing the routes for the trafficking of peripherally activated dendritic cells (DCs)
into dLNs to activate immune response, lymphatic vessels also provide the routes for cellular egress
leading to immune resolution [120,121]. It has been reported that lymphangiogenesis often occurs in
chronic inflammatory tissues, including inflammatory bowel disease, chronic airway inflammation,
and psoriasis [120,122,123]. VEGF-C and VEGFR3 are largely responsible for the development of
lymphatic vessels. The pathogenic roles of VEGF-C and VEGFR3 in chronic inflammatory diseases
and immune response have been well characterized in recent investigations. A previous study
showed that the systemic inhibition of VEGFR3 increases the formation of inflammatory edema
and inflammatory cell accumulation despite the inhibition of lymphangiogenesis in a Keratin 14
(K14)-VEGF-A transgenic (Tg) mouse model. Chronic delivery of VEGF-C or VEGF-D (which
activates VEGFR3 signaling) into the skin of K14-VEGF-A mice significantly suppressed chronic skin
inflammation, epidermal hyperplasia, and accumulation of CD8 cells. Similar results were also found
by intracutaneous injection of recombinant VEGF-C156S mutant protein, a specific VEGFR3 ligand,
which significantly reduced skin inflammation [121]. D’Alessio et al. demonstrated that increased
lymphangiogenesis and lymphatic function reduced inflammatory bowel disease. The authors found
that the VEGF-C/VEGFR3 signaling mediates “resolving” macrophage activation and mobilization in
a STAT6-dependent manner, resulting in bacterial antigen clearance from the inflammatory area to the
draining lymph nodes [120]. Furthermore, the expression of VEGFR3 in different immune cells has been
reported. Hamrah et al. demonstrated the expression of VEGFR3 in corneal DCs and its up-regulation
in inflammation. The authors further characterized that VEGFR3+ DCs are CD11c+CD45+CD11b+ and
mostly major histocompatibility (MHC) class II−CD80−CD86−, which belong to immature DCs of
the monocytic lineage [124]. In addition, Fernandez Pujol et al. reported that VEGFR3 is detected in
immature DCs. In the presence of angiogenic growth factors, the immature DCs can differentiate into
endothelial-like cells [125]. The expression of VEGF-C, VEGF-D, and VEGFR3 in tumor-associated
macrophages (TAMs) has been shown in human cervical cancer [126]. The study indicates that
VEGF-C/VEGFR3-expressing TAMs may play an important role in peritumoral lymphangiogenesis.
Moreover, Su et al. also demonstrate that the VEGF-C/VEGFR3 axis is critical for macrophage
infiltration in lung cancer, and VEGFR3-mediated macrophage infiltration may be involved in the
radiosensitization of lung cancer [127]. More recently, Zhang et al. show that Gram-negative bacterial
infection or LPS stimulation can elevate the expression of VEGFR3 and VEGF-C through TLR4-NF-kB
signaling in macrophage, whereas VEGF-C ligation of VEGFR3 forms a negative feedback loop to
inhibit TLR4-induced inflammatory responses. Their results represent a self-control mechanism to
prevent uncontrolled inflammation in macrophages during bacterial infection [128]. The expression of
VEGFR3 was also reported in natural killer (NK) cells. Lee et al. showed that the NK cells from acute
myeloid leukemia (AML) express higher levels of VEGFR3 and lower levels of IFN-γ compared to
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the NK cells from healthy donors [93]. Moreover, increased lymphatic vessels and lymph drainage
are correlated with tumor progression and tumor-associated lymphangiogenesis to enhance immune
tolerance [129–131]. Emerging evidence also demonstrates that inflammatory lymphangiogenesis
is correlated with graft rejection in renal and renal transplants [132,133]. Therefore, it is likely that
VEGFR3 in immune cells might play complex roles in stimulation and resolution of immune response.

6. Development of Drugs That Target VEGF-C/VEGFR3 Signaling

As mentioned previously, tumor-associated lymphangiogenesis plays a critical role in the
mediation of tumor metastasis and has emerged as a novel target for cancer treatment [134,135].
Currently, multiple therapeutic strategies have been developed for targeting VEGF-C/VEGFR3
signaling, including (1) small molecule receptor tyrosine kinase inhibitors (TKIs) of VEGFR3;
(2) monoclonal antibodies or receptor traps targeting VEGF-C; and (3) neutralizing antibodies or
peptides that block the VEGFR3 signaling.

6.1. Small Molecule TKIs of VEGFR3

Several TKIs have been developed for inhibiting the kinase activity of VEGFRs. Four TKIs that can
be administered orally, namely, sorafenib, sunitinib, pazopanib, and axitinib, have been approved by
the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for clinical
use [136,137] (Figure 3). The therapeutic efficacy of sorafenib monotherapy has been shown in patients
with advanced renal cell carcinoma (RCC) and hepatocellular carcinoma (HCC) [138,139]. Sunitinib
monotherapy has also shown significant improvement in progression-free survival (PFS) in patients
with metastatic RCC [140]. The activity of pazopanib monotherapy was assessed in locally advanced or
metastatic RCC, which showed improvement in PFS [141]. Recently, the therapeutic efficacy of axitinib
has been demonstrated in metastatic renal cell carcinoma (mRCC) and the promising therapeutic
efficacy of axitinib was demonstrated. Therefore, axitinib has been approved by the US FDA and EMA
in the treatment of mRCC [137].

Cediranib is an oral VEGFR TKI and has been shown to suppress the activity of VEGFR2 and
VEGFR3, leading to the inhibition of angiogenesis and lymphangiogenesis [142]. In the phase III
ICON 6 trial, cediranib monotherapy has shown promising efficacy in platinum-sensitive relapsed
ovarian cancer [143]. Brivanib, a selective dual inhibitor of VEGFRs and fibroblast growth factor
receptors (FGFRs), has been evaluated in patients with advanced HCC. However, the results from
phase III trials suggest that brivanib as an adjuvant therapy to transarterial chemoembolization (TACE)
did not improve overall survival [144]. Moreover, the efficacy and safety of vandetanib in patients
with advanced RET-rearranged non-small-cell lung cancer (NSCLC) was assessed in phase II trials.
The clinical anti-tumor activity and a manageable safety profile of vandetanib were observed in
patients with advanced RET-rearranged NSCLC [145,146]. Another TKI, motesanib, was tested in
phase III trials in combination with paclitaxel and carboplatin (P/C) in advanced NSCLC patients.
However, motesanib plus P/C did not significantly improve PFS [147] (Figure 3). Although the
anti-tumor activity of TKIs has been reported, they are not highly selective since most of them
target the ATP binding pocket. For example, sorafenib and sunitinib have been demonstrated to
inhibit VEGFRs, platelet-derived growth factor receptors (PDGFRs), FGFRs, KIT, RET, and FLT3.
These multi-targeted TKIs block a variety of kinases in addition to VEGFRs, resulting in adverse
effects unrelated to VEGFR blockade. Therefore, the development of more specific VEGFR TKIs will
improve anti-lymphangiogenic and anti-tumor activity with fewer off-target effects. Very recently,
a small molecule TKI, SAR131675, has been reported to be highly specific for VEGFR3. The treatment
of SAR131675 suppresses lymphangiogenesis and lymphatic metastasis in several experimental tumor
models [148,149] (Figure 3).
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Figure 3. Targeting the VEGF-C/VEGFR3 axis by various therapeutic strategies. The binding
of VEGF-C/D to VEGFR3 induces downstream signaling which mediates cell survival and
lymphangiogenesis. The treatment of small molecule receptor tyrosine kinase inhibitors (TKIs) inhibits
the activation of VEGF-C/D/VEGFR3 signaling. Monoclonal antibody (mAb) and receptor trap target
VEGF-C, preventing its binding to VEGFR3. Monoclonal antibody or peptides targeting VEGFR3
prevent the binding of VEGF-C, resulting in the inhibition of VEGFR3 signaling.

6.2. Monoclonal Antibody Targeting VEGF-C/VEGFR3

Targeting the VEGF/VEGFRs signaling axis by using monoclonal antibodies has been
demonstrated in recent years. The humanized anti-VEGF monoclonal antibody, bevacizumab, is
an antibody approved by the US FDA for clinical use [150–152]. Bevacizumab-induced VEGF-A
neutralization can prevent the binding of VEGF-A to VEGFR1 and VEGFR2, suppressing their
activation and subsequent signaling cascades. Another neutralizing antibody against VEGFR2,
ramucirumab, has also been approved for the treatment of various cancers including advanced
gastric or gastro-esophageal junction adenocarcinoma, NSCLC, and advanced or metastatic urothelial
carcinoma. Recently, a specific anti-VEGFR3 monoclonal antibody, IMC-3C5, has been assessed and
has completed phase I trials in patients with advanced solid tumors and colorectal cancer (CRC).
The results from the phase I study indicated that IMC-3C5 was well-tolerated up to the highest
planned dose, but anti-tumor activity was not significant in CRC [153]. Another drug targeting the
VEGF-C/VEGFR3 axis is VGX-100, a fully humanized VEGF-C neutralizing antibody which specifically
binds to VEGF-C protein and thereby prevents its binding to VEGFR3. The therapeutic activity of
VGX-100 was assessed in patients with advanced solid tumors in clinical phase I, and the trial was
recently completed (ClinicalTrials.gov Identifier: NCT01514123) [154] (Figure 3). However, the results
have not yet been published.

Numerous antibodies, soluble receptor proteins, and IgG fusion proteins targeting the
VEGF-C/VEGFR3 axis have been investigated in preclinical studies. Jimenez et al. developed a
bispecific antibody which binds to both VEGFR2 and VEGFR3 in a dose-dependent manner and inhibits

ClinicalTrials.gov
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the interaction of VEGF-A/VEGFR2 and VEGF-C/VEGFR3. Their results showed a simultaneous dual
blockade of VEGFR2 and VEGFR3 by the antibody, subsequently inhibiting the migration of endothelial
cells [155]. A previous study demonstrated that a soluble VEGFR3 decoy receptor, sVEGFR3-Fc,
expressed by a recombinant adeno-associated viral vector, potently suppressed tumor-associated
lymphangiogenesis and lymphatic metastasis in highly metastatic melanoma, renal cell carcinoma, and
prostate cancer models [156]. By using antibody phage-display, Rinderknecht et al. developed a human
monoclonal antibody fragment (single-chain fragment variable, scFv) that specifically binds to VEGF-C
with high affinity and inhibits VEGF-C/VEGFR3 signaling [157]. A new receptor-immunoglobulin (Ig)
fusion protein, VEGFR3-Ig, that could simultaneously bind to VEGF-A and VEGF-C has been reported
recently. VEGFR3-Ig has been shown to block tumor-associated angiogenesis, lymphangiogenesis,
and metastasis in a highly metastatic HCC model [158]. In addition, Yeh et al. showed that
VEGF-C/VEGFR3-mediated KRAS/YAP1/Slug pathway could be suppressed by treatment with
anti-VEGFR3 peptide, leading to the inhibition of migration, invasion, and stemness of skin cancer
cells [92] (Figure 3).

7. Conclusions

The VEGF-C/VEGFR3 axis has been implicated in cancer progression by directly affecting tumor
cells or modulating lymphangiogenesis and immune response. High expression of VEGF-C/VEGFR3
has been demonstrated to be correlated with increased lymphatic metastasis and poor prognosis in
numerous types of cancers (Table 1). Over the last two decades, tumor-associated lymphangiogenesis
is considered as a potential target for treating metastatic diseases. Therefore, the development
of drugs targeting the VEGF-C/VEGFR3 signaling has received much attention, which could be
beneficial for patients with VEGF-C/VEGFR3-driven cancers. Multiple VEGFR TKIs have been
tested in clinical/preclinical studies, and several VEGFR TKIs have been approved for clinical
use (Table 2). However, these agents might inhibit multiple kinases in addition to VEGFR3, and
the “off-target” effects might increase adverse effects. Hence, development of more selective and
specific anti-VEGFR3 TKIs is required. In addition, the VEGF-C/VEGFR3 signaling has been
shown to be involved in regulating immune tolerance and suppression [93,120,121]. Targeting the
VEGF-C/VEGFR3 axis could enhance anti-tumor immune responses. Currently, several studies
focused on VEGF-C/VEGFR3-mediated immunobiology in LECs and immune cells are now growing.
The results from these studies will increase our understanding of how the VEGF-C/VEGFR3 axis
affects immunity and will provide the rationale for the development of new immunotherapeutic
strategies for cancer therapy.

Table 2. Therapeutic agents for the inhibition of VEGF-C/VEGFR3 signaling.

Agents Agent Description Developer Current Status Ref.

Sorafenib
Small molecule TKI
(VEGFRs, PDGFRs,

c-kit, RET)
Bayer and Onyx FDA-approved [138]

Sunitinib
Small molecule TKI
(VEGFRs, PDGFRs,

c-kit, Flt3, RET)
Pfizer Inc. FDA-approved [140]

Pazopanib
Small molecule TKI
(VEGFRs, PDGFRs,

c-kit)
GlaxoSmithKline FDA-approved [141]

Axitinib
Small molecule TKI
(VEGFRs, PDGFRs,

c-kit)
Pfizer Inc. FDA-approved [142,143]

Cediranib
Small molecule TKI
(VEGFRs, PDGFRs,

c-kit)
AstraZeneca Phase III [137]
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Table 2. Cont.

Agents Agent Description Developer Current Status Ref.

Brivanib
Small molecule TKI
(VEGFRs, PDGFRs,

FGFRs)

Bristol-Myers
Squibb Phase III [144]

Vandetanib
Small molecule TKI
(VEGFRs, PDGFRs,

EGFR, RET)
AstraZeneca Phase II [145,146]

Motesanib
Small molecule TKI
(VEGFRs, PDGFRs,

c-kit, RET)
Amgen Phase III [147]

SAR131675
Small molecule TKI
(more selective for

VEGFR3 than VEGFR1/2)
Sanofi Preclinical [148,149]

Bevacizumab Humanized
anti-VEGF-A mAb Genentech FDA-approved [150]

IMC-3C5 Humanized
anti-VEGFR3 mAb

ImClone
Systems/Eli Lilly Phase I [153]

VGX-100 Humanized
anti-VEGF-C mAb

Circadian
Technologies Phase I [154]

Diabody Anti-VEGFR2/
VEGFR3 mAb - Preclinical [155]

sVEGFR3-Fc Soluble VEGFR3 decoy
receptor - Preclinical [156]

Single-chain
fragment (scFv)

Anti-VEGF-C
mAb fragment - Preclinical [157]

VEGFR3-Ig
Anti-VEGF-C/A

Receptor-Ig
fusion protein

- Preclinical [158]

Anti-VEGFR3
peptide Anti-VEGFR3 peptide - Preclinical [92]
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