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A B S T R A C T   

Background: Use of existing data in electronic health records (EHRs) could be used more extensively to better 
leverage real world data for clinical studies, but only if standard, reliable processes are developed. Numerous 
computable phenotypes have been validated against manual chart review, and common data models (CDMs) 
exist to aid implementation of such phenotypes across platforms and sites. Our objective was to measure con-
sistency between data that had previously been manually collected for an implantable cardiac device registry and 
CDM-based phenotypes for the condition of heart failure (HF). 
Methods: Patients enrolled in an implantable cardiac device registry at two hospitals from 2013 to 2018 
contributed to this analysis wherein registry data were compared to PCORnet CDM-formatted EHR data. Seven 
different phenotype algorithms were used to search for the presence of HF and compare the results with the 
registry. Sensitivity, specificity, predictive value and congruence were calculated for each phenotype. 
Results: In the registry, 176 of 319 (55%) patients had history of HF, compared with different phenotypes esti-
mating between 96 (30%) and 188 (59%). The least-restrictive phenotypes (any diagnosis) had high sensitivity 
and specificity (90%/80%), but more restrictive phenotypes had higher specificity (e.g., code present in problem 
list, 94%). Differences were observed using time-based criteria (e.g., days between visit diagnoses) and between 
participating hospitals. 
Conclusions: Consistency between manually-collected registry data and CDM-based phenotypes for history of HF 
was high overall, but use of different phenotypes impacted sensitivity and specificity, and results may differ 
depending on the medical condition of interest.   

1. Introduction 

The expanding volume of available electronic health record (EHR), 
claims, and other administrative data continues to drive interest in 
leveraging such real world data for evaluating the safety and effective-
ness of medical products. In the United States, since the 2016 passage of 
the 21st Century Cures Act, the U.S. Food and Drug Administration 
(FDA) has issued guidance on how such data can support FDA-regulated 
clinical investigations [1,2]. Updated FDA draft guidances for drugs and 
biological products were issued in September and October 2021 that 
give much more detailed considerations regarding study design and data 
quality [3,4], and the FDA uses the term “eSourcing“ to describe direct 

capture of clinical data elements from existing electronic sources [5]. 
However, there are still knowledge gaps regarding how to ensure data 
reliability, which have contributed to slow adoption of this approach for 
data used in regulatory submission. 

Baseline patient information in a clinical study is typically entered 
into a study database ‘manually’ by dedicated personnel who gather 
information from direct patient interviews or by reviewing paper or 
EHRs. Studies have reported reductions in data capture time and tran-
scription errors by eSourcing discrete elements like age, sex, or race [6]. 
For more complex concepts like medical history, both manual ap-
proaches require considerable time and effort, and both have short-
comings: in direct interviews, patients may have recall bias, be 
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unfamiliar with condition-specific terminology, misinterpret, or 
contradict their true medical history, and in manual chart reviews, there 
may be multiple places to look for information and unclear criteria for 
what constitutes a confirmed case [7–10]. Methods to eSource medical 
history information for clinical trials could potentially be highly valu-
able for that reason. 

Partnerships such as the Electronic Medical Records and Genomics 
(eMERGE) [11] and Observational Health Data Sciences and Informatics 
(OHDSI) [12] have developed libraries of electronic “computable phe-
notypes” that are regularly used in observational and precision medicine 
research to identify patients with conditions of interest. These pheno-
types translate human-readable definitions of a disease or condition into 
rules that look for the presence of matching elements in electronic 
source data [13,11]. The lack of standardization across EHRs and dif-
ficulties in linking EHRs across provider networks has meant that phe-
notypes have often been shared merely as descriptions of logic that must 
then be customized to the local data source. Multiple research networks, 
however, have developed common data models (CDMs) which are 
blueprints to transform disparate sources of healthcare data into a 
common structure of tables and fields [14]. Data from multiple source 
systems (e.g., EHR, billing, imaging) can be combined, and the primary 
benefit of CDMs is that they provide a non-proprietary, software- 
agnostic format for users to load data into a common structure of tables 
and fields for which standard queries and programs can be written. Users 
can develop code and analyses and distribute these across a network of 
sites without directly interfacing with the EHR or sharing identifiable 
data. Developers have therefore advocated for, and developed tools for, 
the implementation of phenotypes in CDMs [15–17]. 

Computable phenotypes are typically validated by comparing results 
with manual chart reviews that have usually been conducted expressly 
as a research exercise for the purpose of that validation, and then by 
reporting metrics such as sensitivity. We were interested to see if these 
validation metrics would be different when a representative group of 
computable phenotypes were compared with data that had been prag-
matically collected by clinical personnel in the context of an implantable 
cardiac device registry. We realize that different use cases (e.g., identi-
fying incident events vs. prevalent cases) might require different phe-
notypes and levels of sensitivity or specificity. The objective of this study 
was to measure the consistency between how the medical history of a 
single condition was defined via computable phenotypes implemented 
via a CDM versus how it had been identified during data collection for an 
implantable cardiac device registry. We chose heart failure (HF) as our 
example condition and performed this study in a population of patients 
at a large integrated health system with a long-established EHR and 
widely-adopted CDM (PCORnet) [18]. 

2. Methods 

2.1. Data collection 

All data for this study originated from two hospitals within Gei-
singer, an integrated health system in Pennsylvania, USA, serving over 
500,000 patients per year with seven hospitals, 138 primary and spe-
cialty clinics, and a single EHR platform (Epic, Verona, WI). Patients in 
this study were seen at two large hospitals in central and northeastern 
Pennsylvania with similar underlying patient populations. Geisinger 
participates in several multicenter research networks, for which it im-
plements multiple CDMs including PCORnet, Virtual Data Warehouse 
(VDW), and OHDSI. The study was reviewed and approved by Gei-
singer’s Institutional Review Board (IRB). 

The goal of the study was to compare the data in the registry to data 
that were sourced by applying computable phenotypes to the EHR data, 
via a CDM. The registry used in this analysis (Product Surveillance 
Registry, ClinicalTrials.gov Identifier NCT01524276) is currently active, 
has been reported on elsewhere, is patient-centric, and is intended “to 
provide continuing evaluation and periodic reporting of safety and 

effectiveness of Medtronic market-released products.” [19–21]. To be 
eligible for registry enrollment, patients must be implanted with an 
eligible Medtronic device within a defined timeframe and give informed 
consent, and patients are only excluded if they are inaccessible for 
follow-up, excluded per local law, or enrolled in a concurrent study that 
could confound results. Following enrollment in the registry, clinical 
personnel at the hospital site document the presence or absence of many 
conditions in the medical history including HF; this determination is 
based on a review of various clinical documentation sources within the 
EHR including problem list, medical history, physical history, or notes 
from cardiac studies and office visits. The clinical site personnel’s 
designation of HF as recorded in the registry database (as a yes/no flag) 
was considered the gold standard for the current study. 

Patients who were age 18–89 when they enrolled in the registry prior 
to May 29, 2018 were considered eligible for this current study, with 
each patient’s registry consent date considered the index date for pur-
poses of computing HF phenotypes. Because this was a secondary review 
of data already collected, the IRB issued a waiver of informed consent for 
the present study. To further protect privacy, patients who were alive 
but outside the age range of 18–89 at the time of data extraction 
(September 2019) were excluded. 

2.2. Computable phenotypes 

Computable phenotypes were implemented via the PCORnet CDM 
format for EHR data. Geisinger had previously completed a PCORnet 
CDM v4.1 EHR-only implementation with records from August 1996 to 
March 2018. Implementation of the phenotypes via a CDM was done to 
gain the advantage of making our approach more interoperable for 
multi-site clinical research, with the tradeoff that the EHR’s unstruc-
tured data could not be used. Application of phenotypes was based on 
the assumption that structured data in the EHR related to HF would be 
mapped to the PCORnet tables that contain encounter diagnoses 
(DIAGNOSIS), problem list diagnoses (CONDITION), and lab results 
(LAB_RESULT_CM). Other relevant HF metrics including ejection frac-
tion, QRS duration, and New York Heart Association Classification [22] 
were not structured fields in the PCORnet implementation and therefore 
not used for this study. 

As there are many HF phenotypes in the literature (and freely 
available via eMERGE and OHDSI), but no single phenotype universally 
accepted as best, we chose to test seven HF phenotypes, labeled HF1- 
HF7, representative of those in the prior literature [11,23,24]. The 
number of phenotypes (seven) was arbitrary and chosen in order to 
investigate a reasonable variety of different previously-reported prin-
ciples or philosophies of phenotype building while limiting the study to 
a manageable scope. The primary differences among the seven pheno-
types, which were not directly copied from previous work but adapted 
based on their design principles, were the location(s) of diagnosis codes 
in the EHR, the number and frequency of codes, and the presence of 
abnormal labs in addition to diagnoses. For each patient, phenotypes 
were only applied to data generated in the EHR on or before that pa-
tient’s registry consent date. HF1 defined heart failure as the presence of 
any HF diagnosis code in either an encounter or problem list. HF2 
required a HF diagnosis code to be associated with an encounter. HF3, 
HF4, and HF5 took a more restrictive approach by requiring that two 
encounters with HF diagnosis codes appeared at least 30, 60, and 90 
days apart, respectively. HF6 required a diagnosis specifically in the 
patient’s problem list since this location offers the most readily available 
diagnosis information to a clinician or clinical staff. Finally, HF7 
required an inpatient or problem list diagnosis of HF and also an NT- 
proBNP-type Natriuretic Peptide (NT-proBNP) lab result [25] that had 
been flagged as abnormal. Definitions of the phenotypes and their 
relevant codes are summarized in Table 1. 

All diagnosis codes for HF were from the International Classification 
of Diseases, Ninth/Tenth Revisions, Clinical Modification (ICD-9/10- 
CM) [26,27], and Logical Observation Identifiers Names and Codes 
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(LOINC) from Regenstreif [28] were used to identify NT-proBNP lab 
results for HF7. Note that other authors have compared phenotypes that 
use different sets diagnosis codes (e.g., ICD-9 428.* versus others) [29], 
but for internal comparison purposes, we chose to apply the full list of all 
ICD9/10 HF codes from the Chronic Conditions Data Warehouse (CCW) 
Algorithm to all seven phenotypes [13]. 

2.3. Statistical analysis 

Our goal was to compare a binary variable (presence or absence of 
HF history) between the registry and each of the seven phenotypes 
applied via the PCORnet CDM. For each of the comparisons, we calcu-
lated five metrics—congruence, sensitivity, specificity, positive predic-
tive value (PPV), and negative predictive value (NPV)–considering the 
registry to be the gold standard source of truth. The five metrics are 
defined in more detail in Table 2. Each metric was expressed as a per-
centage, along with empiric 95% confidence intervals based on boot-
strapping with 50,000 repetitions. Because we had no a priori 
hypotheses about how these phenotypes compared, no hypothesis 
testing or causal inference was conducted other than descriptive ex-
aminations of the confidence intervals. 

We also conducted a secondary analysis stratifying all metrics by 
site/hospital, labeled as Site A or Site B, with each individual patient 
belonging to one site or the other. Our rationale for this secondary 
analysis was that registry designations required review and interpreta-
tion of medical records and manual entry; therefore, there could be 
differences in metrics depending on differences in EHR search strategies, 
knowledge, clinician documentation, or site-specific workflows between 
the sites. We examined these stratified results to explore how phenotype 
performance could have been impacted by these factors. All statistical 
analysis was performed using SAS (SAS Institute, Cary, NC) or R (The R 
Group, Vienna, Austria) statistical software. 

3. Results 

There were 319 patients enrolled in the registry from February 2013 
to May 2018 and eligible for this analysis. Median age was 73 years old 

(range 29–89), 65% of subjects were male (206/319), and the cohort 
was 99% Caucasian (315/319) and non-Hispanic (318/319), reflecting 
the demographics of the region. The number of patients with a history of 
HF at baseline reported in the registry was 176 (55%) of 319. In com-
parison, the seven phenotypes categorized between 96 (30%) and 188 
(59%) patients as having a history of HF at baseline. 

Table 3 displays the five performance metrics for each phenotype. 
The two least restrictive phenotypes (HF1 and HF2) gave identical re-
sults and demonstrated the highest sensitivity (90.3%) and NPV 
(87.0%), as well as relatively high congruence (85.6%), specificity 
(79.7%) and PPV (84.6%). For the phenotype variants (HF3 through 
HF5) that required diagnoses codes at multiple encounters separated by 
increasing amounts of time (30, 60 and 90 days), a slight improvement 
in specificity (from 92.3% to 93.0%) as the separation time increased 
was offset by much larger decreases in congruence (82.5% to 79.0%), 
sensitivity (74.5% to 67.6%) and NPV (74.6% to 70.0%). PPV was the 
least affected by varying the time criterion, with identical values at 30 
and 90 days and only a slight decrease at 60 days (92.2%, 92.2% and 
91.9%, respectively). The phenotype (HF6) that specifically required a 
diagnosis on the problem list had the highest specificity (94.4%) and 
PPV (92.9%), but much poorer sensitivity and NPV (59.7% and 65.5%, 
respectively). The phenotype (HF7) that required an abnormal NT- 
proBNP laboratory indicator showed high specificity (93.0%) and PPV 
(89.6%) but had the lowest estimates for all other performance metrics. 

Some phenotypes performed significantly better at one hospital site 
than the other. Table 4 shows the absolute differences in each perfor-
mance metric between the two sites, with individual sites’ metrics in 
parentheses and shaded vs. unshaded cells indicating which metrics 
were higher at Site A or B, respectively. Sensitivity and PPV were higher 
at Site A for all phenotypes, while specificity and NPV were higher at 
Site B. Differences between the sites also decreased as the phenotypes 
became more specific: for example, the sensitivity differed by 13.1% 
between sites for HF1 (any diagnosis) vs. only 0.9% for HF6 (diagnosis 
specifically on the problem list). 

Table 1 
Definitions of heart failure clinical phenotypes, referred to as HF1-HF7, and 
diagnosis/lab codes used for these phenotypes.  

Phenotype Description 

HF1 Any encounter or problem list heart failure diagnosis code. 
HF2 Any encounter heart failure diagnosis code. 
HF3 Two encounters with a heart failure diagnosis code, >30 days 

apart. 
HF4 Two encounters with a heart failure diagnosis code, >60 days 

apart. 
HF5 Two encounters with a heart failure diagnosis code, >90 days 

apart. 
HF6 Any heart failure diagnosis code on the problem list. 
HF7 An abnormal NT-proBNP lab result flag AND a heart failure 

diagnosis code either on the problem list or an inpatient 
encounter. 

Code System Codes 
ICD9-CM (Heart 

Failure) 
398.91, 
402.01, 402.11, 402.91, 
404.01, 404.03, 404.11, 404.13, 404.91, 404.93, 
428.0, 428.1, 428.20, 428.21, 428.22, 428.23, 428.30, 
428.31, 428.32, 428.33, 428.40, 428.41, 428.42, 428.43, 
428.9 

ICD10-CM (Heart 
Failure) 

I09.81, 
I11.0, I13.0, I13.2, 
I50.1, I50.20, I50.21, I50.22, I50.23, I50.30, I50.31, I50.32, 
I50.33, I50.40, I50.41, I50.42, I50.43, I50.9, I50.810, 
I50.811, I50.812, I50.813, I50.814, I50.82, I50.83, I50.84, 
I50.89 

LOINC (NT-proBNP) 33762-6, 33763-4, 71425-3, 77621-1, 77622-9, 83107-3, 
83108-1  

Table 2 
Definitions of the five performance metrics used to compare registry vs. 
PCORnet CDM heart failure history, for each of the seven phenotypes.  

Performance 
Metric 

Interpretation Formula 

Congruence Percent of 
Registry 
patients whose 
Registry and 
CDM HF status 
agree 

(N with same HF status in Registry and CDM)

(Total N in Registry)

Sensitivity Percent of 
patients with 
HF in Registry 
who also have 
HF in CDM 

(N with same HF status in Registry and CDM)

(N with HF in Registry)

Specificity Percent of 
patients without 
HF in Registry 
who also are 
without HF in 
CDM 

(N without HF in either Registry or CDM)

(N without HF in Registry)

PPV Percent of 
patients with 
HF in CDM who 
also have HF in 
Registry 

(N with HF in both Registry and CDM)

(N with HF in CDM)

NPV Percent of 
patients without 
HF in CDM who 
are also without 
HF in Registry 

(N without HF in either Registry or CDM)

(N without HF in CDM)
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4. Discussion 

In this study of 319 patients enrolled in an implantable cardiac de-
vice registry at a large, integrated health system, we found that applying 
computable phenotypes to EHR data via a CDM implementation showed 
strong agreement with clinical personnel’s prior assessments of whether 
patients in that registry had a history of heart failure. We compared 
performance among seven computable phenotypes derived from prior 
literature, and the least restrictive of these (using any HF diagnosis) 
demonstrated 85.6% congruence, 90.3% sensitivity, and 79.7% speci-
ficity. Requiring a diagnosis to be on the problem list yielded the highest 
specificity and PPV but much poorer sensitivity and NPV. The only 
phenotype to require evidence of an abnormal lab result (NT-proBNP) 
showed good specificity and PPV but had the lowest performance 
otherwise. Phenotypes requiring diagnoses at multiple time points 
improved the specificity but at the expense of the other measures, and 
increasing the length of the time period between diagnoses did not have 
much effect on specificity or PPV. Differences in metrics were seen be-
tween the two participating hospital sites, reinforcing the idea that 
human decisions and workflows contribute to present-day gold standard 
practices. 

The relative performance of the seven phenotypes indicates that 
comprehensive queries of a patient’s structured EHR data for any 
diagnosis of heart failure (HF1 and HF2) were more comparable with 
site personnel’s registry data collection than phenotype algorithms that 

utilized more complex logic or focused on a specific EHR location. In 
their 2014 systematic review of HF phenotype studies, McCormick et al. 
concluded that, across 19 studies, HF diagnosis codes in administrative 
data were highly predictive of true HF cases, though they failed to 
capture as many as 30% of true cases, particularly less severe cases [23]. 
The authors’ four recommendations for future studies generally advo-
cated for loosening restrictions, e.g., using both primary and secondary 
diagnoses, using both inpatient and outpatient diagnoses, and searching 
problem lists and unstructured text for mentions of heart failure. Our 
findings generally support this theme (except that we could not include 
unstructured text), as the least restrictive phenotypes gave us not only 
the highest sensitivity but highest total congruence between registry and 
CDM as well. 

We were not expecting phenotypes HF1 and HF2 to yield identical 
results as they did. Subsequent investigation revealed that during Gei-
singer’s implementation of the PCORnet CDM model, programmers 
chose to exclude problem list diagnosis entries if they could not be 
linked to a specific EHR encounter, a decision that made the first two 
phenotypes (HF1 and HF2) identical since all diagnoses were tied to 
encounters. Decisions like this one are consistent with, and necessary 
for, transforming raw EHR data into a CDM format to gain the benefits of 
a standardized structure, but highlight the importance of nuances. In 
2019, Hripcsak et al. reported on the implementation of phenotypes in a 
common data model across ten participating sites [30]. Their assessment 
was that using CDMs, particularly at sites that have already populated 

Table 3 
Five performance metrics with 95% confidence intervals for the seven heart failure phenotypes.  

Phenotype Description Congruence (95% 
CI) 

Sensitivity (95% 
CI) 

Specificity (95% 
CI) 

PPV (95% CI) NPV (95% CI) 

HF1 Any diagnosis 85.6% (81.5%, 
89.3%) 

90.3% (85.8%, 
94.5%) 

79.7% (73.0%, 
86.0%) 

84.6% (79.3%, 
89.5%) 

87.0% (81.1%, 
92.6%) 

HF2 Any encounter diagnosis 85.6% (81.5%, 
89.3%) 

90.3% (85.7%, 
94.5%) 

79.7% (72.9%, 
86.2%) 

84.6% (79.3%, 
89.6%) 

87.0% (81.0%, 
92.5%) 

HF3 Multiple encounter diagnoses > 30 days apart 82.5% (78.2%, 
86.5%) 

74.5% (67.9%, 
80.8%) 

92.3% (87.6%, 
96.4%) 

92.2% (87.6%, 
96.3%) 

74.6% (68.0%, 
80.9%) 

HF4 Multiple encounter diagnoses > 60 days apart 80.6% (76.2%, 
85.0%) 

71.0% (64.2%, 
77.6%) 

92.3% (87.7%, 
96.4%) 

91.9% (87.1%, 
96.2%) 

72.1% (65.5%, 
78.6%) 

HF5 Multiple encounter diagnoses > 90 days apart 79.0% (74.3%, 
83.4%) 

67.6% (60.5%, 
74.5%) 

93.0% (88.5%, 
96.9%) 

92.2% (87.3%, 
96.6%) 

70.0% (63.3%, 
76.4%) 

HF6 Problem list 75.2% (70.5%, 
79.9%) 

59.7% (52.3%, 
66.9%) 

94.4% (90.3%, 
97.9%) 

92.9% (87.8%, 
97.3%) 

65.5% (59.0%, 
71.9%) 

HF7 (Problem list OR inpatient diagnosis) AND 
abnormal NT-proBNP lab 

68.6% (63.6%, 
73.7%) 

48.8% (41.4%, 
56.2%) 

93.0% (88.5%, 
96.9%) 

89.6% (83.1%, 
95.3%) 

59.6% (53.1%, 
65.9%)  

Table 4 
Absolute difference in % for each metric and phenotype between clinical Sites A and B.  

Congruence Sensitivity Specificity PPV NPV

HF1 3.6
(87.5 vs 83.9)

13.1*
(95.9 vs 82.8)

16.6*
(68.2 vs 84.8)

6.5
(87.2 vs 80.7)

1.7
(88.2 vs 86.5)

HF2 3.5
(87.5 vs 84.0)

13.1*
(96.0 vs 82.9)

16.7*
(68.1 vs 84.8)

6.5
(87.2 vs 80.7)

1.6
(88.2 vs. 86.6)

HF3 2.2
(81.2 vs 83.4)

8.3
(78.0 vs 69.7)

5.3
(88.6 vs 93.9)

4.1
(93.9 vs 89.8)

16.2*
(63.9 vs 80.1)

HF4 2.6
(79.1 vs 81.7)

9.1
(74.9 vs 65.8)

5.3
(88.6 vs 93.9)

4.5
(93.7 vs 89.2)

17.2*
(60.9 vs 78.1)

HF5 3.5
(77.0 vs 80.5)

7.8
(70.9 vs 63.1)

3.0
(90.9 vs 93.9)

5.8
(94.6 vs 88.8)

18.9*
(57.9 vs 76.8)

HF6 10.5*
(69.4 vs 79.9)

0.9
(60.0 vs 59.1)

5.1
(90.8 vs 95.9)

1.9
(93.7 vs 91.8)

25.4*
(49.9 vs 75.3)

HF7 11.2*
(62.4 vs 73.6)

0.3
(49.9 vs 48.6)

0.2
(93.1 vs 92.9)

10.2
(94.2 vs 84.0)

25.7*
(44.5 vs 70.2)

Numbers in parentheses indicate the stratified performance metrics at Site A and Site B, respectively. Shaded cells represent instances where the performance metric 
was higher at Site A, unshaded cells represent instances where the metric was higher at Site B, and asterisks indicate where the 95% confidence interval of the dif-
ference between sites did not include zero. 
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that model, can drastically speed phenotype implementation, and we 
believe that our study adds to the literature by demonstrating use of a 
different widely-used CDM (PCORnet) for heart failure. We recognize 
that using the CDM format was not strictly needed for this study inside a 
single health system but was done to enable the extension of this work 
across additional health systems or provider networks. We also note the 
caveat here that use of a CDM alone does not guarantee consistency of 
results among participating sites unless those sites are also following 
similar data collection procedures and implement data quality reviews 
or other processes to improve comparability. 

The decision to exclude some problem list entries from the PCORnet 
CDM may also have contributed to the low sensitivity of HF6, which 
required a diagnosis to be on the problem list. Problem lists record active 
health conditions and are easily accessed by several members of a pa-
tient’s care team which makes them a logical first place for an algorithm 
or clinical site personnel to search for a condition. Previous studies have 
cautioned, however, that the problem list is often incomplete or may 
contain outdated patient information [20,31]. In our case, requiring a 
problem list diagnosis yielded the highest specificity and PPV, but much 
poorer sensitivity and NPV than the other phenotypes. This finding may 
support the argument that computable phenotypes have the advantage 
over manual data collection that the entire health record can be queried 
just as easily as a single location like a problem list. 

The phenotype (HF7) that required an abnormal NT-proBNP labo-
ratory value indicator showed the poorest congruence, sensitivity and 
NPV. We note that this phenotype relied on the CDM data containing an 
abnormal indicator (i.e., flag), and in a secondary analysis we noted that 
the abnormal indicator was not always applied in the original EHR 
source data consistently, such as readings in the 450–899 pg/mL range 
for patients age 50–74 that were flagged as normal [30]. Other authors 
have included NT-proBNP > 500 pg/mL in their phenotype definitions 
[32,33], but our results highlighted that lab values presented several 
challenges, including patients not having the lab taken, and possible 
conflicting interpretations of abnormal flags. 

We are not aware of a previous study investigating the application of 
HF criteria for multiple encounters over increasingly long periods of 
time, as in HF3-HF5. Increasing the period of time between diagnosis 
codes significantly reduced sensitivity and moderately increased speci-
ficity. Multiple encounter diagnoses are also common search criteria to 
identify patients with an actively managed health condition, because 
they offer the face validity of ruling out spurious or erroneous diagnosis 
codes that appear only once in the record and never recur. Our results, 
however, suggest that such criteria did not provide obvious benefits for 
the purpose of a registry. 

For all phenotypes, sensitivity was higher for Site A and specificity 
was higher for Site B. The greatest discrepancies in metrics were for the 
least restrictive phenotypes, HF1 and HF2, where sensitivity and spec-
ificity varied between sites by 13.1 and 16.6 percentage points, 
respectively. These differences in phenotype performance between the 
two hospital sites could be attributed to differences in a number of 
human or process-related factors, including but not limited to: (1) dif-
ferences in codes used; (2) differences in physician coding practice; (3) 
differences in EHR workflows; (4) differences in abstractor knowledge 
or experience; or (5) difference in training/guidance given to abstrac-
tors. It is important to emphasize that site personnel were not reviewing 
the same patients. The fact that the differences in sensitivity and spec-
ificity between the two sites narrowed as the phenotypes became more 
restrictive, however, suggest that if the sites had reviewed the same 
patient, they would have been in better agreement with each other for a 
patient who met the more restrictive phenotypes’ criteria for HF. For 
patients whose evidence of heart failure was less obvious, however, Site 
A’s personnel were more likely than Site B’s to label patients as having 
heart failure. 

To examine the non-concordant patients more closely, we subse-
quently performed additional manual chart review of a random sample 
(approximately 25%) of patients who were ‘false negatives’ (i.e., heart 

failure in registry but not CDM) or ‘false positives’ (i.e., heart failure in 
CDM but not in registry) according to phenotypes HF1 and HF2. 
Approximately 20 min per patient was dedicated solely to searching for 
evidence of heart failure in the EHR, including areas not specified in the 
phenotypes. For all false negative patients reviewed, history of heart 
failure was only found to be referenced in progress notes, discharge 
instructions, or other ‘free text’ areas of the EHR, which explains why 
they were detected by the clinical site but not by the phenotypes. For the 
review of false positive results, there was a more diverse mixture of 
patients with heart failure on the problem list or in documentation of 
past encounters. It is therefore unknown why the clinical sites did not 
classify these patients as having heart failure. It could be either because 
information was missed in their search or because they had access to 
additional information outside of the EHR that ruled out a history of 
heart failure. Given the variation observed between two hospitals in one 
system, we recognize that use of phenotypes and CDMs across multiple 
health systems may not be able to address or overcome differences in 
how data are collected. These results suggest that using phenotypes 
earlier in the process, as part of a data collection workflow, might lead to 
more consistency in data collection between sites, particularly for in-
stances where less restrictive phenotypes are needed. 

The primary strength of this study was our ability to leverage an 
existing implantable cardiac device registry in an EHR-integrated health 
system where patient information could be compared side-by-side with 
data from an already-implemented CDM. Main limitations were the 
sample size and the fact that the study was performed at a single health 
system on a single chronic disease, which could limit generalizability. 
We also acknowledge that our use case, the documenting of a prevalent 
condition in the medical history, may differ from other use cases such as 
identification of patients or incident events. For the purposes of studying 
HF specifically, we recognize that we could have added phenotypes that 
considered medication prescribing but chose not to, in order to keep the 
scope more manageable, and we were also limited by the fact that 
ejection fraction (a common surrogate measure for disease) was not 
available in the CDM data and therefore could not be leveraged in 
phenotype definitions. We recognize that diseases of varying complexity 
may be documented differently and could impact the congruence be-
tween manual data collection and electronically sourced data. Finally, 
although we defined the registry data as gold standard for the purpose of 
computing metrics, we did not have an additional third-party adjudi-
cation of each patient’s heart failure status as a true standard. Our re-
sults, particularly those that showed differences in CDM performance 
when compared with the registry information recorded at two different 
sites, highlight the fact that non-automated data capture may be influ-
enced by subjective decision-making. 

5. Conclusion 

In conclusion, these results provide further evidence that combining 
computable phenotypes with CDM-structured data for the purpose of 
implantable cardiac device registries is promising and could reduce re-
petitive work and unwanted variance while still yielding high agreement 
with data generated by manual chart review. Several limitations and 
questions remain as areas for further study, however. More information 
is needed on how results may vary across conditions, as some diseases 
have more algorithm-resistant clinical nuances than others. Given the 
differences in how medical history is collected across sites during 
implantable device registry studies, a better understanding is also 
needed of how clinically impactful those differences are to study results. 
Finally, more information is needed on whether traditional manual 
entry of clinical data into device registries should indeed always be 
considered a gold standard of accuracy or if there are instances where 
well-defined clinical phenotypes are more appropriate. It is important 
for users of device registry (or other clinical study) data to understand 
these complex issues and their impact on results when performing 
observational research or deploying direct data capture methods. 
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